Indicator Specification
Greenland ice sheet
Go to latest version
Rationale
Justification for indicator selection
The fate of the Greenland ice sheet highlights potentially major consequences of climate change as it is directly linked to global sea-level rise. The speed of ice loss, known as the ice sheet ‘mass balance’, is the most important indicator of ice sheet change. An increased rate of mass loss results in a faster rise in sea level. In addition, melt water from Greenland reduces the salinity of the surrounding ocean. An upper layer of fresher water may reduce the formation of dense deep water, one of the mechanisms driving global ocean circulation.
Scientific references
- IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
- Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate Change and the Cryosphere AMAP (2011) Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate Change and the Cryosphere. Arctic Monitoring and Assessment Programme (AMAP), Oslo.
Indicator definition
- Cumulative ice mass loss and sea-level equivalent from Greenland
- Yearly cumulated melt area of Greenland ice sheet
Units
- Gigatonnes and mm sea-level equivalent
- % change in melt area
Policy context and targets
Context description
In April 2013 the European Commission presented the EU Adaptation Strategy Package (http://ec.europa.eu/clima/policies/adaptation/what/documentation_en.htm). This package consists of the EU Strategy on adaptation to climate change /* COM/2013/0216 final */ and a number of supporting documents. One of the objectives of the EU Adaptation Strategy is Better informed decision-making, which should occur through Bridging the knowledge gap and Further developing Climate-ADAPT as the ‘one-stop shop’ for adaptation information in Europe. Further objectives include Promoting action by Member States and Climate-proofing EU action: promoting adaptation in key vulnerable sectors. Many EU Member States have already taken action, such as by adopting national adaptation strategies, and several have also prepared action plans on climate change adaptation.
The European Commission and the European Environment Agency have developed the European Climate Adaptation Platform (Climate-ADAPT, http://climate-adapt.eea.europa.eu/) to share knowledge on observed and projected climate change and its impacts on environmental and social systems and on human health; on relevant research; on EU, national and subnational adaptation strategies and plans; and on adaptation case studies.
Targets
No targets have been specified.
Related policy documents
-
Climate-ADAPT: Adaptation in EU policy sectors
Overview of EU sector policies in which mainstreaming of adaptation to climate change is ongoing or explored
-
Climate-ADAPT: Country profiles
Overview of activities of EEA member countries in preparing, developing and implementing adaptation strategies
-
DG CLIMA: Adaptation to climate change
Adaptation means anticipating the adverse effects of climate change and taking appropriate action to prevent or minimise the damage they can cause, or taking advantage of opportunities that may arise. It has been shown that well planned, early adaptation action saves money and lives in the future. This web portal provides information on all adaptation activities of the European Commission.
-
EU Adaptation Strategy Package
In April 2013, the European Commission adopted an EU strategy on adaptation to climate change, which has been welcomed by the EU Member States. The strategy aims to make Europe more climate-resilient. By taking a coherent approach and providing for improved coordination, it enhances the preparedness and capacity of all governance levels to respond to the impacts of climate change.
Key policy question
What is the trend in the mass and the melting area of the Greenland ice sheet , and what is the effect on global sea level?
Methodology
Methodology for indicator calculation
Estimates are based on the mass budget method based on a combination of the output from regional climate models and various satellite-borne datasets (altimetry and gravimetry data).
The graphs show the data as delivered by the authors of the referenced publications; a linear trend line was added.
Methodology for gap filling
Not applicable
Methodology references
- Ice Sheets and Sea Level: Thinking Outside the Box van den Broeke, M. (2011) Ice Sheets and Sea Level: Thinking Outside the Box. Surveys in Geophysics. doi:10.1007/s10712-011-9137-z
- Melting trends over the Greenland ice sheet (1958–2009) from spaceborne microwave data and regional climate models Fettweis, X., Tedesco, M., van den Broeke, M. and Ettema, J. (2011) Melting trends over the Greenland ice sheet (1958–2009) from spaceborne microwave data and regional climate models. The Cryosphere 5(2), 359–375. doi:10.5194/tc-5-359-2011
Data specifications
EEA data references
- No datasets have been specified here.
External data references
- Recent mass balance estimates of the Greenland ice sheet
- Annual cumulated melt area of the Greenland ice sheet
Data sources in latest figures
Uncertainties
Methodology uncertainty
Not applicable
Data sets uncertainty
Data on the cryosphere vary significantly with regard to availability and quality. Snow and ice cover have been monitored globally since satellite measurements started in the 1970s. Improvements in technology allow for more detailed observations and higher resolution. Direct historical area-wide data on the Greenland ice sheet tracks about 20 years, but reconstructions give a 200 000 year perspective.
Further information on uncertainties is provided in Section 1.7 of the EEA report on Climate change, impacts, and vulnerability in Europe 2012 (http://www.eea.europa.eu/publications/climate-impacts-and-vulnerability-2012/)
Rationale uncertainty
Not applicable
Further work
Short term work
Work specified here requires to be completed within 1 year from now.
Long term work
Work specified here will require more than 1 year (from now) to be completed.
General metadata
Responsibility and ownership
EEA Contact Info
Hans-Martin FüsselOwnership
Identification
Frequency of updates
Classification
DPSIR: ImpactTypology: Descriptive indicator (Type A - What is happening to the environment and to humans?)
Permalinks
- Permalink to this version
- e14e40a08916443d8946cf10439fdcb2
- Permalink to latest version
- 7AUWEC35YT
For references, please go to https://www.eea.europa.eu/data-and-maps/indicators/greenland-ice-sheet-2 or scan the QR code.
PDF generated on 04 Mar 2021, 09:32 PM
Document Actions
Share with others