next
previous
items

Indicator Specification

Soil moisture

Indicator Specification
  Indicator codes: CLIM 029
Published 20 Nov 2012 Last modified 11 Sep 2015
6 min read
This is an old version, kept for reference only.

Go to latest version
This page was archived on 13 May 2015 with reason: Other (New version data-and-maps/indicators/water-retention-3 was published)
Global surface soil moisture content based on remote sensing data

Assessment versions

Published (reviewed and quality assured)
  • No published assessments
 

Rationale

Justification for indicator selection

The ability of soil to retain moisture is a significant aspect in the water cycle and is crucial for primary production. The amount of water held in soil is intrinsically linked to our climate and depends largely on texture, structure and the amount of soil organic matter. Variations in any of these variables will affect soil water retention characteristics and ultimately soil functions (e.g. groundwater recharge).

By absorbing many times its weight in water, soil organic matter in mineral soils can contribute to the mitigation of flooding following extreme rainfall events while storing water in the event of more frequent and severe droughts. At low soil carbon contents, an increase in carbon content leads to an increase in water retention in coarse soils and a decrease in fine-textured soils. At high carbon contents, an increase in carbon content results in an increase in water retention for all soil textures.

While water-holding capacity is an intrinsic soil property based on clay content, structure and organic matter levels, water content is highly dynamic and is the balance between rainfall and evapotranspiration. Changes in temperature and precipitation patterns and intensity will affect evapotranspiration, soil moisture and infiltration rates. Conversely, there is also observational evidence that soil moisture deficit exacerbates hot extremes in south-eastern Europe.

Scientific references

Indicator definition

  • Global surface soil moisture content based on remote sensing data

Units

  • m³/m³
 

Policy context and targets

Context description

In April 2013 the European Commission presented the EU Adaptation Strategy Package (http://ec.europa.eu/clima/policies/adaptation/what/documentation_en.htm). This package consists of the EU Strategy on adaptation to climate change /* COM/2013/0216 final */ and a number of supporting documents. One of the objectives of the EU Adaptation Strategy is Better informed decision-making, which should occur through Bridging the knowledge gap and Further developing Climate-ADAPT as the ‘one-stop shop’ for adaptation information in Europe. Further objectives include Promoting action by Member States and Climate-proofing EU action: promoting adaptation in key vulnerable sectors. Many EU Member States have already taken action, such as by adopting national adaptation strategies, and several have also prepared action plans on climate change adaptation.

The European Commission and the European Environment Agency have developed the European Climate Adaptation Platform (Climate-ADAPT, http://climate-adapt.eea.europa.eu/) to share knowledge on observed and projected climate change and its impacts on environmental and social systems and on human health; on relevant research; on EU, national and subnational adaptation strategies and plans; and on adaptation case studies.

Targets

No targets have been specified.

Related policy documents

  • Climate-ADAPT: Adaptation in EU policy sectors
    Overview of EU sector policies in which mainstreaming of adaptation to climate change is ongoing or explored
  • Climate-ADAPT: Country profiles
    Overview of activities of EEA member countries in preparing, developing and implementing adaptation strategies
  • DG CLIMA: Adaptation to climate change
    Adaptation means anticipating the adverse effects of climate change and taking appropriate action to prevent or minimise the damage they can cause, or taking advantage of opportunities that may arise. It has been shown that well planned, early adaptation action saves money and lives in the future. This web portal provides information on all adaptation activities of the European Commission.
  • EU Adaptation Strategy Package
    In April 2013, the European Commission adopted an EU strategy on adaptation to climate change, which has been welcomed by the EU Member States. The strategy aims to make Europe more climate-resilient. By taking a coherent approach and providing for improved coordination, it enhances the preparedness and capacity of all governance levels to respond to the impacts of climate change.

Key policy question

How are soil moisture and water retention capacity changing in Europe?

 

Methodology

Methodology for indicator calculation

The satellite-borne sensor from the SMOS (Soil Moisture and Ocean Salinity) mission is used to make global observations of surface soil moisture. Launched in 2009, SMOS looks at microwave radiation emitted from Earth to calculate the amount of moisture held in the surface layer of soil, up to a depth of about 5 cm.

Methodology for gap filling

Not applicable

Methodology references

 

Data specifications

EEA data references

  • No datasets have been specified here.

External data references

Data sources in latest figures

 

Uncertainties

Methodology uncertainty

Not applicable

Data sets uncertainty

Quantitative information, from both observations and modelling, on the past trends and impacts of climate change on soil and the various related feedbacks, is very limited. For example, data have been collected in forest soil surveys (e.g. ICP Forests, BioSoil and FutMon projects), but issues with survey quality in different countries makes comparison between countries (and between surveys) difficult . To date, assessments have relied mainly on local case studies that have analysed how soil reacts under changing climate in combination with evolving agricultural and forest practices. Thus, European-wide soil information to help policymakers identify appropriate adaptation measures is absent. There is an urgent need to establish harmonised monitoring networks to provide a better and more quantitative understanding of this system. Currently, EU-wide soil indicators are (partly) based on estimates and modelling studies, most of which have not yet been validated. Nevertheless, in absence of quantification, other evidences can indicate emerging risks. For example, shifting tree lines in mountainous regions as a consequence of climate change may indicate an extinction risk of local soil biota.

Finally, when documenting and modelling changes in soil indicators, it is not always feasible to track long-term changes (signal) given the significant short-term variations (noise) that may occur (e.g. seasonal variations of soil organic carbon due to land management). Therefore, detected changes cannot always be attributed to climate change effects, as climate is only one of the soil-forming factors. Human activity can be more determining, both in measured/modelled past trends (baseline), and if projections including all possible factors were to be made. The latter points towards the critical role of effective land use and management in mitigating and adapting to climate change.

Further information on uncertainties is provided in Section 1.7 of the EEA report on Climate change, impacts, and vulnerability in Europe 2012 (http://www.eea.europa.eu/publications/climate-impacts-and-vulnerability-2012/)

Rationale uncertainty

No uncertainty has been specified

Further work

Short term work

Work specified here requires to be completed within 1 year from now.

Long term work

Work specified here will require more than 1 year (from now) to be completed.

General metadata

Responsibility and ownership

EEA Contact Info

Geertrui Veerle Erika Louwagie

Ownership

European Environment Agency (EEA)

Identification

Indicator code
CLIM 029
Specification
Version id: 2

Frequency of updates

Updates are scheduled every 4 years

Classification

DPSIR: Impact
Typology: Descriptive indicator (Type A - What is happening to the environment and to humans?)

Permalinks

Document Actions