Large combustion plants are responsible for a significant proportion of anthropogenic pollutant emissions.
Since 2004, emissions from large combustion plants in the 28 EU Member States have decreased, by 86 % for sulphur dioxide, 59 % for nitrogen oxides and 84 % for dust.
In 2017, from a total of 3 664 large combustion plants, 50 % of all emissions came from just 68, 141 and 58 plants for sulphur dioxide , nitrogen oxides and dust, respectively. However, the performances of these largest plants have improved greatly over time.
One indicator of the environmental performance of large combustion plants is the ratio between emissions and fuel consumption (i.e. the implied emission factor). The implied emission factors for all three pollutants decreased significantly between 2004 and 2017 for all sizes of large combustion plants.
Noise pollution is a major environmental health problem in Europe.
Road traffic is the most widespread source of environmental noise, with more than 100 million people affected by harmful levels in the EEA-33 member countries. Railways, air traffic and industry are also major sources of noise.
The European Union's Seventh Environment Action Programme (7th EAP) sets the objective that by 2020 noise pollution in the EU will have significantly decreased, moving closer to World Health Organization (WHO) recommended levels.
Across the EEA-33 countries, emissions of lead (Pb) decreased by 93 %, mercury (Hg) by 72 % and cadmium (Cd) by 64 % from 1990.
The majority of the decrease in Pb emissions had occurred by 2004, mainly as a result of the phase out of leaded petrol across Europe.
Since 1990, the two sectors contributing most to the decrease in Hg emissions have been 'Energy use in industry' and 'Industrial processes and product use'.
The industry sector has accounted for 60 % of Cd emission reductions since 1990.
Since 1990, emissions of persistent organic pollutants (POPs) decreased in the EEA-33 countries, e.g. hexachlorobenzene (HCB) decreased by 95 %, polychlorinated biphenyls (PCBs) by 75 %, dioxins and furans by around 70 % and polycyclic aromatic hydrocarbons (PAHs) by 83 %.
The majority of countries report that POP emissions fell during the period 1990 to 2017.
In 2017, the most significant sources of emissions included the ‘Commercial, institutional and households’ and ‘Industrial processes and product use’ sectors.
It is not possible to assess whether past climate change has already affected water- and food-borne diseases in Europe, but the sensitivity of pathogens to climate factors suggest that climate change could be having effects on these diseases.
The number of vibriosis infections, which can be life-threatening, has increased substantially in Baltic Sea states since 1980. This increase has been linked to observed increases in sea surface temperature, which has improved environmental conditions for Vibrio species blooms in marine waters. The unprecedented number of vibriosis infections in 2014 has been attributed to the unprecedented 2014 heat wave in the Baltic region.
Increased temperatures could increase the risk of salmonellosis.
The risk of campylobacteriosis and cryptosporidiosis could increase in those regions where precipitation or extreme flooding is projected to increase.
Climate change can have an impact on food safety hazards throughout the food chain.
Heat waves and extreme cold spells are associated with decreases in general population well-being and with increases in mortality and morbidity, especially in vulnerable population groups. Temperature thresholds for health impacts differ according to the region and season.
The number of heat extremes has substantially increased across Europe in recent decades. Heat waves have caused tens of thousands of premature deaths in Europe since 2000.
It is virtually certain that the length, frequency and intensity of heat waves will increase in the future. This increase will lead to a substantial increase in mortality over the next decades, especially in vulnerable population groups, unless adaptation measures are taken.
Cold-related mortality is projected to decrease owing to better social, economic and housing conditions in many countries in Europe. There is inconclusive evidence about whether or not the projected warming will lead to a further substantial decrease in cold-related mortality.
River and coastal flooding have affected many millions of people in Europe since 2000. Flooding affects human health through drowning, heart attacks, injuries, infections, exposure to chemical hazards and mental health consequences. Disruption of services, including health services, safe water, sanitation and transportation ways, plays a major role in vulnerability.
Observed increases in heavy precipitation and extreme coastal water levels have increased the risk of river and coastal flooding in many European regions.
In the absence of additional adaptation, the projected increases in extreme precipitation events and in sea level would substantially increase the health risks associated with river and coastal flooding in Europe.
The transmission cycles of vector-borne diseases are sensitive to climatic factors, but disease risks are also affected by factors such as land use, vector control, human behaviour, population movements and public health capacities.
Climate change is regarded as the principal factor behind the observed move of the tick species Ixodes ricinus — the vector of Lyme borreliosis and tick-borne encephalitis in Europe — to higher latitudes and altitudes. Climate change is projected to lead to further northwards and upwards shifts in the distribution of Ixodes ricinus.
It is generally suspected that climate change has played (and will continue to play) a role in the expansion of other disease vectors, notably the Asian tiger mosquito (Aedes albopictus), which can disseminate several diseases including dengue, chikungunya and Zika, and Phlebotomus species of sandflies, which transmit leishmaniasis.
The unprecedented upsurge in the number of human West Nile fever infections in the summer of 2010 in south-eastern Europe was preceded by extreme hot spells in this region. High temperature anomalies in July were identified as contributing factors to the recurrent outbreaks in the subsequent years.
There was no discernible trend in European ozone concentrations between 2003 and 2012, in terms of the annual mean of the daily maximum eight hour average measured at any type of station.
It is difficult to attribute observed ozone exceedences, or changes therein, to individual causes such as climate change.
Future climate change is expected to increase ozone concentrations, but this increase should not exceed 5 µg/m 3 by the middle of the century and would therefore likely be outweighed by reductions in ozone levels due to planned future emissions reductions.
End of the century projections for the effects of climate change involve an increase of up to 8 µg/m 3 in ozone concentrations .
Local soil contamination in 2011 was estimated at 2.5 million potentially contaminated sites in the EEA-39, of which about 45 % have been identified to date. About one third of an estimated total of 342 000 contaminated sites in the EEA-39 have already been identified and about 15 % of these 342 000 sites have been remediated. However, there are substantial differences in the underlying site definitions and interpretations that are used in different countries.
Four management steps are defined for the management and control of local soil contamination, namely site identification (or preliminary studies), preliminary investigations, main site investigations, and implementation of risk reduction measures. Progress with each of these steps provides evidence that countries are identifying potentially contaminated sites, verifying if these sites are actually contaminated and implementing remediation measures where these are required. Some countries have defined targets for the different steps.
Thirty of the 39 countries surveyed maintain comprehensive inventories for contaminated sites: 24 countries have central national data inventories, while six countries, namely Belgium, Bosnia-Herzegovina, Germany, Greece, Italy and Sweden, manage their inventories at the regional level. Almost all of the inventories include information on polluting activities, potentially contaminated sites and contaminated sites.
Contaminated soil continues to be commonly managed using “traditional” techniques, e.g. excavation and off-site disposal, which accounts for about one third of management practices. In-situ and ex-situ remediation techniques for contaminated soil are applied more or less equally.
Overall, the production sectors contribute more to local soil contamination than the service sectors, while mining activities are important sources of soil contamination in some countries. In the production sector, metal industries are reported as most polluting whereas the textile, leather, wood and paper industries are minor contributors to local soil contamination. Gasoline stations are the most frequently reported sources of contamination for the service sector.
The relative importance of different contaminants is similar for both liquid and solid matrices. The most frequent contaminants are mineral oils and heavy metals. Generally, phenols and cyanides make a negligible overall contribution to total contamination.
On average, 42 % of the total expenditure on the management of contaminated sites comes from public budgets. Annual national expenditures for the management of contaminated sites are on average about EUR 10.7 per capita. This corresponds to an average of 0.041 % of the national GDP. Around 81 % of the annual national expenditures for the management of contaminated sites is spent on remediation measures, while only 15 % is spent on site investigations.
It should be noted that all results derive from data provided by 27 (out of 39) countries that returned the questionnaire, and not all countries answered all questions.
Document Actions
Share with others