River floods

Indicator Specification
Indicator codes: CLIM 017
Created 11 Jul 2008 Published 08 Sep 2008 Last modified 04 Sep 2015
7 min read
Note: new version is available!
Occurrence of major floods in Europe Projected change in river floods with a return period of 100 years

Assessment versions

Published (reviewed and quality assured)


Justification for indicator selection

There are many different types of floods. They can be distinguished based on the source of flooding (e.g., rivers and lakes, urban storm water and combined sewage overflow, or sea water), the mechanism of flooding (e.g., natural exceedance, defence or infrastructural failure, or blockage) and other characteristics (e.g., flash flooding, snowmelt flood, or debris flow).

River floods are a common natural disaster in Europe, and –along with storms- the most important natural hazard in Europe in terms of economic damage. They are mainly caused by prolonged or heavy precipitation events or snowmelt. River floods can result in huge economic losses due to damage to infrastructure, property and agricultural land, and indirect losses in or beyond the flooded areas, such as production losses caused by damaged transport or energy infrastructure. They can also lead to loss of life, especially in the case of flash floods, and displacement of people, and can have adverse effects on human health, the environment, and cultural heritage. Floods (including flash floods) have resulted in more than 2,500 fatalities and affected more than 5.5 million people in the period from 1980 to 2011. Direct economic losses over this same period amounted to more than EUR 90 billion (based on 2009 values).

The reporting of flood and drought events has generally improved during the past few decades as a result of improvements in data collection and flows of information. As a result, it is often difficult to identify whether an increase in reported flood events (or their impacts) over time is due mostly to improvements in data collection or to actual changes in these events. Furthermore, river flood records are usually sourced from different institutions and often collected using a wide range of different assessment methods and rationales, which may have changed over time.  This multitude of sources limits the comparability of key attributes associated with such events (e.g. economic losses, human casualties) across space and time.

Scientific references

  • . Barnolas, M., and M.C. Llasat. 2007. “A flood geodatabase and its climatological applications: the case of Catalonia for the last century.” Natural Hazards and Earth System Sciences 7 (2) (April 5): 271–281. doi:10.5194/nhess-7-271-2007. Barredo, J.I. 2009. “Normalised flood losses in Europe: 1970–2006.” Natural Hazards and Earth System Sciences 9 (February 9): 97–104. doi:10.5194/nhess-9-97-2009. Christensen, J. H, and Ole B. Christensen. 2002. “Severe summertime flooding in Europe.” Nature 421 (February 20): 805–806. Dankers, Rutger, and Luc Feyen. 2009. “Flood hazard in Europe in an ensemble of regional climate scenarios.” Journal of Geophysical Research 114 (D16) (August 27). doi:10.1029/2008JD011523. http://www.agu.org/pubs/crossref/2009/2008JD011523.shtml. Dartmouth Flood Observatory. 2012. “Global Active Archive of Large Flood Events”. Dartmouth Flood Observatory. http://floodobservatory.colorado.edu/index.html. EEA. 2009. Regional climate change and adaptation — The Alps facing the challenge of changing water resources. EEA Report. Copenhagen. http://www.eea.europa.eu/publications/alps-climate-change-and-adaptation-2009. ———. 2012. Urban Adaptation to Climate Change in Europe - Challenges and Opportunities for Cities Together with Supportive National and European Policies. EEA Report. Copenhagen: European Environment Agency. http://www.eea.europa.eu/publications/urban-adaptation-to-climate-change. EM-DAT. 2012. “The International Disaster Database, Centre for Research on Epidemiology of Disasters - CRED”. CRED. http://www.emdat.be. Feyen, Luc, Rutger Dankers, Katalin Bódis, Peter Salamon, and José I. Barredo. 2011. “Fluvial Flood Risk in Europe in Present and Future Climates.” Climatic Change 112 (1) (November 23): 47–62. doi:10.1007/s10584-011-0339-7. Flörke, Martina, Florian Wimmer, Cornelius Laaser, Rodrigo Vidaurre, Jenny Tröltzsch, Thomas Dworak, Natasha Marinova, et al. 2011. Climate Adaptation – modelling water scenarios and sectoral impacts. Final Report. Contract N° DG ENV.D.2/SER/2009/0034. Kassel, Germany: Center for Environmental Systems Research, University of Kassel. http://circa.europa.eu/Public/irc/env/wfd/library?l=/framework_directive/climate_adaptation/climwatadapt_report. Hannaford, Jamie, and Terry J Marsh. 2008. “High‐flow and Flood Trends in a Network of Undisturbed Catchments in the UK.” International Journal of Climatology 28 (10) (August 1): 1325–1338. doi:10.1002/joc.1643. Kundzewicz, Zbigniew W., Maciej Radziejewski, and Iwona Pínskwar. 2006. “Precipitation extremes in the changing climate of Europe.” Climate Research 31 (June 26): 51–58. doi:10.3354/cr031051. Pall, Pardeep, Tolu Aina, Dáithí A. Stone, Peter A. Stott, Toru Nozawa, Arno G. J. Hilberts, Dag Lohmann, and Myles R. Allen. 2011. “Anthropogenic Greenhouse Gas Contribution to Flood Risk in England and Wales in Autumn 2000.” Nature 470 (7334) (February 16): 382–385. doi:10.1038/nature09762. Petrow, Theresia, and Bruno Merz. 2009. “Trends in flood magnitude, frequency and seasonality in Germany in the period 1951–2002.” Journal of Hydrology 371 (1–4) (June 5): 129–141. doi:10.1016/j.jhydrol.2009.03.024. Renard, B., M. Lang, P. Bois, A. Dupeyrat, O. Mestre, H. Niel, E. Sauquet, et al. 2008. “Regional methods for trend detection: Assessing field significance and regional consistency.” Water Resources Research 44 (August 12): W08419. doi:10.1029/2007WR006268. Veijalainen, Noora, Eliisa Lotsari, Petteri Alho, Bertel Vehviläinen, and Jukka Käyhkö. 2010. “National Scale Assessment of Climate Change Impacts on Flooding in Finland.” Journal of Hydrology 391 (3–4) (September 24): 333–350. doi:10.1016/j.jhydrol.2010.07.035. Villarini, Gabriele, James A Smith, Francesco Serinaldi, Alexandros A Ntelekos, and Ulrich Schwarz. 2012. “Analyses of Extreme Flooding in Austria over the Period 1951–2006.” International Journal of Climatology 32 (8): 1178–1192. doi:10.1002/joc.2331. Wilson, Donna, Hege Hisdal, and Deborah Lawrence. 2010. “Has Streamflow Changed in the Nordic Countries? – Recent Trends and Comparisons to Hydrological Projections.” Journal of Hydrology 394 (3–4) (November 26): 334–346. doi:10.1016/j.jhydrol.2010.09.010.

Indicator definition

  • Occurrence of major floods in Europe
  • Projected change in river floods with a return period of 100 years


  • Number of events [dimensionless]
  • %

Policy context and targets

Context description

In April 2009 the European Commission presented a White Paper on the framework for adaptation policies and measures to reduce the European Union's vulnerability to the impacts of climate change. The White Paper stresses the need to improve the knowledge base and to mainstream adaptation into existing and new EU policies. The European Commission will be publishing an EU Adaptation Strategy in 2013. A number of Member States have already taken action, and several have prepared national adaptation plans.

The European Commission and the European Environment Agency have developed the European Climate Adaptation Platform (Climate-ADAPT, http://climate-adapt.eea.europa.eu/) to share knowledge on observed and projected climate change and its impacts on environmental and social systems and on human health; on relevant research; on EU, national and subnational adaptation strategies and plans; and on adaptation case studies.


No targets have been specified.

Related policy documents

Key policy question

What is the trend in river floods across Europe?


Methodology for indicator calculation


Methodology for gap filling

Not applicable

Methodology references

No methodology references available.

Data specifications

EEA data references

  • No datasets have been specified here.

External data references

Data sources in latest figures


Methodology uncertainty

Not applicable

Data sets uncertainty

Further information on uncertainties is provided in Section 1.7 of the EEA report on Climate change, impacts, and vulnerability in Europe 2012 (http://www.eea.europa.eu/publications/climate-impacts-and-vulnerability-2012/)

Rationale uncertainty

No uncertainty has been specified

Further work

Short term work

Work specified here requires to be completed within 1 year from now.

Long term work

Work specified here will require more than 1 year (from now) to be completed.

General metadata

Responsibility and ownership

EEA Contact Info

Wouter Vanneuville


Joint Research Centre (JRC)
European Environment Agency (EEA)


Indicator code
CLIM 017
Version id: 1


DPSIR: Impact
Typology: Descriptive indicator (Type A - What is happening to the environment and to humans?)
Sign up to receive our reports (print and/or electronic) and quarterly e-newsletter.
Follow us
Log in

Forgot your password?
European Environment Agency (EEA)
Kongens Nytorv 6
1050 Copenhagen K
Phone: +45 3336 7100