Indicator Specification
Mean precipitation
Rationale
Justification for indicator selection
Precipitations play a vital role in all human-environment systems and sectors, including agriculture, water supply, energy production, tourism and natural ecosystems. Daily precipitation totals are standard meteorological measures that have been recorded systematically since the 1860s. However, despite longevity of the precipitation record in certain areas, the high spatial and temporal variability of precipitation means that the climate change signal cannot be detected with certainty in all European regions. Difficulties for detecting a significant trend can arise from the small sampling area of rain gauges, calibration errors in instrumentation, erroneous measurements during weather conditions such as snow or gales, and from limited sampling of the spatial variability of precipitation, such as in mountainous areas. Therefore, observed and projected precipitation changes should always be considered in the context of interannual variability and the measurement or modelling uncertainty.
Scientific references
- EURO-CORDEX: new high-resolution climate change projections for European impact research. D. Jacob et al. 2014. EURO-CORDEX: new high-resolution climate change projections for European impact research. Regional Environmental Change, Volume 14, Issue 2, pp 563-578.
- IPCC, 2013. Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
- E. J. M. van den Besselaar, A. M. G. Klein Tank, and T. A. Buishand Trends in European Precipitation Extremes over 1951–2010,” International Journal of Climatology 33, no. 12 (2013): 2682–89, doi:10.1002/joc.3619
Indicator definition
Observed trends in annual and summer precipitation across Europe 1960-2015
Projected changes in mean annual and summer precipitation (%) in the period 2071–2100 compared with the baseline period 1971–2000 for the forcing scenario RCP8.5. Model simulations are based on the multi-model ensemble average of many different RCM simulations from the EURO-CORDEX initiative.
Units
- Trends in annual and summer precipitation (mm/decade)
- Projected changes in annual and summer precipitation (%)
Policy context and targets
Context description
In April 2013 the European Commission presented the EU Adaptation Strategy Package (http://ec.europa.eu/clima/policies/adaptation/what/documentation_en.htm). This package consists of the EU Strategy on adaptation to climate change /* COM/2013/0216 final */ and a number of supporting documents. One of the objectives of the EU Adaptation Strategy is Better informed decision-making, which should occur through Bridging the knowledge gap and Further developing Climate-ADAPT as the ‘one-stop shop’ for adaptation information in Europe. Further objectives include Promoting action by Member States and Climate-proofing EU action: promoting adaptation in key vulnerable sectors. Many EU Member States have already taken action, such as by adopting national adaptation strategies, and several have also prepared action plans on climate change adaptation.
The European Commission and the European Environment Agency have developed the European Climate Adaptation Platform (Climate-ADAPT, http://climate-adapt.eea.europa.eu/) to share knowledge on observed and projected climate change and its impacts on environmental and social systems and on human health; on relevant research; on EU, national and subnational adaptation strategies and plans; and on adaptation case studies.
In September 2016, the EC presented an indicative roadmap for the evaluation of the EU Adaptation Strategy by 2018.
In November 2013, the European Parliament and the European Council adopted the 7th EU Environment Action Programme (7th EAP) to 2020, ‘Living well, within the limits of our planet’. The 7th EAP is intended to help guide EU action on environment and climate change up to and beyond 2020. It highlights that ‘Action to mitigate and adapt to climate change will increase the resilience of the Union’s economy and society, while stimulating innovation and protecting the Union’s natural resources.’ Consequently, several priority objectives of the 7th EAP refer to climate change adaptation.
Targets
No targets have been specified.
Related policy documents
-
7th Environment Action Programme
DECISION No 1386/2013/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 20 November 2013 on a General Union Environment Action Programme to 2020 ‘Living well, within the limits of our planet’. In November 2013, the European Parliament and the European Council adopted the 7 th EU Environment Action Programme to 2020 ‘Living well, within the limits of our planet’. This programme is intended to help guide EU action on the environment and climate change up to and beyond 2020 based on the following vision: ‘In 2050, we live well, within the planet’s ecological limits. Our prosperity and healthy environment stem from an innovative, circular economy where nothing is wasted and where natural resources are managed sustainably, and biodiversity is protected, valued and restored in ways that enhance our society’s resilience. Our low-carbon growth has long been decoupled from resource use, setting the pace for a safe and sustainable global society.’
-
Climate-ADAPT: Adaptation in EU policy sectors
Overview of EU sector policies in which mainstreaming of adaptation to climate change is ongoing or explored
-
Climate-ADAPT: Country profiles
Overview of activities of EEA member countries in preparing, developing and implementing adaptation strategies
-
DG CLIMA: Adaptation to climate change
Adaptation means anticipating the adverse effects of climate change and taking appropriate action to prevent or minimise the damage they can cause, or taking advantage of opportunities that may arise. It has been shown that well planned, early adaptation action saves money and lives in the future. This web portal provides information on all adaptation activities of the European Commission.
-
EU Adaptation Strategy Package
In April 2013, the European Commission adopted an EU strategy on adaptation to climate change, which has been welcomed by the EU Member States. The strategy aims to make Europe more climate-resilient. By taking a coherent approach and providing for improved coordination, it enhances the preparedness and capacity of all governance levels to respond to the impacts of climate change.
Key policy question
What is the trend in precipitation across Europe?
Methodology
Methodology for indicator calculation
Precipitation trends in Europe are obtained by using data from E-OBS database. E-OBS is a daily gridded observational dataset for precipitation, temperature and sea level pressure in Europe based on ECA&D information. The full dataset covers the period 1950-01-01 until 2016-08-31. It has originally been developed and updated as parts of the ENSEMBLES (EU-FP6) and EURO4M (EU-FP7) projects. Currently it is maintained and elaborated as part of the UERRA project (EU-FP7).
Trends are calculated using a median of pairwise slopes algorithm. Black dots represent high confidence in the sign of the long-term trend in the box (if the 5th to 95th percentile slopes are of the same sign). Boxes which have a thick outline contain at least three stations.
Projections are based on the EURO-CORDEX initiative (http://www.euro-cordex.net/). They have been obtained from different regional climate models (RCMs) performing at 11 km spatial resolution with boundary conditions from five global climate models (GCMs), using different RCPs.
Methodology for gap filling
Europe has a long history of collecting climate information, datasets containing daily climate information across the continent are scarce. Furthermore, accurate climate analysis requires long term time series without artificial breaks. The objective of the ECA&D project was to compile such a data set, consisting of homogeneous, long-term daily climate information. To ensure a uniform analysis method and data handling, data were centrally collected from about 200 meteorological stations in most countries of Europe and parts of the Middle East. Furthermore, the data were processed and analysed at one institute (i.e. KNMI) (Klok et.al. , 2008).
Methodology references
- A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. M.R Haylock et al. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. Journal of Geophysical Research113, Nr. D20 (2008): D20119
- Updated and extended European dataset of daily climate observations. E. J. Klok and A. M. G. Klein Tank Updated and extended European dataset of daily climate observations. International Journal of Climatology29 (2009): 1182–1191
- EURO-CORDEX: new high-resolution climate change projections for European impact research. D. Jacob et al. 2014. EURO-CORDEX: new high-resolution climate change projections for European impact research. Regional Environmental Change, Volume 14, Issue 2, pp 563-578.
Data specifications
EEA data references
- No datasets have been specified here.
External data references
Data sources in latest figures
Uncertainties
Methodology uncertainty
See under "Methodology".
Data sets uncertainty
Daily precipitation totals are standard meteorological measures that have been recorded systematically since the 1860s. However, despite longevity of the precipitation record in certain areas, the high spatial and temporal variability of precipitation means that the climate change signal cannot be detected with certainty in all European regions. Difficulties for detecting a significant trend can arise from the small sampling area of rain gauges, calibration errors in instrumentation, erroneous measurements during weather conditions such as snow or gales, and from limited sampling of the spatial variability of precipitation, such as in mountainous areas. Therefore, observed and projected precipitation changes should always be considered in the context of interannual variability and the measurement or modelling uncertainty.
Rationale uncertainty
see under "Methodology uncertainty"
Further work
Short term work
Work specified here requires to be completed within 1 year from now.
Long term work
Work specified here will require more than 1 year (from now) to be completed.
General metadata
Responsibility and ownership
EEA Contact Info
Blaz KurnikOwnership
Identification
Frequency of updates
Classification
DPSIR: ImpactTypology: Descriptive indicator (Type A - What is happening to the environment and to humans?)
Permalinks
- Permalink to this version
- b3ae6b2e592446ef95c41e01d81340bb
- Permalink to latest version
- RG48OGNUTI
For references, please go to https://www.eea.europa.eu/data-and-maps/indicators/european-precipitation-2 or scan the QR code.
PDF generated on 26 Feb 2021, 06:43 AM
Document Actions
Share with others