Decision No 1386/2013/EU of the European Parliament and of the Council of 20 November 2013 on a General Union Environment Action Programme to 2020 ‘Living well, within the limits of our planet’

Policy Document
1 min read
Published: 2013-11-20 Corporate author(s): Council of the European Union , European Parliament Subject: biodiversity , economic growth , environmental impact , environmental protection , EU programme , investment , management of resources , pollution control

Related content

Related indicators

Vegetation productivity The indicator addresses trends in land surface productivity derived from remote sensing observed time series of vegetation indices. The vegetation index used in the indicator is the Plant Phenology Index (PPI, Jin and Eklundh, 2014). PPI is based on the MODIS Nadir BRDF-Adjusted Reflectance product (MODIS MCD43 NBAR. The product provides reflectance data for the MODIS “land” bands (1 - 7) adjusted using a bi-directional reflectance distribution function. This function models values as if they were collected from a nadir-view to remove so called cross-track illumination effects. The Plant Phenology Index (PPI) is a new vegetation index optimized for efficient monitoring of vegetation phenology. It is derived from radiative transfer solution using reflectance in visible-red (RED) and near-infrared (NIR) spectral domains. PPI is defined to have a linear relationship to the canopy green leaf area index (LAI) and its temporal pattern is strongly similar to the temporal pattern of gross primary productivity (GPP) estimated by flux towers at ground reference stations. PPI is less affected by presence of snow compared to commonly used vegetation indices such as Normalized Difference Vegetation Index (NDVI) or Enhanced Vegetation Index (EVI). The product is distributed with 500 m pixel size (MODIS Sinusoidal Grid) with 8-days compositing period.  References: Jönsson P., Eklundh L., 2004. TIMESAT—a program for analyzing time-series of satellite sensor data. Computers & Geosciences 30 (2004) 833–845. Eklundh L., Jönsson P., 2015. TIMESAT: A Software Package for Time-Series Processing and Assessment of Vegetation Dynamics. In: Kuenzer C., Dech S., Wagner W. (eds) Remote Sensing Time Series. Remote Sensing and Digital Image Processing, vol 22. Springer, Cham Jin, H., Eklundh, L. 2014. A physically based vegetation index for improved monitoring of plant phenology, Remote Sensing of Environment, 152, 512 – 525. Karkauskaite, P., Tagesson, T., Fensholt, R., 2017. Evaluation of the Plant Phenology Index (PPI), NDVI and EVI for Start-of-Season Trend Analysis of the Northern Hemisphere Boreal Zone, Remote Sensing, 9 (485), 21 pp. Jin, H.X.; Jönsson, A.M.; Bolmgren, K.; Langvall, O.; Eklundh, L., 2017. Disentangling remotely-sensed plant phenology and snow seasonality at northern Europe using MODIS and the plant phenology index. Remote Sensing of Environment 2017,198, 203-212. Abdi, A. M., N. Boke-Olén, H. Jin, L. Eklundh, T. Tagesson, V. Lehsten and J. Ardö (2019). First assessment of the plant phenology index (PPI) for estimating gross primary productivity in African semi-arid ecosystems. International Journal of Applied Earth Observation and Geoinformation 78: 249-260. Jin, H., A. M. Jönsson, C. Olsson, J. Lindström, P. Jönsson and L. Eklundh (2019). New satellite-based estimates show significant trends in spring phenology and complex sensitivities to temperature and precipitation at northern European latitudes. International Journal of Biometeorology 63(6): 763-775.
Document Actions