Indicator Specification
Precipitation extremes
Go to latest version
Rationale
Justification for indicator selection
Changes in the frequency and intensity of extreme precipitation can have considerable impacts on society, including the built environment, agriculture, industry and ecosystem services. An assessment of past trends and future projections of extreme precipitation is therefore essential for advising policy decisions on mitigation and adaptation to climate change. The risks posed by precipitation-related hazards, such as flooding events (including flash floods) and landslides, are also influenced by non-climatic factors, such as population density, floodplain development and land-use change. Hence, estimates of future changes in such risks need to consider changes in both climatic and non-climatic factors. Estimates of trends in heavy or extreme precipitation are more uncertain than trends in mean precipitation because, by their very nature, extreme precipitation events have a low frequency of occurrence. This leads to greater uncertainties when assessing the statistical significance of observed changes.
Scientific references
- IPCC, 2007. Cimate Change: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K. B.; Tignor M. and Miller H. L. (eds.), Cambridge University Press, Cambridge, UK.
Indicator definition
- Trends in consecutive wet days and consecutive dry days
- Projected changes in 20-year maximum precipitation in summer and winter
Units
- dry days/decade
- wet days/decade
- %
Policy context and targets
Context description
In April 2013 the European Commission presented the EU Adaptation Strategy Package (http://ec.europa.eu/clima/policies/adaptation/what/documentation_en.htm). This package consists of the EU Strategy on adaptation to climate change /* COM/2013/0216 final */ and a number of supporting documents. One of the objectives of the EU Adaptation Strategy is Better informed decision-making, which should occur through Bridging the knowledge gap and Further developing Climate-ADAPT as the ‘one-stop shop’ for adaptation information in Europe. Further objectives include Promoting action by Member States and Climate-proofing EU action: promoting adaptation in key vulnerable sectors. Many EU Member States have already taken action, such as by adopting national adaptation strategies, and several have also prepared action plans on climate change adaptation.
The European Commission and the European Environment Agency have developed the European Climate Adaptation Platform (Climate-ADAPT, http://climate-adapt.eea.europa.eu/) to share knowledge on observed and projected climate change and its impacts on environmental and social systems and on human health; on relevant research; on EU, national and subnational adaptation strategies and plans; and on adaptation case studies.
Targets
No targets have been specified.
Related policy documents
-
Climate-ADAPT: Adaptation in EU policy sectors
Overview of EU sector policies in which mainstreaming of adaptation to climate change is ongoing or explored
-
Climate-ADAPT: Country profiles
Overview of activities of EEA member countries in preparing, developing and implementing adaptation strategies
-
DG CLIMA: Adaptation to climate change
Adaptation means anticipating the adverse effects of climate change and taking appropriate action to prevent or minimise the damage they can cause, or taking advantage of opportunities that may arise. It has been shown that well planned, early adaptation action saves money and lives in the future. This web portal provides information on all adaptation activities of the European Commission.
-
EU Adaptation Strategy Package
In April 2013, the European Commission adopted an EU strategy on adaptation to climate change, which has been welcomed by the EU Member States. The strategy aims to make Europe more climate-resilient. By taking a coherent approach and providing for improved coordination, it enhances the preparedness and capacity of all governance levels to respond to the impacts of climate change.
Key policy question
What is the trend in the length of dry and wet periods, and in heavy precipitation events across Europe?
Methodology
Methodology for indicator calculation
The number of consecutive wet days is defined as the number of days in a row during which every day is a wet day (daily precipitation amounts are more than 1 mm in every day during the period). Respectively, consecutive dry days show less than 1 mm per day.
Precipitation extremes over Europe are examined in an ensemble of RCA3 regional climate model simulations driven by six different global climate models (ECHAM5, CCSM3, HadCM3, CNRM, BCM and IPSL) under the SRES A1B emission scenario. The extremes are expressed in terms of the 20-yr return values of seasonal precipitation extremes.
Methodology for gap filling
Not applicable
Methodology references
- Nikulin et al. 2011: Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations Grigory Nikulin, Erik Kjellström, Ulf Hansson, Gustav Strandberg, Anders Ullerstig (2011):Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus A, Volume 63(1): 41–55 . DOI: 10.1111/j.1600-0870.2010.00466.x
Data specifications
EEA data references
- No datasets have been specified here.
External data references
- Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations
- E-OBS gridded dataset
Data sources in latest figures
Uncertainties
Methodology uncertainty
Not applicable
Data sets uncertainty
The risks posed by precipitation-related hazards, such as flooding events (including flash floods) and landslides, are also influenced by non-climatic factors, such as population density, floodplain development and land-use change. Hence, estimates of future changes in such risks need to consider changes in both climatic and non-climatic factors. Estimates of trends in heavy or extreme precipitation are more uncertain than trends in mean precipitation because, by their very nature, extreme precipitation events have a low frequency of occurrence. This leads to greater uncertainties when assessing the statistical significance of observed changes.
Further information on uncertainties is provided in Section 1.7 of the EEA report on Climate change, impacts, and vulnerability in Europe 2012 (http://www.eea.europa.eu/publications/climate-impacts-and-vulnerability-2012/
Rationale uncertainty
No uncertainty has been specified
Further work
Short term work
Work specified here requires to be completed within 1 year from now.
Long term work
Work specified here will require more than 1 year (from now) to be completed.
General metadata
Responsibility and ownership
EEA Contact Info
Blaz KurnikOwnership
Identification
Frequency of updates
Classification
DPSIR: ImpactTypology: Descriptive indicator (Type A - What is happening to the environment and to humans?)
Permalinks
- Permalink to this version
- d0549ad2364b41a8a2671d16f02e5994
- Permalink to latest version
- N66QX4D8XG
Older versions
For references, please go to https://www.eea.europa.eu/data-and-maps/indicators/precipitation-extremes-in-europe-1 or scan the QR code.
PDF generated on 29 Jan 2023, 11:34 AM
Document Actions
Share with others