next
previous
items

Agrophenology

Indicator Specification
  Indicator codes: CLIM 031
Created 14 Nov 2012 Published 21 Nov 2012 Last modified 20 Dec 2016
6 min read
This is an old version, kept for reference only.

Go to latest version
This page was archived on 20 Dec 2016 with reason: Other (New version data-and-maps/indicators/timing-of-the-cycle-of-2 was published)
Observed change in flowering date for winter wheat Projected change in dates of flowering and maturation for winter wheat

Assessment versions

Published (reviewed and quality assured)
  • No published assessments
 

Rationale

Justification for indicator selection

Changes in crop phenology provide important evidence of responses to recent regional climate change. Although phenological changes are often influenced by management practices, in particular sowing date and choice of cultivar, recent warming in Europe has clearly advanced a significant part of the agricultural calendar. Specific stages of growth (e.g. flowering, grain filling) are particularly sensitive to weather conditions and critical for final yield. The timing of the crop cycle (agrophenology) determines the productive success of the crop. In general, a longer crop cycle is strongly correlated with higher yields, since a longer cycle permits better use of the available thermal energy, solar radiation and water resources.

Scientific references

Indicator definition

  • Observed change in flowering date for winter wheat
  • Projected change in dates of flowering and maturation for winter wheat

Units

  • days/year
  • days
 

Policy context and targets

Context description

In April 2013 the European Commission presented the EU Adaptation Strategy Package (http://ec.europa.eu/clima/policies/adaptation/what/documentation_en.htm). This package consists of the EU Strategy on adaptation to climate change /* COM/2013/0216 final */ and a number of supporting documents. One of the objectives of the EU Adaptation Strategy is Better informed decision-making, which should occur through Bridging the knowledge gap and Further developing Climate-ADAPT as the ‘one-stop shop’ for adaptation information in Europe. Further objectives include Promoting action by Member States and Climate-proofing EU action: promoting adaptation in key vulnerable sectors. Many EU Member States have already taken action, such as by adopting national adaptation strategies, and several have also prepared action plans on climate change adaptation.

The European Commission and the European Environment Agency have developed the European Climate Adaptation Platform (Climate-ADAPT, http://climate-adapt.eea.europa.eu/) to share knowledge on observed and projected climate change and its impacts on environmental and social systems and on human health; on relevant research; on EU, national and subnational adaptation strategies and plans; and on adaptation case studies.

Targets

No targets have been specified.

Related policy documents

  • Climate-ADAPT: Adaptation in EU policy sectors
    Overview of EU sector policies in which mainstreaming of adaptation to climate change is ongoing or explored
  • Climate-ADAPT: Country profiles
    Overview of activities of EEA member countries in preparing, developing and implementing adaptation strategies
  • DG CLIMA: Adaptation to climate change
    Adaptation means anticipating the adverse effects of climate change and taking appropriate action to prevent or minimise the damage they can cause, or taking advantage of opportunities that may arise. It has been shown that well planned, early adaptation action saves money and lives in the future. This web portal provides information on all adaptation activities of the European Commission.
  • EU Adaptation Strategy Package
    In April 2013, the European Commission adopted an EU strategy on adaptation to climate change, which has been welcomed by the EU Member States. The strategy aims to make Europe more climate-resilient. By taking a coherent approach and providing for improved coordination, it enhances the preparedness and capacity of all governance levels to respond to the impacts of climate change.

Key policy question

How is climate change affecting the seasonal cycle of agricultural crops across Europe?

 

Methodology

Methodology for indicator calculation

A map has been produced querying a database internal to Joint Research Centre (JRC) containing crop growth data derived with the WOFOST model (Van Keulen H, Wolf J (1986) Modelling of agricultural production: weather soils and crops,Simulation monographs. Pudoc, Wageningen) These data are derived in the frame of the MARSOP 3 contract, complying with Council Regulation (EC) No 78/2008 of 21 January 2008 on the measures to be undertaken by the Commission in 2008-2013 making use of the remote-sensing applications developed within the framework of the common agricultural policy, Official Journal of the European Union, L 25 of 30 January 2008, p. 1.

Methodology for gap filling

Not applicable

Methodology references

 

Data specifications

EEA data references

  • No datasets have been specified here.

External data references

Data sources in latest figures

 

Uncertainties

Methodology uncertainty

Not applicable

Data sets uncertainty

Effects of climate change on the growing season and crop phenology can be monitored directly, partly through remote sensing (growing season) and partly through monitoring of specific phenological events such as flowering. There is no common monitoring network for crop phenology in Europe, and data on this therefore has to be based on various national recordings, often from agronomic experiments. Crop yield and crop requirements for irrigation are not only affected by climate change, but also by management and a range of socio-economic factors. The effects of climate change on these factors therefore have to be estimated indirectly using agrometeorological indicators and through statistical analyses between climatic variables and factors such as crop yield.

The projections of climate change impacts and adaptation in agriculture rely heavily on modelling, and it needs to be recognised that there is often a chain of uncertainty involved in the projections going from emission scenario, through climate modelling, downscaling and to assessments of impacts using an impact model. The extent of all these uncertainties is rarely quantified, even though some studies have assessed uncertainties related to individual components. The crop modelling community has only recently started addressing uncertainties related to modelling impacts of climate change on crop yield and effect of possible adaptation options, and so far only few studies have involved livestock systems. Future studies also need to better incorporate effects of extreme climate events as well as biotic hazards (e.g. pests and diseases).

Further information on uncertainties is provided in Section 1.7 of the EEA report on Climate change, impacts, and vulnerability in Europe 2012 (http://www.eea.europa.eu/publications/climate-impacts-and-vulnerability-2012/)

Rationale uncertainty

No uncertainty has been specified

Further work

Short term work

Work specified here requires to be completed within 1 year from now.

Long term work

Work specified here will require more than 1 year (from now) to be completed.

General metadata

Responsibility and ownership

EEA Contact Info

Hans-Martin Füssel

Ownership

Joint Research Centre (JRC)
European Environment Agency (EEA)

Identification

Indicator code
CLIM 031
Specification
Version id: 2
Primary theme: Agriculture Agriculture

Frequency of updates

Updates are scheduled every 4 years

Classification

DPSIR: Impact
Typology: Descriptive indicator (Type A - What is happening to the environment and to humans?)

Permalinks

Document Actions