Layout
Blocks
{
"1ae94057-9a72-48ad-86b8-7dee7c1fcdfb": {
"@layout": "d060487d-88fc-4f7b-8ea4-003f14e0fb0c",
"@type": "group",
"allowedBlocks": [
"slate"
],
"as": "section",
"block": "1ae94057-9a72-48ad-86b8-7dee7c1fcdfb",
"data": {
"blocks": {
"02ba4a04-fcfe-4968-806f-1dac3119cfef": {
"@type": "embed_content",
"disableNewBlocks": true,
"fixed": true,
"instructions": {
"content-type": "text/html",
"data": "<p><br/></p>",
"encoding": "utf8"
},
"old_type": "dataFigure",
"readOnlySettings": true,
"required": true,
"svg_as_img": true,
"with_metadata_section": true,
"with_notes": false
},
"43df8fab-b278-4b0e-a62c-ce6b8e0a881e": {
"@type": "dividerBlock",
"disableNewBlocks": true,
"fitted": false,
"fixed": true,
"hidden": true,
"readOnly": true,
"readOnlySettings": true,
"required": true,
"section": false,
"short": true,
"spacing": "m",
"styles": {}
},
"d3d49723-14e5-4663-b346-37ee3572f28d": {
"@type": "slate",
"fixed": true,
"instructions": {
"content-type": "text/html",
"data": "<p><br/></p>",
"encoding": "utf8"
},
"plaintext": "",
"readOnlySettings": true,
"required": true,
"value": [
{
"children": [
{
"text": ""
}
],
"type": "p"
}
]
}
},
"blocks_layout": {
"items": [
"02ba4a04-fcfe-4968-806f-1dac3119cfef",
"43df8fab-b278-4b0e-a62c-ce6b8e0a881e",
"d3d49723-14e5-4663-b346-37ee3572f28d"
]
}
},
"disableInnerButtons": true,
"disableNewBlocks": false,
"fixed": true,
"ignoreSpaces": true,
"instructions": {
"content-type": "text/html",
"data": "<ol keys=\"9bbul,b1sa2,171og,1c1t5\" depth=\"0\"><li>Depending on the indicator context, this text can provide information at country level or, if this is not relevant, at some other level, e.g. sectoral, regional level.</li><li>This text interprets the data represented in the chart, rather than describing results, i.e. it provides explanations for some of the results.</li><li>The text related to progress at this level does not have to be comprehensive.</li><li>If there is no information that adds value to what is already visible there is no need to have any text.</li></ol>",
"encoding": "utf8"
},
"maxChars": "1000",
"placeholder": "Disaggregate level assessment e.g. country, sectoral, regional level assessment",
"readOnly": false,
"readOnlySettings": true,
"required": true,
"title": "Disaggregate level assessment"
},
"2dc79b22-b2c8-450a-8044-ef04bfd044cf": {
"@type": "dividerBlock",
"disableNewBlocks": true,
"fixed": true,
"hidden": true,
"readOnly": true,
"required": true,
"section": false,
"spacing": "m",
"styles": {}
},
"2ec8ba1c-769d-41fd-98c3-1e72b9c1d736": {
"@type": "dividerBlock",
"disableNewBlocks": true,
"fixed": true,
"hidden": true,
"readOnly": true,
"required": true,
"section": false,
"spacing": "m",
"styles": {}
},
"4df3b038-1c11-49ea-b3a2-bc13e17dc5d2": {
"@layout": "1bc4379d-cddb-4120-84ad-5ab025533b12",
"@type": "group",
"allowedBlocks": [
"slate"
],
"as": "section",
"block": "4df3b038-1c11-49ea-b3a2-bc13e17dc5d2",
"data": {
"blocks": {
"388407ff-e367-4b93-9d4d-b5ff4430d188": {
"@type": "slate",
"plaintext": "Ocean acidification reduces calcium carbonate availability , making it more difficult for organisms such as corals, molluscs and some plankton to build and maintain their structural integrity. Such rapid chemical changes are an added pressure on marine calcifiers and Europe\u2019s marine ecosystems .",
"value": [
{
"children": [
{
"text": "Ocean acidification "
},
{
"children": [
{
"text": "reduces"
},
{
"children": [
{
"text": " calcium carbonate availability"
}
],
"data": {
"url": "https://www.eea.europa.eu/publications/how-climate-change-impacts"
},
"type": "link"
},
{
"text": ""
}
],
"type": "strong"
},
{
"text": ", making it more difficult for organisms such as corals, molluscs and some plankton to build and maintain their structural integrity. Such rapid chemical changes are an added pressure on marine calcifiers and Europe\u2019s marine ecosystems"
},
{
"children": [
{
"text": ""
}
],
"data": {
"footnote": "<?xml version=\"1.0\"?>\n<div class=\"csl-bib-body\" style=\"line-height: 1.35; \">\n <div class=\"csl-entry\">IPCC, 2021, <i>Annex VII: Glossary [Matthews, J.B.R., V. Möller, R. van Diemen, J.S. Fuglestvedt, V. Masson-Delmotte,  C.  Méndez, S. Semenov, A. Reisinger (eds.)]. In Climate Change 2021: The Physical Science Basis. Contribution of  Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press,  Cambridge, United Kingdom and New York, NY, USA, pp. 2215–2256, doi:10.1017/9781009157896.022</i>,</div>\n</div>\n",
"footnoteTitle": "IPCC, 2021, Annex VII: Glossary [Matthews, J.B.R., V",
"uid": "gk452",
"zoteroId": "BK98VBSR"
},
"type": "zotero"
},
{
"text": ".\u00a0"
}
],
"type": "p"
}
]
},
"43df8fab-b278-4b0e-a62c-ce6b8e0a881d": {
"@type": "dividerBlock",
"disableNewBlocks": true,
"fitted": false,
"fixed": true,
"hidden": true,
"readOnly": true,
"readOnlySettings": true,
"required": true,
"section": false,
"short": true,
"spacing": "m",
"styles": {}
},
"4430e916-05d4-426f-9050-1c33da011273": {
"@type": "slate",
"plaintext": "Over the last million years, mean surface seawater pH has been relatively stable. Oscillating between 8.3 during cold periods (e.g. throughout the last glacial maximum 20,000 years ago) and 8.2 during warm periods (e.g. just prior to the industrial revolution). Rapid increases in atmospheric CO 2 levels due to emissions from human activities are now threatening this stability, as a large fraction of emitted CO 2 is absorbed by the ocean, causing a decline in pH and subsequent ocean acidification.",
"value": [
{
"children": [
{
"text": "Over the last million years, mean surface seawater pH has been relatively stable. Oscillating between 8.3 during cold periods (e.g. throughout the last glacial maximum 20,000 years ago) and 8.2 during warm periods (e.g. just prior to the industrial revolution). Rapid increases in atmospheric CO"
},
{
"children": [
{
"sub": true,
"text": "2"
}
],
"type": "sub"
},
{
"sub": true,
"text": " "
},
{
"text": "levels due to emissions from human activities are now "
},
{
"children": [
{
"text": "threatening"
}
],
"type": "strong"
},
{
"text": " this stability, as a large fraction of emitted CO"
},
{
"children": [
{
"sub": true,
"text": "2"
}
],
"type": "sub"
},
{
"text": "\u202fis absorbed by the ocean, causing a decline in pH and subsequent ocean acidification."
}
],
"type": "p"
}
]
},
"5f52f087-8bd7-48c6-b5e8-9e147ada0566": {
"@type": "slate",
"plaintext": "The global annual mean atmospheric CO 2 concentration exceeded 417ppm in\u202f2022 , which is more than 40% above the pre-industrial level (280ppm). Half of that increase has occurred since the 1980s. Over the same period, annual global mean surface sea water pH decreased from 8.11 to 8.04 in 2024 corresponding to a 18% increase in acidity since 1985 and a 40% increase since pre-industrial levels.",
"value": [
{
"children": [
{
"text": "The global annual mean atmospheric CO"
},
{
"children": [
{
"sub": true,
"text": "2"
}
],
"type": "sub"
},
{
"text": "\u202fconcentration exceeded 417ppm in\u202f2022"
},
{
"children": [
{
"text": ""
}
],
"data": {
"extra": [],
"footnote": "<?xml version=\"1.0\"?>\n<div class=\"csl-bib-body\" style=\"line-height: 1.35; \">\n <div class=\"csl-entry\">Friedlingstein, P., O Sullivan, M., Jones, M. W., Andrew, R. M., Bakker, D. C. E., Hauck, J., Landschützer, P., Le Quéré, C., Luijkx, I. T., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Anthoni, P. et al., 2023, 'Global Carbon Budget 2023', <i>Copernicus GmbH</i>.</div>\n</div>\n",
"footnoteTitle": "Friedlingstein, Pierre, 2023, Global Carbon Budget 2023, Copernicus GmbH",
"uid": "7-QmP",
"zoteroId": "5CGRI78R"
},
"type": "zotero"
},
{
"text": ", which is more than "
},
{
"children": [
{
"text": "40% above"
}
],
"type": "strong"
},
{
"text": " the "
},
{
"children": [
{
"text": "pre-industrial level"
}
],
"type": "strong"
},
{
"text": " (280ppm). Half of that increase has occurred since the 1980s. Over the same period, annual global mean surface sea water pH decreased from 8.11 to "
},
{
"children": [
{
"text": "8.04 in 2024"
}
],
"data": {
"url": "https://marine.copernicus.eu/ocean-climate-portal/ocean-acidification"
},
"type": "link"
},
{
"text": " corresponding to a 18% increase in acidity since 1985 and a 40% increase since pre-industrial levels."
}
],
"type": "p"
}
]
},
"651232eb-c729-4021-891b-28605be4c867": {
"@type": "group",
"className": "figure-metadata",
"data": {
"blocks": {
"1d4f896c-abd2-4ed0-a730-fb7bf294e277": {
"@type": "slate",
"plaintext": "Figure 1. Decline in ocean pH measured at the Aloha station and yearly mean surface seawater pH reported on a global scale",
"value": [
{
"children": [
{
"text": "Figure 1. Decline in ocean pH measured at the Aloha station and yearly mean surface seawater pH reported on a global scale"
}
],
"type": "h3-light"
}
]
}
},
"blocks_layout": {
"items": [
"1d4f896c-abd2-4ed0-a730-fb7bf294e277"
]
}
},
"id": "figure-metadata-b0279dde-1ceb-4137-a7f1-5ab7b46a782c",
"styles": {}
},
"7258acc3-2813-4344-8e70-3d4bd7a48c71": {
"@type": "slate",
"plaintext": "This indicator looks at the longest time series of measured pH values available from the Aloha station , offshore Hawaii, and visualises calculated data on global mean surface ocean pH from the Copernicus Marine Environment Monitoring Service (CMEMS). The northernmost seas, i.e. the Norwegian and Greenland Seas, have seen significantly larger decreases in pH than the global mean.",
"value": [
{
"children": [
{
"text": "This indicator looks at the longest time series of measured pH values available from the "
},
{
"children": [
{
"text": "Aloha station"
}
],
"data": {
"url": "https://hahana.soest.hawaii.edu/stationaloha/"
},
"type": "link"
},
{
"text": ", offshore Hawaii, and visualises calculated data on global mean surface ocean pH from the "
},
{
"children": [
{
"text": "Copernicus Marine Environment Monitoring Service"
}
],
"data": {
"url": "https://marine.copernicus.eu/"
},
"type": "link"
},
{
"text": " (CMEMS). The northernmost seas, i.e. the Norwegian and Greenland Seas, have seen significantly larger decreases in pH than the global mean."
}
],
"type": "p"
}
]
},
"a9f635a1-ac0e-4b4d-a854-42c55f6bfa5e": {
"@type": "slate",
"plaintext": "EU policies such as the European Green Deal , the Marine Strategy Framework Directive (MSFD), the EU Biodiversity Strategy for 2030 and EU climate change mitigation and adaptation policies ( European Climate Law / Fit-for-55 package ) aim to address ocean acidification and restore marine ecosystems. The revised MSFD focuses on strengthening implementation, improving regional cooperation, and enhancing policy coherence, including with climate policy, to achieve environmental targets and Good Environmental Status (GES).",
"value": [
{
"children": [
{
"text": "EU policies such as the "
},
{
"children": [
{
"text": "European Green Deal"
}
],
"data": {
"url": "https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52019DC0640"
},
"type": "link"
},
{
"text": ", the "
},
{
"children": [
{
"text": "Marine Strategy Framework Directive"
}
],
"data": {
"url": "https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32008L0056"
},
"type": "link"
},
{
"text": " (MSFD), the "
},
{
"children": [
{
"text": "EU Biodiversity Strategy for 2030"
}
],
"data": {
"url": "https://environment.ec.europa.eu/topics/nature-and-biodiversity/habitats-directive_en"
},
"type": "link"
},
{
"text": " and EU climate change mitigation and adaptation policies ("
},
{
"children": [
{
"text": "European Climate Law"
}
],
"data": {
"url": "https://eur-lex.europa.eu/EN/legal-content/summary/european-climate-law.html"
},
"type": "link"
},
{
"text": "/"
},
{
"children": [
{
"text": "Fit-for-55 package"
}
],
"data": {
"url": "https://www.consilium.europa.eu/en/policies/green-deal/fit-for-55/"
},
"type": "link"
},
{
"text": ") aim to "
},
{
"children": [
{
"text": "address ocean acidification"
}
],
"type": "strong"
},
{
"text": " and restore marine ecosystems. The revised MSFD focuses on strengthening implementation, improving regional cooperation, and enhancing policy coherence, including with climate policy, to achieve environmental targets and Good Environmental Status (GES).\u00a0\u00a0"
}
],
"type": "p"
}
]
},
"b0279dde-1ceb-4137-a7f1-5ab7b46a782c": {
"@type": "embed_content",
"disableNewBlocks": true,
"fixed": true,
"instructions": {
"content-type": "text/html",
"data": "<p>figure instructions goes here</p>",
"encoding": "utf8"
},
"readOnlySettings": true,
"required": true,
"url": "../../../../resolveuid/574a150243f74990ac2dfb60e2402e01"
},
"d56b61f9-fd44-4520-bf57-31eec7147e00": {
"@type": "slate",
"plaintext": "Mean surface ocean pH is projected to decline further, between about 0.15 and 0.5pH units by 2100 depending on the emission scenario . This will affect many marine organisms and could alter marine ecosystems . In the North Atlantic Ocean, cold water corals are expected to face severe impacts due to acidification and losses of carbonate skeleton.",
"value": [
{
"children": [
{
"text": "Mean surface ocean pH is projected to "
},
{
"children": [
{
"text": "decline"
}
],
"type": "strong"
},
{
"text": " further, between about 0.15 and 0.5pH units by 2100 depending on the emission scenario"
},
{
"children": [
{
"text": ""
}
],
"data": {
"extra": [],
"footnote": "<?xml version=\"1.0\"?>\n<div class=\"csl-bib-body\" style=\"line-height: 1.35; \">\n <div class=\"csl-entry\">Nicole S. Lovenduski, Olivier Torres, Tilo Ziehn, Hongmei Li, Jasmin G. John, Jörg Schwinger, John P. Dunne, Marion Gehlen, Alessandro Tagliabue, James C. Orr, James R. Christian, Katsuya Toyama, Akitomo Yamamoto, Olivier Aumont, Matthew A. Chamberlain, Hiroyuki Tsujino, Yeray Santana-Falcón, Julien Palmieri, Roland Séférian et al., 2020, 'Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections', <i>Copernicus GmbH</i>.</div>\n</div>\n",
"footnoteTitle": "Nicole S. Lovenduski, 2020, Twenty-first century ocean warming, acid, Copernicus GmbH",
"uid": "TlDP9",
"zoteroId": "VX3U9AAI"
},
"type": "zotero"
},
{
"text": ". This will affect many marine organisms and could "
},
{
"children": [
{
"text": "alter marine ecosystems"
}
],
"type": "strong"
},
{
"text": ". In the North Atlantic Ocean, cold water corals are expected to face severe impacts due to acidification and losses of carbonate skeleton. "
}
],
"type": "p"
}
]
},
"deac047a-82f8-4541-a7e7-98fff24cf300": {
"@type": "slate",
"plaintext": "Substantial reductions in CO 2 emissions would allow the Earth system to re-establish balanced ocean chemical conditions and recover from human-induced acidification, over a very long time period, based on records of natural coral reef extinction events .",
"value": [
{
"children": [
{
"text": "Substantial reductions in CO"
},
{
"children": [
{
"text": "2"
}
],
"type": "sub"
},
{
"text": " emissions would allow the Earth system to re-establish balanced ocean chemical conditions and "
},
{
"children": [
{
"text": "recover"
}
],
"type": "strong"
},
{
"text": " from human-induced acidification, over a very long time period, based on records of "
},
{
"children": [
{
"text": "natural coral reef extinction events"
}
],
"data": {
"extra": [
{
"footnote": "<?xml version=\"1.0\"?>\n<div class=\"csl-bib-body\" style=\"line-height: 1.35; \">\n <div class=\"csl-entry\">Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear, R. J., Monfray, P., Mouchet, A., Najjar, R. G., Plattner, G.-K., Rodgers, K. B. et al., 2005, 'Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms', <i>Springer Science and Business Media LLC</i>.</div>\n</div>\n",
"zoteroId": "VCSE2CP3",
"footnoteTitle": "Orr, James C., 2005, Anthropogenic ocean acidification over t, Springer Science and Business Media LLC"
}
],
"footnote": "<?xml version=\"1.0\"?>\n<div class=\"csl-bib-body\" style=\"line-height: 1.35; \">\n <div class=\"csl-entry\">Victor Brovkin and David Archer, 2008, 'The millennial atmospheric lifetime of anthropogenic CO2', <i>Springer Science and Business Media LLC</i>.</div>\n</div>\n",
"footnoteTitle": "Victor Brovkin, 2008, The millennial atmospheric lifetime of a, Springer Science and Business Media LLC",
"uid": "Beht2",
"zoteroId": "5K9CUAEX"
},
"type": "zotero"
},
{
"text": "."
}
],
"type": "p"
}
]
},
"deb7e84d-d2c8-4491-90fa-3dc65fe02143": {
"@type": "slate",
"fixed": true,
"instructions": {
"content-type": "text/html",
"data": "<p><br/></p>",
"encoding": "utf8"
},
"plaintext": "",
"readOnlySettings": true,
"required": true,
"value": [
{
"children": [
{
"text": ""
}
],
"type": "p"
}
]
}
},
"blocks_layout": {
"items": [
"651232eb-c729-4021-891b-28605be4c867",
"b0279dde-1ceb-4137-a7f1-5ab7b46a782c",
"43df8fab-b278-4b0e-a62c-ce6b8e0a881d",
"4430e916-05d4-426f-9050-1c33da011273",
"5f52f087-8bd7-48c6-b5e8-9e147ada0566",
"7258acc3-2813-4344-8e70-3d4bd7a48c71",
"d56b61f9-fd44-4520-bf57-31eec7147e00",
"388407ff-e367-4b93-9d4d-b5ff4430d188",
"deac047a-82f8-4541-a7e7-98fff24cf300",
"a9f635a1-ac0e-4b4d-a854-42c55f6bfa5e"
]
}
},
"disableInnerButtons": true,
"disableNewBlocks": false,
"fixed": true,
"ignoreSpaces": true,
"instructions": {
"content-type": "text/html",
"data": "<p><strong>Assessment text remains at</strong> <strong>the relevant</strong> <strong>aggregate level</strong> <strong>(i.e.</strong> <strong>global, EU, sectoral)</strong> <strong>and addresses the following: </strong></p><ol keys=\"dkvn8,e367c,f4lpb,9j981,7ai6k,3g3pd\" depth=\"0\"><li>Explains in one or two sentences on the environmental rationale of the indicator, i.e. why it matters to the environment that we see an increase/decrease in the value measured.</li><li>Explains in one or two sentences the associated policy objective, which can be either quantitative or directional. More information on the policy objective and related references will be included in the supporting information section. Where there is no policy objective associated with the indicator, i.e. where the indicator addresses an issue that is important for future policy formulation, this text should explain instead why this issue is important.</li><li>IF NECESSARY - Explains any mismatch between what the indicator tracks and what the policy objective/issue is.</li><li>Qualifies the historical trend (e.g. steady increase) and explains the key reasons (e.g. policies) behind it. If there is a quantitative target it explains if we are on track to meet it.</li><li>IF NECESSARY - Explains any recent changes to the trend and why.</li><li>IF NECESSARY - Describes what needs to happen to see adequate progress in future, for instance in order to remain on track to meet targets.</li></ol><p><strong>Please cite your work if</strong> <strong>necessary</strong> <strong>using the EEA citation style (i.e.</strong> <strong>EEA, 2020). A full reference list appears in the supporting information section.</strong></p>",
"encoding": "utf8"
},
"maxChars": "2000",
"placeholder": "Aggregate level assessment e.g. progress at global, EU level..",
"readOnlySettings": true,
"required": true,
"title": "Aggregate level assessment"
},
"5e93cf3e-06db-4019-a3dc-2248de10635a": {
"@layout": "794c9b24-5cd4-4b9f-a0cd-b796aadc86e8",
"@type": "group",
"allowedBlocks": [],
"as": "section",
"block": "5e93cf3e-06db-4019-a3dc-2248de10635a",
"data": {
"blocks": {
"12d8c532-f7ad-43fe-ada7-330b2d7a7a39": {
"@type": "slate",
"disableNewBlocks": true,
"fixed": true,
"instructions": {
"content-type": "text/html",
"data": "<p><br/></p>",
"encoding": "utf8"
},
"plaintext": "Published: date \u2012 25min read",
"readOnly": true,
"readOnlySettings": true,
"required": true,
"value": [
{
"children": [
{
"text": ""
},
{
"children": [
{
"text": "Published: "
},
{
"children": [
{
"text": "date"
}
],
"data": {
"id": "effective",
"widget": "datetime"
},
"type": "mention"
},
{
"text": " \u2012 25min read"
}
],
"type": "sup"
},
{
"text": ""
}
],
"type": "p"
}
]
},
"1c31c956-5086-476a-8694-9936cfa6c240": {
"@type": "description",
"disableNewBlocks": true,
"fixed": true,
"instructions": {
"content-type": "text/html",
"data": "<p>The summary tells the reader about the indicator trend over the examined period and whether or not it helps to achieve the associated policy objective, which can be either quantitative or directional.</p><p>In the absence of a policy objective, it explains whether the trend is in the right or wrong direction in relation to the issue examined.</p><p>If there has been an important change over the most recent period of the time series, e.g. over the last year, this is indicated too.</p><p>Furthermore, if there is a quantitative target, it also indicates whether we are on track to meet it and if not what are the reasons preventing that, e.g. socio-economic drivers, implementation gap etc.</p>",
"encoding": "utf8"
},
"placeholder": "Summary",
"plaintext": "Almost one quarter of human-caused carbon dioxide (CO 2 ) emissions are absorbed by oceans, resulting in ocean acidification, i.e. a decrease in the ocean water pH. Ocean acidity has increased by approximately 30% since the pre-industrial era, corresponding to a pH decline of about 0.1 units. Further decreases in pH are projected in the future.\u00a0Seawater pH has decreased from 8.11 in 1985 to 8.04 in 2024. Ocean acidification has impacts on marine organisms with its effects cascading throughout the food web, modifying ecosystem services like fisheries.",
"readOnlySettings": true,
"required": true,
"value": [
{
"children": [
{
"text": "Almost one quarter of human-caused carbon dioxide (CO"
},
{
"children": [
{
"text": "2"
}
],
"type": "sub"
},
{
"text": ") emissions are absorbed by oceans, resulting in ocean acidification, i.e. a decrease in the ocean water pH. Ocean acidity has increased by approximately 30% since the pre-industrial era, corresponding to a pH decline of about 0.1 units. Further decreases in pH are projected in the future.\u00a0Seawater pH has decreased from 8.11 in 1985 to 8.04 in 2024. Ocean acidification has impacts on marine organisms with its effects cascading throughout the food web, modifying ecosystem services like fisheries."
}
],
"type": "p"
}
]
},
"3cccc2bb-471a-44c7-b006-5595c4713ff2": {
"@type": "layoutSettings",
"disableNewBlocks": true,
"fixed": true,
"layout_size": "narrow_view",
"readOnly": true,
"readOnlySettings": true,
"required": true
},
"ddde07aa-4e48-4475-94bd-e1a517d26eab": {
"copyrightIcon": "ri-copyright-line",
"styles": {},
"variation": "default",
"@type": "title",
"disableNewBlocks": true,
"fixed": true,
"hideContentType": true,
"hideCreationDate": true,
"hideDownloadButton": true,
"hideModificationDate": true,
"placeholder": "Indicator title",
"readOnlySettings": true,
"required": true
}
},
"blocks_layout": {
"items": [
"ddde07aa-4e48-4475-94bd-e1a517d26eab",
"1c31c956-5086-476a-8694-9936cfa6c240",
"3cccc2bb-471a-44c7-b006-5595c4713ff2"
]
}
},
"disableInnerButtons": true,
"disableNewBlocks": true,
"fixed": true,
"fixedLayout": true,
"ignoreSpaces": true,
"instructions": {
"content-type": "text/html",
"data": "<p>The summary tells the reader about the indicator trend over the examined period and whether or not it helps to achieve the associated policy objective, which can be either quantitative or directional.</p><p>In the absence of a policy objective, it explains whether the trend is in the right or wrong direction in relation to the issue examined.</p><p>If there has been an important change over the most recent period of the time series, e.g. over the last year, this is indicated too.</p><p>Furthermore, if there is a quantitative target, it also indicates whether we are on track to meet it and if not what are the reasons preventing that, e.g. socio-economic drivers, implementation gap etc.</p>",
"encoding": "utf8"
},
"maxChars": "500",
"readOnlySettings": true,
"required": true,
"styles": {
"style_name": "environment-theme-bg"
},
"title": "Content header"
},
"677f7422-6da4-4c86-bca8-de732b7047b9": {
"@type": "dividerBlock",
"disableNewBlocks": true,
"fixed": true,
"hidden": true,
"readOnly": true,
"required": true,
"section": false,
"spacing": "m",
"styles": {}
},
"8046ef1a-7d5a-47a3-979b-6adaa0f99d01": {
"@layout": "8cb090c3-7071-40b8-9c7b-aca2ca3d0ad9",
"@type": "accordion",
"allowedBlocks": [
"columnsBlock",
"slateFootnotes",
"metadataSection"
],
"block": "8046ef1a-7d5a-47a3-979b-6adaa0f99d01",
"collapsed": true,
"data": {
"blocks": {
"309c5ef9-de09-4759-bc02-802370dfa366": {
"@type": "accordionPanel",
"blocks": {
"e047340c-c02e-4247-89ab-5fec73aeb5d3": {
"@type": "columnsBlock",
"data": {
"blocks": {
"a8a2323e-32af-426e-9ede-1f17affd664c": {
"blocks": {
"fe145094-71e0-4b3d-82f3-e4d79ac13533": {
"@type": "metadataSection",
"disableNewBlocks": true,
"fields": [
{
"@id": "94d638f1-89e1-4f97-aa59-b89b565f60fb",
"field": {
"id": "taxonomy_typology",
"title": "Typology",
"widget": "choices"
},
"showLabel": true
},
{
"@id": "ec261e45-f97d-465c-b5a3-0e4aa5187114",
"field": {
"id": "taxonomy_un_sdgs",
"title": "UN SDGs",
"widget": "array"
},
"showLabel": true
},
{
"@id": "eaef9ff4-0f8d-4360-9d19-5c6a2fd2dd00",
"field": {
"id": "unit_of_measure",
"title": "Unit of measure",
"widget": "slate"
},
"showLabel": true
},
{
"@id": "089cd1a1-92d4-47e2-8f6e-4bdb358600fe",
"field": {
"id": "frequency_of_dissemination",
"title": "Frequency of dissemination",
"widget": "integer"
},
"showLabel": true
}
],
"fixed": true,
"fixedLayout": true,
"readOnly": false,
"readOnlySettings": true,
"required": true,
"title": "Right column",
"variation": "default"
}
},
"blocks_layout": {
"items": [
"fe145094-71e0-4b3d-82f3-e4d79ac13533"
]
},
"readOnlySettings": true
},
"d9b41958-c17c-45f8-bae1-4140b537a033": {
"blocks": {
"2a56568a-10af-4a5b-8c73-22aa8cb734fe": {
"@type": "metadataSection",
"disableNewBlocks": true,
"fields": [
{
"@id": "48a20e0b-d3bd-41ac-aa06-e97c61071bd2",
"field": {
"id": "taxonomy_dpsir",
"title": "DPSIR",
"widget": "choices"
},
"showLabel": true
},
{
"@id": "34ceb93f-b405-4afd-aeae-a05abd44d355",
"field": {
"id": "topics",
"title": "Topics",
"widget": "array"
},
"showLabel": true
},
{
"@id": "fd2cdb9e-5ddd-4b46-8382-0d687ce2883e",
"field": {
"id": "subjects",
"title": "Tags",
"widget": "tags"
},
"showLabel": true
},
{
"@id": "0e842d87-c9f4-438e-b234-f83141d25ff3",
"field": {
"id": "temporal_coverage",
"title": "Temporal coverage",
"widget": "temporal"
},
"showLabel": true
},
{
"@id": "0b8ee8c2-046b-4243-9f11-116df6e0a524",
"field": {
"id": "geo_coverage",
"title": "Geographic coverage",
"widget": "geolocation"
},
"showLabel": true
}
],
"fixed": true,
"fixedLayout": true,
"readOnly": false,
"readOnlySettings": true,
"required": true,
"title": "Left column",
"variation": "default"
}
},
"blocks_layout": {
"items": [
"2a56568a-10af-4a5b-8c73-22aa8cb734fe"
]
},
"readOnlySettings": true
}
},
"blocks_layout": {
"items": [
"d9b41958-c17c-45f8-bae1-4140b537a033",
"a8a2323e-32af-426e-9ede-1f17affd664c"
]
}
},
"disableNewBlocks": true,
"fixed": true,
"fixedLayout": true,
"gridCols": [
"halfWidth",
"halfWidth"
],
"gridSize": 12,
"instructions": {
"content-type": "text/html",
"data": "<p><br/></p>",
"encoding": "utf8"
},
"readOnly": false,
"readOnlySettings": true,
"required": true,
"title": "Metadata"
}
},
"blocks_layout": {
"items": [
"e047340c-c02e-4247-89ab-5fec73aeb5d3"
]
},
"readOnlySettings": true,
"title": "Metadata"
},
"546a7c35-9188-4d23-94ee-005d97c26f2b": {
"@type": "accordionPanel",
"blocks": {
"b5381428-5cae-4199-9ca8-b2e5fa4677d9": {
"@type": "metadataSection",
"disableNewBlocks": true,
"fields": [
{
"@id": "62c471fc-128f-4eff-98f9-9e83d9643fc7",
"field": {
"id": "data_description",
"title": "Definition",
"widget": "slate"
},
"showLabel": true
},
{
"@id": "ee67688d-3170-447a-a235-87b4e4ff0928",
"field": {
"id": "methodology",
"title": "Methodology",
"widget": "slate"
},
"showLabel": true
},
{
"@id": "b8a8f01c-0669-48e3-955d-d5d62da1b555",
"field": {
"id": "policy_relevance",
"title": "Policy/environmental relevance",
"widget": "slate"
},
"showLabel": true
},
{
"@id": "d71a80d1-0e65-46d9-8bd4-45aca22bc5dc",
"field": {
"id": "accuracy_and_reliability",
"title": "Accuracy and uncertainties",
"widget": "slate"
},
"showLabel": true
},
{
"@id": "97ed11f5-4d31-4462-b3b0-2756a6880d31",
"field": {
"id": "data_provenance",
"title": "Data sources and providers",
"widget": "data_provenance"
},
"showLabel": true
}
],
"fixed": true,
"fixedLayout": true,
"readOnly": false,
"readOnlySettings": true,
"required": true,
"title": "Supporting information",
"variation": "default"
}
},
"blocks_layout": {
"items": [
"b5381428-5cae-4199-9ca8-b2e5fa4677d9"
]
},
"readOnlySettings": true,
"title": "Supporting information"
},
"ecdb3bcf-bbe9-4978-b5cf-0b136399d9f8": {
"@type": "accordionPanel",
"blocks": {
"d9aa8ed3-1c8a-4134-a324-663489a04473": {
"@type": "slateFootnotes",
"disableNewBlocks": true,
"fixed": true,
"global": true,
"instructions": {
"content-type": "text/html",
"data": "<p><br/></p>",
"encoding": "utf8"
},
"placeholder": "References and footnotes will appear here",
"readOnlySettings": true,
"required": true
}
},
"blocks_layout": {
"items": [
"d9aa8ed3-1c8a-4134-a324-663489a04473"
]
},
"readOnlySettings": true,
"selected": "b142c252-337d-4f6e-8ed2-ff4c43601e2f",
"title": "References and footnotes"
}
},
"blocks_layout": {
"items": [
"546a7c35-9188-4d23-94ee-005d97c26f2b",
"309c5ef9-de09-4759-bc02-802370dfa366",
"ecdb3bcf-bbe9-4978-b5cf-0b136399d9f8"
]
}
},
"disableInnerButtons": true,
"disableNewBlocks": true,
"fixed": true,
"fixedLayout": true,
"instructions": {
"content-type": "text/html",
"data": "<p><br/></p>",
"encoding": "utf8"
},
"non_exclusive": false,
"readOnly": false,
"readOnlySettings": true,
"readOnlyTitles": true,
"required": true,
"title": "Additional information",
"title_size": "h3"
},
"e9736b7c-4902-48aa-aecd-b706409a576d": {
"@type": "dividerBlock",
"disableNewBlocks": true,
"fixed": true,
"hidden": true,
"readOnly": true,
"required": true,
"section": false,
"spacing": "m",
"styles": {}
}
}
Blocks Layout
{
"items": [
"5e93cf3e-06db-4019-a3dc-2248de10635a",
"4df3b038-1c11-49ea-b3a2-bc13e17dc5d2",
"1ae94057-9a72-48ad-86b8-7dee7c1fcdfb",
"8046ef1a-7d5a-47a3-979b-6adaa0f99d01"
]
}
Supporting information
Methodology
[
{
"children": [
{
"text": ""
}
],
"type": "h4"
},
{
"children": [
{
"children": [
{
"text": "The time series are based both on direct pH measurement data from the Hawaii Ocean Time-series, obtained from the Aloha station, and gap-filling calculations using data "
},
{
"children": [
{
"text": "from this station"
}
],
"data": {
"extra": [
{
"footnote": "<?xml version=\"1.0\"?>\n<div class=\"csl-bib-body\" style=\"line-height: 1.35; \">\n <div class=\"csl-entry\">Carter, B. R., Feely, R. A. and Williams, N. L., 2018, 'Updated methods for global locally interpolated estimation of alkalinity, pH, and nitrate', <i>Limnology and Oceanography: Methods</i> 16(2), pp. 119–131.</div>\n</div>\n",
"footnoteTitle": "Carter, B. R., 2018, Updated methods for global locally inter, Limnology and Oceanography: Methods",
"zoteroId": "LPSENA5C"
}
],
"footnote": "<?xml version=\"1.0\"?>\n<div class=\"csl-bib-body\" style=\"line-height: 1.35; \">\n <div class=\"csl-entry\">Carter, B. R., Williams, N. L. and Gray, A. R., 2016, 'Locally interpolated alkalinity regression for global alkalinity estimation', <i>Limnology and Oceanography: Methods</i> 14(4), pp. 268–277.</div>\n</div>\n",
"footnoteTitle": "Carter, B. R., 2016, Locally interpolated alkalinity regressi, Limnology and Oceanography: Methods",
"uid": "CyBua",
"zoteroId": "4MXIGH9C"
},
"type": "zotero"
},
{
"text": ", and on a reconstruction of global yearly mean surface pH values from CMEMS."
}
],
"type": "li"
}
],
"type": "ul"
},
{
"children": [
{
"children": [
{
"text": "The Aloha time series data are based on in situ measurements and calculation of pH values based on dissolved inorganic carbon concentrations and "
},
{
"children": [
{
"text": "total alkalinity"
}
],
"data": {
"extra": [],
"footnote": "<?xml version=\"1.0\"?>\n<div class=\"csl-bib-body\" style=\"line-height: 1.35; \">\n <div class=\"csl-entry\">Dore, J. E., Lukas, R., Sadler, D. W., Church, M. J. and Karl, D. M., 2009, 'Physical and biogeochemical modulation of ocean acidification in the central North Pacific', <i>Proceedings of the National Academy of Sciences of the United States of America</i> 106, pp. 12235–12240.</div>\n</div>\n",
"footnoteTitle": "Dore, J.E., 2009, Physical and biogeochemical modulation o, Proceedings of the National Academy of Sciences of the United States of America",
"uid": "pIZvt",
"zoteroId": "XBHMXV78"
},
"type": "zotero"
},
{
"text": "."
}
],
"type": "li"
},
{
"children": [
{
"text": "Global mean surface ocean pH values derived from the Copernicus Marine Service are based on a reconstruction method using in situ data and remote sensing data, as well as empirical relationships. Indicator is available at annual resolution, and from the year 1985 onwards, up to 2024. Error on each yearly value varies and is added in the data file sheet. Trend and uncertainty are defined as the slope and its residual standard deviation estimated with a linear least-squares regression."
}
],
"type": "li"
}
],
"type": "ul"
},
{
"children": [
{
"children": [
{
"text": "The estimated global mean surface seawater pH is based on alkalinity values (obtained using the locally interpolated alkalinity regression (LIAR) method after "
},
{
"children": [
{
"text": "Carter et al."
}
],
"data": {
"extra": [
{
"footnote": "<?xml version=\"1.0\"?>\n<div class=\"csl-bib-body\" style=\"line-height: 1.35; \">\n <div class=\"csl-entry\">Carter, B. R., Feely, R. A. and Williams, N. L., 2018, 'Updated methods for global locally interpolated estimation of alkalinity, pH, and nitrate', <i>Limnology and Oceanography: Methods</i> 16(2), pp. 119–131.</div>\n</div>\n",
"footnoteTitle": "Carter, B. R., 2018, Updated methods for global locally inter, Limnology and Oceanography: Methods",
"zoteroId": "LPSENA5C"
}
],
"footnote": "<?xml version=\"1.0\"?>\n<div class=\"csl-bib-body\" style=\"line-height: 1.35; \">\n <div class=\"csl-entry\">Carter, B. R., Williams, N. L. and Gray, A. R., 2016, 'Locally interpolated alkalinity regression for global alkalinity estimation', <i>Limnology and Oceanography: Methods</i> 14(4), pp. 268–277.</div>\n</div>\n",
"footnoteTitle": "Carter, B. R., 2016, Locally interpolated alkalinity regressi, Limnology and Oceanography: Methods",
"uid": "Y6mCi",
"zoteroId": "4MXIGH9C"
},
"type": "zotero"
},
{
"text": "), surface ocean partial pressure of CO"
},
{
"children": [
{
"text": "2"
}
],
"type": "sub"
},
{
"text": " (pCO"
},
{
"children": [
{
"text": "2"
}
],
"type": "sub"
},
{
"text": ") (CMEMS product) and an evaluation of a gridded field of ocean surface pH values based on "
},
{
"children": [
{
"text": "CO"
},
{
"children": [
{
"text": "2"
}
],
"type": "sub"
},
{
"text": " system calculations"
}
],
"data": {
"footnote": "<?xml version=\"1.0\"?>\n<div class=\"csl-bib-body\" style=\"line-height: 1.35; \">\n <div class=\"csl-entry\">van Heuven, S., Pierrot, D. and Wallace, D., 2011, <i>CO2SYS v 1.1: MATLAB program developed for CO2 system calculations. ORNL/CDIAC-105b</i>, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN.</div>\n</div>\n",
"footnoteTitle": "van Heuven, S., 2011, CO2SYS v 1.1: MATLAB program developed f, Oak Ridge, TN",
"uid": "XABXH",
"zoteroId": "C2AGSX96"
},
"type": "zotero"
},
{
"text": " (see "
},
{
"children": [
{
"text": "Copernicus Marine Service, 2021"
}
],
"data": {
"footnote": "<?xml version=\"1.0\"?>\n<div class=\"csl-bib-body\" style=\"line-height: 1.35; \">\n <div class=\"csl-entry\">Copernicus Marine Service, 2021, 'Global mean sea water pH', <i>Copernicus Marine Service</i> (https://marine.copernicus.eu/access-data/ocean-monitoring-indicators/global-mean-sea-water-ph) accessed April 1, 2021.</div>\n</div>\n",
"footnoteTitle": "Copernicus Marine Service, 2021, Global mean sea water pH",
"uid": "lkmRa",
"zoteroId": "V52YH3UE"
},
"type": "zotero"
},
{
"text": ")."
}
],
"type": "li"
}
],
"type": "ul"
},
{
"children": [
{
"text": ""
}
],
"type": "p"
}
]
Data sources and providers
{
"readOnly": true,
"data": [
{
"@id": "4b4c7d0e-3231-48c3-92c0-6c36aa3c3aee",
"link": "https://hahana.soest.hawaii.edu/hot/hotco2/HOT_surface_CO2.txt",
"organisation": "University of Hawaii",
"title": "Hawaii Ocean Time-series (HOT)"
},
{
"@id": "2a075996-abb6-4270-8d03-619aad21a8a6",
"link": "https://marine.copernicus.eu/ocean-climate-portal/ocean-acidification",
"organisation": "Copernicus Marine Service",
"title": "Ocean acidification - Annual global mean surface sea water pH (pH units)"
}
]
}
Definition
[
{
"children": [
{
"text": "This indicator illustrates the global mean average rate of ocean acidification, quantified by decreases in pH, which is a measure of acidity, defined as the hydrogen ion concentration. A decrease in pH value corresponds to an increase in acidity."
}
],
"type": "p"
},
{
"type": "p",
"children": [
{
"text": ""
}
]
},
{
"children": [
{
"text": "The observed decrease in ocean pH resulting from increasing concentrations of CO"
},
{
"children": [
{
"text": "2"
}
],
"type": "sub"
},
{
"text": " is an important indicator of change in the global ocean and the impacts of climate change."
}
],
"type": "p"
},
{
"children": [
{
"text": ""
}
],
"type": "p"
},
{
"children": [
{
"text": "This indicator provides information on:"
}
],
"type": "p"
},
{
"children": [
{
"children": [
{
"text": "trends in ocean acidity measured at the Aloha station;"
}
],
"type": "li"
},
{
"children": [
{
"text": "yearly mean surface seawater pH levels reported on a global scale is computed from monthly pH values by CMEMS."
}
],
"type": "li"
}
],
"type": "ul"
}
]
Unit of measure
[
{
"children": [
{
"text": "Acidity is measured in pH."
}
],
"type": "p"
}
]
Policy / environmental relevance
[
{
"children": [
{
"text": "Acidification is addressed in the "
},
{
"children": [
{
"text": ""
},
{
"children": [
{
"text": "2030 Agenda for Sustainable Development"
}
],
"data": {
"footnote": "<?xml version=\"1.0\"?>\n<div class=\"csl-bib-body\" style=\"line-height: 1.35; \">\n <div class=\"csl-entry\">UN, 2021, 'The Sustainable Development Agenda', <i>Sustainable Development Goals, United Nations</i> (https://www.un.org/sustainabledevelopment/development-agenda/) accessed April 1, 2021.</div>\n</div>\n",
"footnoteTitle": "UN, 2021, The Sustainable Development Agenda",
"uid": "6lP1t",
"zoteroId": "9429MRHV"
},
"type": "zotero"
},
{
"text": ""
}
],
"data": {
"url": "https://www.un.org/sustainabledevelopment/development-agenda/"
},
"type": "link"
},
{
"text": ". One of the targets under Sustainable Development Goal (SDG) 14 (\u2018Conserve and sustainably use the oceans, seas and marine resources for sustainable development\u2019), SDG 14.3, is to \u2018Minimize and address the impacts of ocean acidification, including through enhanced scientific cooperation at all levels\u2019."
}
],
"type": "p"
},
{
"type": "p",
"children": [
{
"text": ""
}
]
},
{
"children": [
{
"text": "On 4 March 2020, the European Commission proposed a "
},
{
"children": [
{
"text": ""
},
{
"children": [
{
"text": "European climate law"
}
],
"data": {
"footnote": "<?xml version=\"1.0\"?>\n<div class=\"csl-bib-body\" style=\"line-height: 1.35; \">\n <div class=\"csl-entry\">EC, 2020, Proposal for a regulation of the European Parliament and of the Council establishing the framework for achieving climate neutrality and amending Regulation (EU) 2018/1999 (European Climate Law), COM(2020) 80 final</div>\n</div>\n",
"footnoteTitle": "EC, 2020, Proposal for a regulation of the Europea",
"uid": "zopll",
"zoteroId": "QCRFQFV5"
},
"type": "zotero"
},
{
"text": ""
}
],
"data": {
"url": "https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1588581905912&uri=CELEX:52020PC0080"
},
"type": "link"
},
{
"text": " to ensure a climate-neutral European Union by 2050 as a part of the "
},
{
"children": [
{
"text": "European Green Deal"
}
],
"data": {
"footnote": "<?xml version=\"1.0\"?>\n<div class=\"csl-bib-body\" style=\"line-height: 1.35; \">\n <div class=\"csl-entry\">EC, 2019, Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions ‘The European Green Deal’, COM(2019) 640 final of 11 December 2019.</div>\n</div>\n",
"footnoteTitle": "EC, 2019, Communication from the Commission to the",
"uid": "82EKX",
"zoteroId": "IUCRLJNB"
},
"type": "zotero"
},
{
"text": ". This law is designed to establish a basis for adaptable management, with focus on the implementation of mitigation measures, the monitoring of progress and the improvement of management approaches if needed."
}
],
"type": "p"
}
]
Frequency of dissemination
1
Accuracy and uncertainties
[
{
"children": [
{
"text": "No methodology uncertainty has been specified."
}
],
"type": "p"
},
{
"children": [
{
"text": ""
}
],
"type": "h4"
},
{
"children": [
{
"text": "No data set uncertainty has been specified."
}
],
"type": "p"
},
{
"children": [
{
"text": ""
}
],
"type": "h4"
},
{
"children": [
{
"text": "No rationale uncertainty has been specified."
}
],
"type": "p"
}
]