next
previous
items

Indicator Assessment

Oxygen consuming substances in European rivers

Indicator Assessment
Prod-ID: IND-20-en
  Also known as: CSI 019 , WAT 002
Published 23 Feb 2015 Last modified 18 Nov 2021
17 min read
This page was archived on 18 Nov 2021 with reason: No more updates will be done

Concentrations of biochemical oxygen demand (BOD) and total ammonium have decreased in European rivers in the period 1992 to 2012 (Fig. 1), mainly due to general improvement in waste water treatment.

Updated with 2018 data and text revised to reflect updated results

Fig. 1: Rivers - European trends

Data sources:

Fig. 2: Rivers - Biochemical Oxygen Demand

Data sources:

Fig. 3: Rivers - ammonium

Data sources:

Introduction

Biochemical oxygen demand (BOD) and ammonium are key indicators of organic pollution in water. BOD shows how much dissolved oxygen is needed for the decomposition of organic matter present in water. Concentrations of these parameters normally increase as a result of organic pollution caused by discharges from waste water treatment plants, industrial effluents and agricultural run-off. Severe organic pollution may lead to rapid de-oxygenation of river water, high concentration of ammonia and disappearance of fish and aquatic invertebrates. Some of the year-to-year variation can be explained by variation in precipitation and runoff.

The most important sources of organic waste load are: household wastewater; industries, such as paper or food processing; and silage effluents and manure from agriculture. Increased industrial and agricultural production in most European countries after the 1940s, coupled with a greater share of the population connected to sewerage systems, initially resulted in increases in the discharge of organic waste into surface water. Over the past 15 to 30 years, however, the biological treatment (secondary treatment) of waste water has increased, and organic discharges have consequently decreased throughout Europe. See also CSI 024: Urban waste water treatment.

Present concentrations per country

See the WISE interactive maps for information displayed by countries on BOD in rivers and ammonium in rivers

In 2012 (or the latest reported year), countries with an average BOD concentration in the lowest category (less than 1.4 mg/l) are Slovenia (1.0 mg/l), the United Kingdom (1.2 mg/l), France (1.3 mg/l) and Ireland (1.4 mg/l).

In 2012 (or the latest reported year), countries with an average ammonium concentration in the lowest category (less than 40 µg/l) are Norway (11 µg/l), Finland (26 µg/l), the United Kingdom (32 µg/l), Sweden (39 µg/l), Slovenia (40 µg/l) and Ireland (40 µg/l).

Overall trend in BOD and total ammonium

In European rivers, oxygen demanding substances have been decreasing throughout the period 1992 to 2012 (Figure 2). Total  BOD concentration decreased by 1.6 mg/l from 1992 to 2012. By using the filter in figure 2 the river BOD trends for the individual countries are illustrated.

The average yearly decrease in BOD is 0.08 mg/l (-2.9 % per year). A significant decrease is evident at 62% of river stations, with an additional 6% of stations showing a marginally decreasing trend (see Rivers - BOD - statistical analysis). On the other hand, a significantly increasing BOD trend is recorded at only 3% of the stations, with marginally increasing BOD at an additional 1% of the stations. Countries where more than 60% of the stations show a negative trend in BOD concentrations are Ireland (100%), Luxembourg (100%), Slovenia (92%), Slovakia (87%), France (81%), the United Kingdom (75%), Denmark (74%), Austria (66%), Bulgaria (66%) and Lithuania (63%).

Likewise, the relative trend calculation for ammonium shows that the average ammonium concentration decreased by 231 µg N/l in the period 1992–2012 (Figure 3). By using the filter in figure 3, the river ammonium trends for the individual countries are illustrated.

The average yearly decrease is in ammonium is 11.6 µg N/l (-3.5 % per year). Significantly decreasing concentration trends have been observed at 59% of the stations, with an additional 5% of stations showing a marginally decreasing trend (see Rivers - ammonium - statistical analysis). A significantly increasing trend is evident at 3% of stations and a marginally increasing trend at 1% of stations. Countries where more than 60% of the stations show a negative trend in ammonium concentrations are Luxembourg, the former Yugoslav Republic of Macedonia, Slovenia and the United Kingdom (all 100%), Germany (92.6%), Lithuania (88.5%), Ireland (75%), Poland (75%), France (71.7%), Bulgaria (71.6%), Belgium (70.4%), Norway (70%) and Austria (66%).

The decrease is mainly due to improved sewage treatment resulting from the implementation of the Urban Waste Water Treatment Directive and national legislation. The economic downturn of the 1990s in central and eastern European countries also contributed to this fall, as there is an ongoing decline in pollution from manufacturing industries. This suggests that either further improvement in waste water treatment is required or that other sources of organic pollution, for example from agriculture, require greater attention, or both.

BOD and total ammonium time series and trends per geographical region

Link: BOD concentrations in rivers in different geographical regions of Europe

The largest absolute decrease of BOD from 1992 to 2012 has occurred in southeastern European rivers (61%), where concentrations are at their lowest level to-date. They are still, however, the highest in Europe (about 3.1 mg O2/l). The largest yearly decrease is evident in western Europe (3.4% per year). Concentrations in northern European rivers (represented by rivers of Finland only) are the most stable (less than 2 mg O2/l), with an average yearly decrease of 0.8%. The largest proportion of rivers with a negative BOD trend is in western Europe. Since BOD records are traditionally low in the north, the decreasing trends are less pronounced there. However, the share of rivers with an increasing trend is relatively high both in the north and the east.

Link: Ammonium concentrations in rivers in different geographical regions of Europe

The decreasing trend of ammonium from 1992 to 2012 is largest in southeastern (5.0 % per year on average) and western European (4.5 % per year on average) rivers. This is followed by a similarly decreasing trend in the eastern Europe (3.7 % per year on average). Concentrations in northern European rivers are stable, where the smallest decrease, of 1% per year on average, is observed.

The concentrations in eastern European rivers, as assessed for the period 1992 to 2012 (around 80 µg N/l), are significantly lower than those in the previous assessment (made in 2012, for the period 1992-2010: around 200 µg N/l). The reason is that in the 1992 to 2010 assessment, data for 96 monitoring stations in Poland were included, whereas in the 1992 to 2012 assessment, only four stations in Poland were included. Monitoring stations in Poland had an important impact on the assessment of the indicator for the eastern European geographical region as a whole. The same difference can be observed for the southern European region due to the larger number of river monitoring stations in Spain, the only stations representing southern Europe (82% decrease in the 1992 to 2012 period, compared to a 20% decrease in the 1992 to 2010 period) included in the assessment. Southeastern and western European rivers also saw a significant decrease in ammonium concentrations (both around 75%), however, southeastern European rivers still have the highest ammonium concentrations in Europe (around 300 µg N/l).

BOD and total ammonium time series and trends per sea region

Link: BOD concentrations in rivers in different sea regions of Europe

The decreasing BOD trend is observed in all sea regions. It is largest in the Mediterranean Sea catchment, where it is decreasing on average by 4.4% per year. The decreasing trend is also strong in the Black Sea (3.6% per year on average), the Greater North Sea (including the Kattegat, and the English Channel; by 2.7% per year on average), and the Celtic Seas, Bay of Biscay and Iberian Coast (by 2.8% per year on average). It is less pronounced in the Baltic Sea (by 0.9% per year on average). The present BOD is highest in the Black Sea (above 2 mg/l) and lowest in the Celtic Seas, Bay of Biscay and Iberian Coast (less than 1.5 mg/l).

Link: Ammonium concentrations in rivers in different sea regions of Europe

Concentrations of ammonium in rivers are highest in the Black sea (142 µg N/l) and the Greater North Sea regions (141 µg N/l). Somewhat lower concentrations can be found in the Mediterranean Sea (134 µg N/l). The Baltic Sea region has a lower record of 52 µg N/l, while the Celtic Seas, Bay of Biscay and Iberian Coast have 58 µg N/l. The concentrations are by far the lowest in the region of the Arctic Ocean (5 µg N/l). A trend comparison shows that concentrations are decreasing in all sea regions, with the largest decrease in the Celtic Seas, Bay of Biscay, Iberian Coast (5.7% average decrease per year), the Greater North Sea, including the Kattegat, and the English Channel (3.8%), the Black Sea (4.9%) and the Mediterranean Sea (3.5%). The decreasing trend is somewhat lower in catchments of the Baltic Sea (2.1% per year on average) and the Arctic Ocean (1.3%).

Supporting information