Indicator Assessment

European precipitation

Indicator Assessment
Prod-ID: IND-91-en
  Also known as: CLIM 002
Published 08 Sep 2008 Last modified 11 May 2021
7 min read
This is an old version, kept for reference only.

Go to latest version
This page was archived on 25 Aug 2017 with reason: A new version has been published
  • Annual precipitation trends in the 20th century showed an increase in northern Europe (10-40 %) and a decrease in some parts of southern Europe (up to 20 %).
  • Mean winter precipitation has increased in most of western and northern Europe (20 to 40 %), whereas southern Europe and parts of central Europe were characterized by drier winters.
  • Models project an increase in winter precipitation in northern Europe, whereas many parts of Europe may experience dryer summers. But there are uncertainties in the magnitude and geographical details of the changes.

Update planned for November 2012

Trends in annual precipitation across Europe between Jan 1960 and Jan 2012

Note: The figure shows trends in annual precipitation across Europe between Jan 1960 and Jan 2012. The trends are calculated using a median of pairwise slopes algorithm (Sen, 1968 ) (Lazante, 1996). Black dots represent high confidence in the sign of the long-term trend in the box (if the 5th to 95th percentile slopes are of the same sign). Boxes which have a thick outline contain at least three stations. Area averaged annual time series of percentage changes and trend lines are shown below each map for one area in northern Europe (Blue line, 5.6o to 16.9oE and 56.2o to 66.2oN) and one in south-western Europe (red line, 350.6o to 1.9oE and 36.2o to 43.7oN). Refer to (Met Office, 2012) for full explanation of methodology

Data source:

Modelled precipitation change between 1980-1999 and 2080-2099

Note: Left: annual; middle: winter (DJF); right summer (JJA) changes % for the IPCC-SRES A1B emission scenario averaged over 21 models (MMD-A1B simulations).

Data source:

Christensen, J. H.; Hewitson, B.; Busuioc, A.; Chen, A.; Gao, X.; Held, I.; Jones, R.; Kolli, R. K.; Kwon, W.-T.; Laprise, R.; Magaña Rueda, V.; Mearns, L.; Menéndez, C. G.; Räisänen, J.; Rinke, A.; Sarr, A. and Whetton, P., 2007. Regional Climate Projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K. B.; Tignor, M. and Miller, H. L. (eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Past trends

Precipitation in Europe generally increased over the 20th century, on average 6-8 % between 1901 and 2005. Geographically, there is a variation (see Figure 1); an increase in north-west Europe, partly due to stronger advection of wet Atlantic air masses to this part of the continent. Drying has been observed in the Mediterranean and eastern Europe and no clear trends have been observed in western Mean winter (December-February) precipitation is increasing 20-40 % in most of western and northern Europe (Klein Tank et al., 2002), because western circulation was stronger in winter. Conversely, southern Europe and parts of central Europe were characterized by a drier winter. Trends in spring and autumn were not significant.


Climate models project changes in precipitation that vary considerably from season to season and across regions. Geographically, projections indicate a general precipitation increase in northern Europe and a decrease in southern Europe. The change in annual mean between 1980-1999 and 2080-2099 for the intermediate IPCC SRES A1B projections varies from 5 to 20 % in northern Europe and from -5 to -30 % in southern Europe and the Mediterranean (Figure 2). Many impact studies (see other indicators) use the high emission A2 scenario. Under this scenario the projected changes are mostly larger.
Seasonally, models project a large-scale increase in winter precipitation in mid and northern Europe. Many parts of Europe are projected to experience dryer (Figure 2). Relatively small precipitation changes are projected for spring and autumn (Raisanen et al., 2004; Kjellstrom, 2004).

Supporting information

Indicator definition

  • Observed changes in annual precipitation 1961-2006
  • Modelled precipitation change between 1980-1999 and 2080-2099



Policy context and targets

Context description

In April 2009 the European Commission presented a White Paper on the framework for adaptation policies and measures to reduce the European Union's vulnerability to the impacts of climate change. The aim is to increase the resilience to climate change of health, property and the productive functions of land, inter alia by improving the management of water resources and ecosystems. More knowledge is needed on climate impact and vulnerability but a considerable amount of information and research already exists which can be shared better through a proposed Clearing House Mechanism. The White Paper stresses the need to mainstream adaptation into existing and new EU policies. A number of Member States have already taken action and several have prepared national adaptation plans. The EU is also developing actions to enhance and finance adaptation in developing countries as part of a new post-2012 global climate agreement expected in Copenhagen (Dec. 2009). For more information see:


No targets have been specified

Related policy documents

No related policy documents have been specified



Methodology for indicator calculation

Methodology for gap filling

Methodology references

No methodology references available.

Data sources

Other info

DPSIR: Impact
Typology: Descriptive indicator (Type A - What is happening to the environment and to humans?)
Indicator codes
  • CLIM 002
EEA Contact Info


Geographic coverage

Temporal coverage


Document Actions