next
previous
items

Indicator Specification

Content-Type
Industrial pollution in Europe

This indicator provides an overview of industrial pollution in Europe. This includes the contribution of industry to air and water emissions, soil contamination and waste generation. Trends in industrial pollutant releases to air and water, and industrial transfers of waste are also highlighted.

Read more

Global and European temperature

This indicator shows absolute changes and rates of change in average near-surface temperature for the globe and for a region covering Europe. Near-surface air temperature gives one of the clearest and most consistent signals of global and regional climate change, especially in recent decades. It has been measured for many decades — even centuries at some locations — and a dense network of stations across the globe, especially in Europe, provides regular monitoring of temperature, using standardised measurements, quality control and homogeneity procedures. Global average annual temperature deviations (anomalies) are discussed relative to a ‘pre-industrial’ period between 1850 and 1899 (the beginning of instrumental temperature records). During this time, anthropogenic greenhouse gases from the industrial revolution (between 1750 and 1850) are considered to have had a relatively small influence on the climate compared with natural influences. However, it should be noted that owing to earlier changes in the climate due to internal and forced natural variability, there was not one single pre-industrial climate and it is not clear that there is a rigorous scientific definition of the term ‘pre-industrial climate’. Temperature changes also influence other aspects of the climate system that can have an impact on human activities, including sea level, intensity and frequency of floods and droughts, biota and food productivity, and infectious diseases. In addition to the global average target, seasonal variations and spatial distributions of temperature change are important, for example, to understand the risks that current climate poses to human and natural systems and to assess how these may be impacted by future climate change.

Read more

Forest: growing stock, increment and fellings

This indicator looks at the growing stock in forests and other wooded land. Growing stock is classified by forest type and by availability for wood supply. The indicator considers the balance between net annual increment and annual fellings of wood in forests to be made available for wood supply.

Read more

Emissions of air pollutants from large combustion plants

This indicator tracks trends since 2004 in emissions of SO 2 , NO x  and dust, as well as the environmental performance of LCPs. LCPs comprise combustion plants with a total rated thermal input equal to or greater than 50 MW. The geographical coverage comprises the EU-28 Member States (Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden and the United Kingdom). The temporal coverage is 2004-2015 (most recent year with officially reported LCP emissions and fuel use; EEA LCP database v1.0 (see Data sources ))

Read more

Landscape fragmentation pressure from urban and transport infrastructure expansion

This indicator is based on the Effective Mesh Size (Jaeger 2000) method .  For some species, the effective mesh size (meff) can be interpreted as the area that is accessible when beginning to move from a randomly chosen point inside a landscape without encountering man-made barriers such as transport routes or built-up areas. However, it should be stressed that for many species that can fly, or are effective dispersers in others ways, man-made structures may not act as barriers. The combination of all barriers in a landscape is called Fragmentation Geometry (FG) hereafter. The meff value expresses the probability that any two points chosen randomly in an area are connected. Hence, meff is a measure of landscape connectivity, i.e. the degree to which movements between different parts of the landscape are possible. The larger the meff, the more connected the landscape. The indicator addresses structural connectivity of the landscape and does not tackle functional, species specific connectivity. The Effective Mesh Density (seff) is a measure of landscape fragmentation, i.e. the degree to which movement between different parts of the landscape is interrupted by Fragmentation Geometry. It gives the effective number of meshes (or landscape patches) per 1 000 km 2 , in other words, the density of the meshes. The seff value is calculated as 1 000 km 2 /meff, hence, the number of meshes per 1 000 km 2 . The more barriers fragmenting the landscape, the higher the effective mesh density. meff and seff are reported within the cells of a 1 km 2 regular grid. meff is area-proportionally additive, hence it characterises the fragmentation of any region considered, independently of its size, and thus can be calculated for a combination of two or more regions. The meff has several advantages over other metrics: It addresses the entire landscape matrix instead of addressing individual patches. It is independent of the size of the reporting unit and its values can be compared among reporting units of differing sizes. It is suitable for comparing the fragmentation of regions with differing total areas and with differing proportions occupied by housing, industry and transportation structures. It's reliability has been confirmed on the basis of suitability criteria through a systematic comparison with other quantitative measures. The suitability of other metrics was limited as they only partially met the following criteria: Intuitive interpretation; Mathematical simplicity; Modest data requirements; Low sensitivity to small patches; Detection of structural differences; Mathematical homogeneity (i.e., intensive or extensive).

Read more

Permalinks

Document Actions