Indicator Specification

Soil erosion

Indicator Specification
  Indicator codes: LSI 006
Published 20 Nov 2012 Last modified 26 Jun 2017
6 min read
This page was archived on 26 Jun 2017 with reason: Content is outdated
Estimated soil erosion by water in Europe Estimated number of days for wind erosion

Assessment versions

Published (reviewed and quality assured)
  • No published assessments


Justification for indicator selection

Soil erosion by water has substantial on-site as well as off-site effects. By removing fertile topsoil, erosion reduces soil productivity and, where soils are shallow, may lead to the loss of the entire soil body. Soil removed by run-off, for example during a large storm, will create mudflows that will accumulate below the eroded areas, in severe cases blocking roadways or drainage channels and inundating buildings. Erosion can lead to restrictions on land use and land value, damage to infrastructure, pollution of water bodies, and negative effects on habitats and biodiversity.

Based on potential loss of wheat yields, a conservative estimate of the consequence of erosion by water for the EU-27 (excluding Greece, Cyprus and Malta), reveals that agricultural production equivalent to a value of EUR 3.5 billion could be under threat. If the economic loss of soil carbon is also added, the figure would be even higher. In 2011, the removal of topsoil by strong winds after ploughing in very dry conditions in Germany caused a traffic accident that killed 10 people and injured at least 100 others; this is an indirect effect of wind erosion.

Climate change will influence soil erosion processes, mainly triggered by extreme rainfall events and droughts. Excess water due to intense or prolonged precipitation can cause tremendous damage to soil through sheet wash, gully erosion and even landslides. However, if soils are managed well, resistance to erosion by water and/or wind can be improved considerably.

Scientific references

  • No rationale references available

Indicator definition

  • Estimated soil erosion by water in Europe
  • Estimated number of days for wind erosion


  • tonnes/ha/yr
  • days per year

Policy context and targets

Context description

In April 2013 the European Commission presented the EU Adaptation Strategy Package ( This package consists of the EU Strategy on adaptation to climate change /* COM/2013/0216 final */ and a number of supporting documents. One of the objectives of the EU Adaptation Strategy is Better informed decision-making, which should occur through Bridging the knowledge gap and Further developing Climate-ADAPT as the ‘one-stop shop’ for adaptation information in Europe. Further objectives include Promoting action by Member States and Climate-proofing EU action: promoting adaptation in key vulnerable sectors. Many EU Member States have already taken action, such as by adopting national adaptation strategies, and several have also prepared action plans on climate change adaptation.

The European Commission and the European Environment Agency have developed the European Climate Adaptation Platform (Climate-ADAPT, to share knowledge on observed and projected climate change and its impacts on environmental and social systems and on human health; on relevant research; on EU, national and subnational adaptation strategies and plans; and on adaptation case studies.


No targets have been specified.

Related policy documents

  • Climate-ADAPT: Adaptation in EU policy sectors
    Overview of EU sector policies in which mainstreaming of adaptation to climate change is ongoing or explored
  • Climate-ADAPT: Country profiles
    Overview of activities of EEA member countries in preparing, developing and implementing adaptation strategies
  • DG CLIMA: Adaptation to climate change
    Adaptation means anticipating the adverse effects of climate change and taking appropriate action to prevent or minimise the damage they can cause, or taking advantage of opportunities that may arise. It has been shown that well planned, early adaptation action saves money and lives in the future. This web portal provides information on all adaptation activities of the European Commission.
  • EU Adaptation Strategy Package
    In April 2013, the European Commission adopted an EU strategy on adaptation to climate change, which has been welcomed by the EU Member States. The strategy aims to make Europe more climate-resilient. By taking a coherent approach and providing for improved coordination, it enhances the preparedness and capacity of all governance levels to respond to the impacts of climate change.


Methodology for indicator calculation

EU-wide estimates of erosion are based on modelling studies. Most models contain a rainfall erosivity factor and a soil erodibility factor that reflect average precipitation conditions. Typical values for these factors may inadequately represent the impact of extreme rainfall. Therefore, the uncertainty of modelled erosion risk is high, especially at local level.

Methodology for gap filling

Not applicable

Methodology references

No methodology references available.


Data specifications

EEA data references

  • No datasets have been specified here.

External data references

Data sources in latest figures



Methodology uncertainty

Not applicable

Data sets uncertainty

Quantitative information, from both observations and modelling, on the past trends and impacts of climate change on soil and the various related feedbacks, is very limited. For example, data have been collected in forest soil surveys (e.g. ICP Forests, BioSoil and FutMon projects), but issues with survey quality in different countries makes comparison between countries (and between surveys) difficult . To date, assessments have relied mainly on local case studies that have analysed how soil reacts under changing climate in combination with evolving agricultural and forest practices. Thus, European-wide soil information to help policymakers identify appropriate adaptation measures is absent. There is an urgent need to establish harmonised monitoring networks to provide a better and more quantitative understanding of this system. Currently, EU-wide soil indicators are (partly) based on estimates and modelling studies, most of which have not yet been validated. Nevertheless, in absence of quantification, other evidences can indicate emerging risks. For example, shifting tree lines in mountainous regions as a consequence of climate change may indicate an extinction risk of local soil biota.

Finally, when documenting and modelling changes in soil indicators, it is not always feasible to track long-term changes (signal) given the significant short-term variations (noise) that may occur (e.g. seasonal variations of soil organic carbon due to land management). Therefore, detected changes cannot always be attributed to climate change effects, as climate is only one of the soil-forming factors. Human activity can be more determining, both in measured/modelled past trends (baseline), and if projections including all possible factors were to be made. The latter points towards the critical role of effective land use and management in mitigating and adapting to climate change.

Further information on uncertainties is provided in Section 1.7 of the EEA report on Climate change, impacts, and vulnerability in Europe 2012 (

Rationale uncertainty

No uncertainty has been specified

Further work

Short term work

Work specified here requires to be completed within 1 year from now.

Long term work

Work specified here will require more than 1 year (from now) to be completed.

General metadata

Responsibility and ownership

EEA Contact Info

Annemarie Bastrup-Birk


European Environment Agency (EEA)


Indicator code
LSI 006
Version id: 2

Frequency of updates

Updates are scheduled every 4 years


DPSIR: Impact
Typology: Descriptive indicator (Type A - What is happening to the environment and to humans?)


Document Actions