All official European Union website addresses are in the europa.eu domain.
See all EU institutions and bodiesDo something for our planet, print this page only if needed. Even a small action can make an enormous difference when millions of people do it!
Order a printed copy on the EU Publications website
In the year 2009, the atmospheric CO2 concentration was about 387 ppm, which is 38 % above the pre-industrial level of 278 ppm. The concentration of the six greenhouse gases (1) covered by the Kyoto Protocol reached 438 ppm CO2-equivalent in 2008, an increase of 160 ppm from the pre-industrial level. Under the emissions scenarios of the Intergovernmental Panel on Climate Change (IPCC), the overall concentration of the six 'Kyoto gases' is projected to increase to 638–1 360 ppm CO2-equivalent by 2100.
The global mean temperature in 2009 was between 0.7 and 0.8 °C higher than in pre-industrial times and the decade 2000–2009 was the warmest on record. Europe has warmed more than the global average. The annual average temperature for the European land area was 1.3 °C above the 1850–1899 average. Without global emission reductions, the IPCC expects global temperatures to increase further by 1.8–4.0 °C above 1980–1999 levels by 2100. Global temperature increase would exceed 2 °C above industrial times – the limit agreed by the EU — between 2040 and 2060 in all IPCC scenarios. The rise in temperatures has had, and will continue to have, serious impacts on various parts of the climate system. Some examples are:
Land and ocean sinks have taken up more than half of global CO2 emissions since 1800. But these natural sinks are vulnerable. They are highly likely to take up less CO2 in the future. Moreover, poor nations and communities, ecosystem services and biodiversity are particularly at risk. A temperature rise of more than 1.5–2 °C above pre-industrial levels could cause disruptions in many regions. Unabated greenhouse gas emissions increase the risk of large-scale irreversible shifts in the climate system with potentially serious consequences for society and ecosystems. Recent research suggests that several key components of the climate system could undergo irreversible change at significantly lower levels of global temperature increase than previously assessed. The most important 'tipping elements' for Europe are the Greenland ice sheet, Alpine glaciers and Arctic sea ice.
To limit impacts and guide policy development, the Copenhagen Accord of December 2009 recognised a long-term climate limit of 2 °C global mean temperature increase, without specifying the base year. The Accord also mentions the need for a review in 2015 to consider a possible goal of limiting temperature rise to 1.5 °C on the basis of new scientific insights. According to the IPCC (2007), confirmed by later scientific insights, to have a 50 % chance of limiting the global mean temperature increase to 2 °C above pre-industrial levels, the atmospheric greenhouse gas concentration needs to be stabilised at about 445 to 490 ppm CO2-equivalent (or about 350 to 400 ppm CO2). To achieve this, global emissions should peak at the latest in 2015–2020 and decline to 50–80 % below 2000 levels by 2050.
(1) Carbon dioxide (CO2), methane (CH4), nitrous oxide which is also known as laughing gas (N2O), hydrofluorocarbons (HFC), perfluorocarbons (PFC) and sulphur hexafluoride (SF6). Greenhouse gases are often measured in CO2-equivalent in order to allow for comparisons of their potential to contribute to global warming.
For references, please go to https://www.eea.europa.eu/soer/2010/europe/understanding-climate-change or scan the QR code.
PDF generated on 13 Sep 2024, 10:25 AM
Engineered by: EEA Web Team
Software updated on 26 September 2023 08:13 from version 23.8.18
Software version: EEA Plone KGS 23.9.14
Document Actions
Share with others