Indicator Assessment

Ocean acidification

Indicator Assessment
Prod-ID: IND-349-en
  Also known as: CLIM 043
Published 20 Nov 2012 Last modified 11 May 2021
9 min read
This is an old version, kept for reference only.

Go to latest version
This page was archived on 24 Aug 2017 with reason: A new version has been published
  • Surface-ocean pH has declined from 8.2 to 8.1 over the industrial era due to the growth of atmospheric CO2 concentrations. This decline corresponds to a 30 % change in oceanic acidity.
  • Observed reductions in surface-water pH are nearly identical across the global ocean and throughout Europe’s seas.
  • Ocean acidification in recent decades is occurring a hundred times faster than during past natural events over the last 55 million years.
  • Ocean acidification already reaches into the deep ocean, particularly in the high latitudes.
  • Average surface-water pH is projected to decline further to 7.7 or 7.8 by the year 2100, depending on future CO2 emissions. This decline represents a 100 to 150 % increase in acidity.
  • Ocean acidification may affect many marine organisms within the next 20 years and could alter marine ecosystems and fisheries.

Decline in pH measured at the Aloha station as part of the Hawaii Ocean time-series

Note: Aloha station pH time series. Changes here are similar to those that are observed at a much shorter time scale in Europe.

Data source:

Data provenance info is missing.

Past trends

In December 2011, the atmospheric CO2 level reached 392 ppm, which is 40 % more than the pre-industrial concentration (280 ppm); half of that increase has occurred in the last 30 years. Ocean pH has been reduced from 8.2 to 8.1 over the industrial era, which corresponds to a 30 % increase in ocean acidity (defined here as the hydrogen ion concentration). This change has occurred at a rate that is about a hundred times faster than any change in acidity experienced during the last 55 million years. The current decline in pH is already measurable at the three ocean time series stations that are suitable to evaluate long-term trends, located offshore of Hawaii, Bermuda and the Canary Islands. Figure 1 shows the time series from Hawaii, which is the longest and best known one, and the changes here are similar to those that are observed at a much shorter time scale in Europe. The measured reductions in surface pH at those stations match exactly the values calculated on the basis of increasing atmospheric CO2 concentrations, assuming thermodynamic equilibrium between the surface ocean and the atmosphere [i].


Average surface-water pH is projected to decline further to 7.7 or 7.8 by the year 2100, depending on future CO2 emissions. This decline represents a 100 to 150 % increase in acidity. When atmospheric CO2 reaches 450 ppm, parts of the Southern Ocean will start becoming corrosive to calcium carbonate during winter [ii]. Ten per cent of the Arctic Ocean may become corrosive to calcium carbonate already by 2020 [iii], and surface waters of the Baltic Sea will still become corrosive well before the end of the century. In the Black Sea and Mediterranean Sea there is no danger of surface waters becoming corrosive to calcium carbonate before 2100, but they will suffer sharp reductions in carbonate ion concentrations (Med Sea - 37 %; Black Sea - 45 %). These rapid chemical changes are an added pressure on marine calcifiers and ecosystems of the European seas that are already heavily suffering from other anthropogenic influences.

Without dramatic actions to curb CO2 emissions, recovery from human-induced acidification will require thousands of years for the Earth system to re-establish roughly similar ocean chemical conditions [iv] and millions of years for coral reefs to return, based on palaeo-records of natural coral reef extinction events [v].

[i] N.R. Bates, „Ocean Carbon Time Series“ (IOCCP, 2005),; J. Magdalena Santana-Casiano et al., „The interannual variability of oceanic CO₂ parameters in the northeast Atlantic subtropical gyre at the ESTOC site“, Global Biogeochemical Cycles 21, Nr. 1 (März 8, 2007), doi:10.1029/2006GB002788; J.E. Dore et al., „Physical and biogeochemical modulation of ocean acidification in the central North Pacific“, Proceedings of the National Academy of Sciences 106 (2009): 12235–12240., doi:10.1073/pnas.0906044106.

[ii] B. I. McNeil and R. J. Matear, „Southern Ocean acidification: A tipping point at 450-ppm atmospheric CO₂“, Proceedings of the National Academy of Sciences 105, Nr. 48 (November 20, 2008): 18860–18864, doi:10.1073/pnas.0806318105.

[iii] M. Steinacher et al., „Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model“, Biogeosciences 6, Nr. 4 (April 6, 2009): 515–533, doi:10.5194/bg-6-515-2009.

[iv] David Archer, „Fate of fossil fuel CO₂ in geologic time“, Journal of Geophysical Research 110, Nr. C9 (2005), doi:10.1029/2004JC002625; David Archer and Victor Brovkin, „The millennial atmospheric lifetime of anthropogenic CO₂“, Climatic Change 90, Nr. 3 (Juni 4, 2008): 283–297, doi:10.1007/s10584-008-9413-1; Toby Tyrrell, John G. Shepherd, and Stephanie Castle, „The long-term legacy of fossil fuels“, Tellus B 59, Nr. 4 (September 2007): 664–672, doi:10.1111/j.1600-0889.2007.00290.x.

[v] J. E. N Veron, A reef in time : the Great Barrier Reef from beginning to end (Cambridge, Mass.: Belknap Press of Harvard University Press, 2008).

Supporting information

Indicator definition

  • Decline in ocean acidity


  • acidity (pH)


Policy context and targets

Context description

In April 2013 the European Commission presented the EU Adaptation Strategy Package ( This package consists of the EU Strategy on adaptation to climate change /* COM/2013/0216 final */ and a number of supporting documents. One of the objectives of the EU Adaptation Strategy is Better informed decision-making, which should occur through Bridging the knowledge gap and Further developing Climate-ADAPT as the ‘one-stop shop’ for adaptation information in Europe. Further objectives include Promoting action by Member States and Climate-proofing EU action: promoting adaptation in key vulnerable sectors. Many EU Member States have already taken action, such as by adopting national adaptation strategies, and several have also prepared action plans on climate change adaptation.

The European Commission and the European Environment Agency have developed the European Climate Adaptation Platform (Climate-ADAPT, to share knowledge on observed and projected climate change and its impacts on environmental and social systems and on human health; on relevant research; on EU, national and subnational adaptation strategies and plans; and on adaptation case studies.


No targets have been specified.

Related policy documents

  • Climate-ADAPT: Adaptation in EU policy sectors
    Overview of EU sector policies in which mainstreaming of adaptation to climate change is ongoing or explored
  • Climate-ADAPT: Country profiles
    Overview of activities of EEA member countries in preparing, developing and implementing adaptation strategies
  • DG CLIMA: Adaptation to climate change
    Adaptation means anticipating the adverse effects of climate change and taking appropriate action to prevent or minimise the damage they can cause, or taking advantage of opportunities that may arise. It has been shown that well planned, early adaptation action saves money and lives in the future. This web portal provides information on all adaptation activities of the European Commission.
  • EU Adaptation Strategy Package
    In April 2013, the European Commission adopted an EU strategy on adaptation to climate change, which has been welcomed by the EU Member States. The strategy aims to make Europe more climate-resilient. By taking a coherent approach and providing for improved coordination, it enhances the preparedness and capacity of all governance levels to respond to the impacts of climate change.


Methodology for indicator calculation

The time series shows both direct measurement data from the Aloha station pH as well as calculations for gap filling (see methodology reference below).

A trend line has been added.

Methodology for gap filling

The methodology for gap filling is described in the reference below.

Methodology references



Methodology uncertainty

Not applicable

Data sets uncertainty

In general, changes related to the physical and chemical marine environment are better documented than biological changes because links between cause and effect are better understood and often time series of observations are longer. Ocean acidification occurs as a consequence of well-defined chemical reactions, but its rate and biological consequences on a global scale is subject to research.

Further information on uncertainties is provided in Section 1.7 of the EEA report on Climate change, impacts, and vulnerability in Europe 2012 (

Rationale uncertainty

No uncertainty has been specified

Data sources

Other info

DPSIR: State
Typology: Descriptive indicator (Type A - What is happening to the environment and to humans?)
Indicator codes
  • CLIM 043
Frequency of updates
Updates are scheduled every 4 years
EEA Contact Info


Geographic coverage

Temporal coverage


Document Actions