Indicator Specification

Sea surface temperature

Indicator Specification
  Indicator codes: CSI 046 , CLIM 013
Published 08 Sep 2008 Last modified 25 Aug 2017
7 min read
This is an old version, kept for reference only.

Go to latest version
This page was archived on 25 Aug 2017 with reason: A new version has been published
Sea surface temperature anomaly for period 1870-2006 Sea surface temperature changes for the European seas 1982-2006

Assessment versions

Published (reviewed and quality assured)
  • No published assessments


Justification for indicator selection

Sea surface temperature (SST) is closely linked to one of the strongest drivers of climate in western Europe: the ocean circulation known as the Atlantic Meridional Overturning Circulation (MOC). This circulation (also known as the great conveyor belt) carries warm upper waters north in the Gulf Stream and returns cold deep waters south. It is widely accepted that the MOC is an important driver of low frequency variations in sea surface temperature on the time scale of several decades (Griffies et al., 1997). It is also widely accepted that the NAO index (a proxy of atmospheric circulation variability) plays a key role in forcing variations in MOC as well as the northward extent of the Gulf Stream (Frankignoul and Kestenare, 2005; De Coetlogon et al., 2006). At present, changes in sea surface temperatures of the global ocean and the regional seas of Europe are consistent with the changes in atmospheric temperature (Levitus et al., 2000; Rayner et al., 2006).
The sensitivity of the MOC to greenhouse warming, however, remains a subject of much scientific debate. Observations indicate that there has indeed been a freshening of the North Atlantic since 1965 due to increased freshwater inputs from rivers, precipitation and melting glaciers (Curry and Mauritzen, 2005), and thus possibly a weakening of the Atlantic MOC. The freshening calculated by these authors occurred mainly before 1970 and does not yet appear to have substantially altered the MOC and its northward heat transport. Uncertainties regarding the rates of future climate warming and glacial melting limit the predictability of the impact on ocean circulation, but do not exclude the possibility of a weakening of the MOC. Recent observations, have, however, shown that the variability of the MOC is large. The yearlong average MOC is 18.7 ± 5.6 Sverdrup (Note: Sverdrup = 106 m3s-1) but with large variability ranging from 4.4 to 35.3 Sverdrup (Cunningham et al., 2007). A recent study has shown that the variability of the MOC may be predictable on decadal time scales, and the study predicts that North Atlantic and European sea surface temperatures will fall slightly in the next decade as natural climate variability off-sets the projected anthropogenic warming (Keenlyside et al., 2008). The plausibility of the Keenlyside et al., 2008 projections are, however, also subject to intense debate in the scientific community (see e.g.
One of the most visible ramifications of increased temperature of the ocean is the reduced area of sea ice coverage in the Arctic polar region and there is an accumulating body of evidence suggesting that many marine ecosystems are responding both physically and biologically to changes in regional climate caused predominantly by the warming of air and SST, as shown in the following sections.

Scientific references

  • No rationale references available

Indicator definition

  • Sea surface temperature anomaly for period 1870-2006
  • Sea surface temperature changes for the European seas 1982-2006



Policy context and targets

Context description

In April 2009 the European Commission presented a White Paper on the framework for adaptation policies and measures to reduce the European Union's vulnerability to the impacts of climate change. The aim is to increase the resilience to climate change of health, property and the productive functions of land, inter alia by improving the management of water resources and ecosystems. More knowledge is needed on climate impact and vulnerability but a considerable amount of information and research already exists which can be shared better through a proposed Clearing House Mechanism. The White Paper stresses the need to mainstream adaptation into existing and new EU policies. A number of Member States have already taken action and several have prepared national adaptation plans. The EU is also developing actions to enhance and finance adaptation in developing countries as part of a new post-2012 global climate agreement expected in Copenhagen (Dec. 2009). For more information see:


No targets have been specified

Related policy documents

No related policy documents have been specified



Methodology for indicator calculation

Methodology for gap filling

Methodology references

No methodology references available.


Data specifications

EEA data references

  • No datasets have been specified here.

External data references

Data sources in latest figures



Methodology uncertainty

Data sets uncertainty

Rationale uncertainty

No uncertainty has been specified

Further work

Short term work

Work specified here requires to be completed within 1 year from now.

Long term work

Work specified here will require more than 1 year (from now) to be completed.

General metadata

Responsibility and ownership

EEA Contact Info

Trine Christiansen


European Environment Agency (EEA)


Indicator code
CSI 046
CLIM 013
Version id: 1


DPSIR: Impact
Typology: Descriptive indicator (Type A - What is happening to the environment and to humans?)



Document Actions