next
previous
items

Indicator Specification

Precipitation extremes

Indicator Specification
  Indicator codes: CLIM 004
Published 19 Nov 2012 Last modified 04 Sep 2015
5 min read
This is an old version, kept for reference only.

Go to latest version
This page was archived on 13 Aug 2014 with reason: Other (New version data-and-maps/indicators/precipitation-extremes-in-europe-2 was published)
Trends in consecutive wet days and consecutive dry days Projected changes in 20-year maximum precipitation in summer and winter

Assessment versions

Published (reviewed and quality assured)
  • No published assessments
 

Rationale

Justification for indicator selection

Changes in the frequency and intensity of extreme precipitation can have considerable impacts on society, including the built environment, agriculture, industry and ecosystem services. An assessment of past trends and future projections of extreme precipitation is therefore essential for advising policy decisions on mitigation and adaptation to climate change. The risks posed by precipitation-related hazards, such as flooding events (including flash floods) and landslides, are also influenced by non-climatic factors, such as population density, floodplain development and land-use change. Hence, estimates of future changes in such risks need to consider changes in both climatic and non-climatic factors. Estimates of trends in heavy or extreme precipitation are more uncertain than trends in mean precipitation because, by their very nature, extreme precipitation events have a low frequency of occurrence. This leads to greater uncertainties when assessing the statistical significance of observed changes.

Scientific references

  • IPCC, 2007. Cimate Change: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K. B.; Tignor M. and Miller H. L. (eds.), Cambridge University Press, Cambridge, UK.

Indicator definition

  • Trends in consecutive wet days and consecutive dry days
  • Projected changes in 20-year maximum precipitation in summer and winter

Units

  • dry days/decade
  • wet days/decade
  • %
 

Policy context and targets

Context description

In April 2013 the European Commission presented the EU Adaptation Strategy Package (http://ec.europa.eu/clima/policies/adaptation/what/documentation_en.htm). This package consists of the EU Strategy on adaptation to climate change /* COM/2013/0216 final */ and a number of supporting documents. One of the objectives of the EU Adaptation Strategy is Better informed decision-making, which should occur through Bridging the knowledge gap and Further developing Climate-ADAPT as the ‘one-stop shop’ for adaptation information in Europe. Further objectives include Promoting action by Member States and Climate-proofing EU action: promoting adaptation in key vulnerable sectors. Many EU Member States have already taken action, such as by adopting national adaptation strategies, and several have also prepared action plans on climate change adaptation.

The European Commission and the European Environment Agency have developed the European Climate Adaptation Platform (Climate-ADAPT, http://climate-adapt.eea.europa.eu/) to share knowledge on observed and projected climate change and its impacts on environmental and social systems and on human health; on relevant research; on EU, national and subnational adaptation strategies and plans; and on adaptation case studies.

Targets

No targets have been specified.

Related policy documents

  • Climate-ADAPT: Adaptation in EU policy sectors
    Overview of EU sector policies in which mainstreaming of adaptation to climate change is ongoing or explored
  • Climate-ADAPT: Country profiles
    Overview of activities of EEA member countries in preparing, developing and implementing adaptation strategies
  • DG CLIMA: Adaptation to climate change
    Adaptation means anticipating the adverse effects of climate change and taking appropriate action to prevent or minimise the damage they can cause, or taking advantage of opportunities that may arise. It has been shown that well planned, early adaptation action saves money and lives in the future. This web portal provides information on all adaptation activities of the European Commission.
  • EU Adaptation Strategy Package
    In April 2013, the European Commission adopted an EU strategy on adaptation to climate change, which has been welcomed by the EU Member States. The strategy aims to make Europe more climate-resilient. By taking a coherent approach and providing for improved coordination, it enhances the preparedness and capacity of all governance levels to respond to the impacts of climate change.

Key policy question

What is the trend in the length of dry and wet periods, and in heavy precipitation events across Europe?

 

Methodology

Methodology for indicator calculation

The number of consecutive wet days is defined as the number of days in a row during which every day is a wet day (daily precipitation amounts are more than 1 mm in every day during the period). Respectively, consecutive dry days show less than 1 mm per day.

Precipitation extremes over Europe are examined in an ensemble of RCA3 regional climate model simulations driven by six different global climate models (ECHAM5, CCSM3, HadCM3, CNRM, BCM and IPSL) under the SRES A1B emission scenario. The extremes are expressed in terms of the 20-yr return values of seasonal precipitation extremes.

Methodology for gap filling

Not applicable

Methodology references

 

Data specifications

EEA data references

  • No datasets have been specified here.

External data references

Data sources in latest figures

 

Uncertainties

Methodology uncertainty

Not applicable


Data sets uncertainty

The risks posed by precipitation-related hazards, such as flooding events (including flash floods) and landslides, are also influenced by non-climatic factors, such as population density, floodplain development and land-use change. Hence, estimates of future changes in such risks need to consider changes in both climatic and non-climatic factors. Estimates of trends in heavy or extreme precipitation are more uncertain than trends in mean precipitation because, by their very nature, extreme precipitation events have a low frequency of occurrence. This leads to greater uncertainties when assessing the statistical significance of observed changes.

Further information on uncertainties is provided in Section 1.7 of the EEA report on Climate change, impacts, and vulnerability in Europe 2012 (http://www.eea.europa.eu/publications/climate-impacts-and-vulnerability-2012/


Rationale uncertainty

No uncertainty has been specified

Further work

Short term work

Work specified here requires to be completed within 1 year from now.

Long term work

Work specified here will require more than 1 year (from now) to be completed.

General metadata

Responsibility and ownership

EEA Contact Info

Blaz Kurnik

Ownership

European Environment Agency (EEA)

Identification

Indicator code
CLIM 004
Specification
Version id: 2

Frequency of updates

Updates are scheduled every 4 years

Classification

DPSIR: Impact
Typology: Descriptive indicator (Type A - What is happening to the environment and to humans?)

Permalinks

Document Actions