This figure shows the use of plant protection products by professional and non-professional users by year in non-agricultural areas in France. More precisely, it shows the evolution, calculated only for non-agricultural areas, of an indicator known as NODU («Nombre de Doses Unités»). The non-agricultural NODU corresponds to the surface area of gardens, green spaces and infrastructures (so-called JEVI) that would be treated annually with the plant protection products sold during the course of a year, at the maximum authorised doses. After a period of strong decrease, the 2020 non-agricultural NODU stands at 130,736 ha in 2020, down 92% since 2009. As a result of the use restrictions applied to private individuals in France, the share of non-professional use in the 2020 non-agricultural NODU is decreasing: it goes from 65% (1,104,758 ha) in 2009 to 32% (41,953 ha) in 2020.
The two charts illustrate some of the results of the randomised clinical trial which was conducted in Cyprus as part of the “Organic diet and children’s health” study. In the study, urine samples from children aged 10-12 from schools in the Limassol area of Cyprus were analysed during two separate periods. During a 'conventional' period, participants were asked to maintain their usual dietary choices (>80% conventional diet) for a total of 40 days. During the 'organic period', participants were asked to follow strictly the two ~20-day sequential organic dietary menus provided to them for 40±3 days. Two urinary biomarkers were then measured by the researchers. The first were biomarkers of exposure to pyrethroid pesticides (3-phenoxybenzoic acid, 3-PBA), and neonicotinoid pesticides, (6-chloronicotinic acid, 6-CN). The second were biomarkers of oxidative stress/inflammation (8-iso-prostaglandin F2a [8-iso-PGF2a], malondialdehyde [MDA], and 8-hydroxy-2′-deoxyguanosine [8-OHdG]), which are considered as early-stage indicators for chronic conditions, such as obesity, type 2 diabetes or cancer. The left chart shows the measurements for the urinary biomarkers of oxidative stress/inflammation (8-OHdG), while the right chart shows those for the urinary biomarkers of pyrethroid pesticides (3-PBA). The results illustrate that the children had a lower body burden of pyrethroid pesticides and lower levels of oxidative stress/inflammation biomarkers during their 'organic period'. These results were statistically significant.
The maps show the monitoring sites in Europe that exceeded effect or quality thresholds for (left) imidacloprid in surface waters (right) atrazine in groundwater in the year 2020. The classification of 'unknown’ for some monitoring sites means that the substance was detected but the concentration was below the limit of quantification (LoQ) and the LoQ was higher than the assessment threshold. This means that it is impossible to determine whether there was an exceedance or not. The data reported for imidacloprid in surface waters cover 16 countries. The data reported for atrazine cover 18 countries. The monitoring results are reported under the Water Information System for Europe State of Environment (WISE SoE) reporting, more specifically WISE 6, and the spatial data for the monitoring sites are reported under the Water Framework Directive and the WISE 5 Spatial data reporting.
The figure shows the spatial variation in nitrogen (N) surplus (left map) and phosporus (P) surplus (right map) for all agricultural land in the EU-27 in 2010 (excluding the United Kingdom and Croatia).
The surplus for N is calculated as the sum of N inputs to land (fertiliser, manure and biosolids, atmospheric N deposition, biological fixation and net mineralisation) minus crop removal (offtake). The surplus for P is calculdated as the sum of P inputs to land (fertiliser, manure and biosolids, atmospheric P deposition) minus crop removal (offtake).
In the two maps, regions with higher N and P surpluses are coloured in shades of orange and red (with red colours representing N surpluses over 150 kg/ha/yr and P surpluses of 12 kg/ha/yr, respectively). Regions with lower N and P surpluses are shown in shades of green. N surpluses occur in nearly all regions, and are highest in areas with high livestock densities such as the Netherlands, Belgium, Brittany in France and the Po valley region in Italy. Because P is adsorbed by the soil, P surpluses can be negative in areas where crop uptake exceeds P input and P inputs are completely eliminated (so-called P mining), such as in parts of France, Germany, Czechia, Slovakia and Hungary.
The maps and the supporting information are adapted from De Vries, W., Romkens, P., Kros, H., Voogd, J.C.H., Schulte-Uebbing, L., 2022, Impacts of nutrients and heavy metals in European agriculture. Current and critical inputs in relation to air, soil and water quality, ETC-DI Report 2022/01, European Environment Agency.
Data Visualization
07 Dec 2022
Data Visualization
07 Dec 2022
This data set show the European agriculture area in 2018 at 100m spatial resolution, covering EEA38 member countries and the United Kingdom.
The raster value is 1 when agricultural area is identified and NoData for other land cover / land uses.
The pan-European High-Resolution Vegetation Phenology and Productivity product suite (HR-VPP) are provided at a high spatial resolution (10 m x 10 m) with a high repeat frequency. They are derived from the optical Sentinel-2 constellation data (Sentinel-2A and Sentinel-2B) with a revisit time of 5 days. They are generated over the entire EEA39 region (33 member countries and 6 cooperating countries) from January 1 2017 onwards, with a daily, 10-daily and yearly frequency (see below).
The HR-VPP product suite contains 3 product groups, 31 product types, 1522 files and more than 900.000 tiles per year, which totals more than 80 Terra Bytes of data, per year.
Indicator Assessment
26 Oct 2021
Greenhouse gas emissions from the agriculture sector are covered by national annual emission targets. Between 2005 and 2019, the EU’s agriculture emissions remained stable. Current national projections only foresee a modest decline of 2% by 2030, compared with 2005 levels, and a 5% reduction with the implementation of currently planned measures. This projected progress remains largely insufficient and highlights the need for further action if Member States are to reach their binding annual targets and the EU its climate neutrality goal by 2050.
Document Actions
Share with others