Indicator Specification
Ammonia (NH3) emissions
Rationale
Justification for indicator selection
The agriculture sector is responsible for over 90% of NH3 emissions across the EEA-32. NH3 contributes to acid deposition and eutrophication, which in turn, can lead to potential changes occurring in soil and water quality. The subsequent impacts of acid deposition can be significant, including adverse effects on aquatic ecosystems in rivers and lakes, and damage to forests, crops and other vegetation. Eutrophication can lead to severe reductions in water quality with subsequent impacts including decreased biodiversity, changes in species composition and dominance, and toxicity effects. In many cases, the deposition of acidifying and eutrophying substances still exceeds the critical loads of the ecosystems (see EEA indicator CSI 005 'Exposure of ecosystems to acidification, eutrophication and ozone'). Further details concerning emissions of acidifying pollutants are provided in the EEA Core Set Indicator CSI 001 'Emissions of acidifying substances'.
As a secondary particulate precursor, NH3 also contributes to the formation of particulate aerosols in the atmosphere. Particulate matter is an important air pollutant due to its adverse impact on human health and NH3 is therefore also indirectly linked to effects on human health (see EEA Core Set Indicator CSI 003 'Emissions of primary particles and secondary particulate precursors' for further details concerning emissions of particulate matter.
Scientific references
- No rationale references available
Indicator definition
- This indicator tracks trends since 1990 in anthropogenic emissions of sulphur dioxide.
- The indicator also provides information on emissions by sectors: energy production and distribution; energy use in industry; industrial processes; road transport; non-road transport; commercial, institutional and households; solvent and product use; agriculture; waste; other.
- Geographical coverage: EEA-32. The EEA-32 country grouping includes countries of the EU-27 (Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, and the United Kingdom) EFTA-4 (Iceland, Liechtenstein, Switzerland and Norway) and Turkey.
- Temporal coverage: 1990-2010
Units
ktonnes (1000 tonnes)
Policy context and targets
Context description
A number of policies have been implemented within Europe that either directly or indirectly act to reduce emissions of NH3. These include:
- The National Emission Ceilings Directive 2001/81/EC (NECD) which entered into force in the European Community in 2001. The NECD sets emission ceilings for four important air pollutants (NH3, sulphur dioxide (SO2), nitrogen oxides (NOX) and non-methane volatile organic compounds (NMVOCs)) to be achieved from 2010 onwards for each Member State. The ceilings are designed to improve the protection in the Community of the environment and human health against risks of adverse effects arising from acidification, eutrophication and ground level ozone. The NECD is presently under review, the European Commission may adopt a proposal for a revised Directive during 2010.
- The Gothenburg Protocol (1999) to the United Nations Economic Commission for Europe's (UNECE) Convention on Long-Range Transboundary Air Pollution (LRTAP Convention) to abate acidification, eutrophication and ground-level ozone. A key objective of the protocol is to regulate emissions on a regional basis within Europe and to protect eco-systems from transboundary pollution by setting emission reduction ceilings to be reached by 2010 for the same four pollutants as addressed in the NECD (i.e. NH3, SOX, NOX, and NMVOCs). Overall for the EU Member States, the ceilings set within the Gothenburg protocol are generally either slightly less strict or the same as the emission ceilings specified in the NECD.
- The Directive on Integrated Pollution Prevention and Control (96/61/EC) entered into force in 1999. It aims to prevent or minimise pollution to air, water or land from various industrial sources throughout the European Union. Those installations covered by Annex I of the IPPC Directive are required to obtain authorisation from the authorities to operate. New installations and existing installations, which are subject to 'substantial changes' have been required to meet the requirements of the IPPC Directive since 30th October 1999. Other existing installations must have been brought into compliance by the 30 October 2007. The emission limit values outlined in the permit conditions must be based on best available techniques (BAT). The Commission has been undertaking a review of the IPPC Directive and related legislation on industrial emissions and on the 21 December 2007 adopted a proposal for a Directive on industrial emissions. The proposal recasts seven existing Directives relating to industrial emissions (including IPPC and the Large Combustion Plant Directive (2001/80/EC) into a single legislative instrument.
Apart from the NECD and Gothenburg Protocol and the IPPC Directive, there is currently no other EU legislation proposed or in force specifically aimed at reducing ammonia emissions. However, several regulatory instruments have influenced EU emissions of ammonia from the agriculture sector since 1990, such as:
- the Common Agricultural Policy (CAP);
- the Nitrate Directive (91/676/EEC);
- the Water Framework Directive (2000/60/EC).
These measures have had the indirect effect of changing agricultural practices across the EU, and have, for instance, led to a reduced use of nitrogenous fertilisers and to an overall decrease in cattle numbers, both of which affect the levels of ammonia emissions. The reforms of CAP, and specifically the removal of the link between farm production and payments, has also resulted in reduced livestock numbers across the EU-15 and hence also will have indirectly contributed to the decrease in ammonia emissions observed.
Targets
Emissions of NH3 are covered by the EU National Emission Ceilings Directive (NECD) (2001/81/EC) and the Gothenburg protocol under the United Nations Convention on Long-Range Transboundary Air Pollution (LRTAP Convention) (UNECE 1999). The NECD generally involves slightly stricter emission reduction targets than the Gothenburg Protocol for EU-15 countries for the period 1990-2010. The Gothenburg Protocol entered into force on 17 May 2005, after ratification by 16 countries early in 2005.The 2012 revision to the Gothenburg protocol proposed emission reduction targets for 2020 relative to 2005 reported emissions for all EU-27 member states, and some EEA-32 non-EU member states.
Table: 2010 NH3 ceilings under the NEC Directive and the Gothenburg Protocol (kt)
Country |
2010 NECD |
2010 CLRTAP Gothenburg Protocol ceilings |
2020 CLRTAP Gothenburg Protocol ceilings |
Austria | 66 | 66 | 62 |
Belgium | 74 | 74 | 70 |
Bulgaria | 108 | 108 | 56 |
Cyprus | 9 | N/A | 5 |
Czech Republic | 80 | 101 | 64 |
Denmark | 69 | 69 | 63 |
Estonia | 29 | N/A | 10 |
Finland | 31 | 31 | 31 |
France | 780 | 780 | 634 |
Germany | 550 | 550 | 545 |
Greece | 73 | 73 | 63 |
Hungary | 90 | 90 | 72 |
Iceland* | N/A | N/A | N/A |
Ireland | 116 | 116 | 108 |
Italy | 419 | 419 | 395 |
Latvia | 44 | 44 | 15 |
Liechtenstein | N/A | 0.15 | N/A |
Lithuania | 84 | 84 | 35 |
Luxembourg | 7 | 7 | 5 |
Malta | 3 | N/A | 2 |
Netherlands | 128 | 128 | 122 |
Norway | N/A | 23 | 21 |
Poland | 468 | 468 | 267 |
Portugal | 90 | 108 | 47 |
Romania | 210 | 210 | 173 |
Slovakia | 39 | 39 | 24 |
Slovenia | 20 | 20 | 17 |
Spain | 353 | 353 | 357 |
Switzerland | N/A | 63 | 59 |
Sweden | 57 | 57 | 47 |
Turkey* | N/A | N/A | N/A |
United Kingdom | 297 | 297 | 283 |
* Iceland and Turkey do not have a ceiling under either the NEC Directive or the Gothenburg protocol.
Related policy documents
-
1999 Protocol to Abate Acidification, Eutrophication and Ground-level Ozone
Convention on Long-range Transboundary Air Pollution 1999 Protocol to Abate Acidification, Eutrophication and Ground-level Ozone, amended on 4 May 2012.
-
Council Directive (91/676/EEC) 12 December 1991
Council Directive of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources (91/676/EEC).
-
Council Directive 96/61/EC (IPPC)
Council Directive 96/61/EC of 24 September 1996 concerning Integrated Pollution Prevention and Control (IPPC). Official Journal L 257.
-
UNECE Convention on Long-range Transboundary Air Pollution
UNECE Convention on Long-range Transboundary Air Pollution.
-
Water Framework Directive (WFD) 2000/60/EC
Water Framework Directive (WFD) 2000/60/EC: Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy.
Key policy question
What progress is being made in reducing emissions of NH3?
Specific policy question
How do different sectors and processes contribute to emissions of NH3?
Methodology
Methodology for indicator calculation
This indicator is based on officially reported national total and sectoral emissions to EEA and UNECE/EMEP (United Nations Economic Commission for Europe/Cooperative programme for monitoring and evaluation of the long-range transmission of air pollutants in Europe) Convention on Long-range Transboundary Air Pollution (LRTAP Convention), submission 2011. For the EU-27 Member States, the data used is consistent with the emissions data reported by the EU in its annual submission to the LRTAP Convention.
Recommended methodologies for emission inventory estimation are compiled in the EMEP/EEA Air Pollutant Emission Inventory Guidebook, (EMEP/EEA, 2009). Base data are available from the EEA Data Service (http://dataservice.eea.europa.eu/dataservice/metadetails.asp?id=1096) and the EMEP web site (http://www.ceip.at/). Where necessary, gaps in reported data are filled by the European Topic Centre/EEA using simple interpolation techniques (see below). The final gap-filled data used in this indicator is available from the EEA Data Service (http://dataservice.eea.europa.eu/PivotApp/pivot.aspx?pivotid=478)
Base data, reported in the UNECE/EMEP Nomenclature for Reporting (NFR) sector format, is aggregated into the following EEA sector codes to obtain a consistent reporting format across all countries and pollutants:
- Energy production and distribution: emissions from public heat and electricity generation, oil refining, production of solid fuels, extraction and distribution of solid fossil fuels and geothermal energy;
- Energy use in industry: emissions from combustion processes used in the manufacturing industry including boilers, gas turbines and stationary engines;
- Industrial processes: emissions derived from non-combustion related processes such as the production of minerals, chemicals and metal production;
- Road transport: light and heavy duty vehicles, passenger cars and motorcycles;
- Non-road transport: railways, domestic shipping, certain aircraft movements, and non-road mobile machinery used in agriculture & forestry;
- Commercial, institutional and households: emissions principally occurring from fuel combustion in the services and household sectors;
- Solvent and product use: non-combustion related emissions mainly in the services and households sectors including activities such as paint application, dry-cleaning and other use of solvents;
- Agriculture: manure management, fertiliser application, field-burning of agricultural wastes
- Waste: incineration, waste-water management;
- Other: emissions included in national total for entire territory not allocated to any other sector
The following table shows the conversion of Nomenclature for Reporting (NFR) sector codes used for reporting by countries into EEA sector codes:
EEA classification |
Non-GHGs (NFR) |
|
National totals |
National total |
|
Energy production and distribution |
1A1, 1A3e, 1B |
|
Energy use in industry |
1A2 |
|
Road Transport |
1A3b |
|
Non-road transport (non-road mobile machinery) |
1A3 (excl. 1A3b) |
|
Industrial processes |
2 |
|
Solvent and product use |
3 |
|
Agriculture |
4 |
|
Waste |
6 |
|
Commercial, institutional and households |
1A4ai, 1A4aii, 1A4bi, 1A4bii, 1A4ci, 1A4cii, 1A5a, 1A5b |
|
Other |
7 |
|
Methodology for gap filling
An improved gap-filling methodology was implemented in 2010 that enables a complete time series trend for the main air pollutants (eg NOX, SOX, NMVOC, NH3 and CO) to be compiled. In cases where countries did not report emissions for any year, it meant that gap-filling could not be applied. For these pollutants, therefore, the aggregated data are not yet complete and are likely to underestimate true emissions. Further methodological details of the gap-filling procedure are provided in section 1.4.2 'Data gaps and gap-filling' of the European Union emission inventory report 1990–2009 under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP).
Methodology references
- EEA (2011). European Union emission inventory report 1990 — 2009 under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP). EEA technical report No 9/2011. Copenhagen.
- EMEP/EEA (2009). EMEP/EEA Air pollutant emission inventory guidebook - 2009 This 2009 update of the emission inventory guidebook prepared by the UNECE/EMEP Task Force on Emissions Inventories and Projections provides a comprehensive guide to state-of-the-art atmospheric emissions inventory methodology. Its intention is to support reporting under the UNECE Convention on Long-range Transboundary Air Pollution and the EU National Emission Ceilings Directive.
- EMEP, 2009. Transboundary, acidification, eutrophication and ground level ozone in Europe in 2007 EMEP August 2009, ISSN 1504-6192
Data specifications
EEA data references
- National Emission Ceilings (NEC) Directive Inventory provided by Directorate-General for Environment (DG ENV)
- National emissions reported to the Convention on Long-range Transboundary Air Pollution (LRTAP Convention) provided by United Nations Economic Commission for Europe (UNECE)
Data sources in latest figures
Uncertainties
Methodology uncertainty
Data sets uncertainty
NH3 emission estimates in Europe are more uncertain than those for NOX, SO2 and NMVOCs due largely to the diverse nature of major agricultural sources. It is estimated that they are around ±30% (EMEP, 2009). The trend is likely to be more accurate than the individual absolute annual values - the annual values are not independent of each other.
Overall scoring: (1-3, 1=no major problems, 3=major reservations)
- Relevancy: 1
- Accuracy: 2
- Comparability over time: 2
- Comparability over space: 2
Rationale uncertainty
This indicator is regularly updated by EEA and is used in state of the environment assessments. The uncertainties related to methodology and data sets are therefore of importance. Any uncertainties involved in the calculation and in the data sets need to be accurately communicated in the assessment, to prevent erroneous messages influencing policy actions or processes.
Further work
Short term work
Work specified here requires to be completed within 1 year from now.
Long term work
Work specified here will require more than 1 year (from now) to be completed.
General metadata
Responsibility and ownership
EEA Contact Info
Martin AdamsOwnership
Identification
Frequency of updates
Classification
DPSIR: PressureTypology: Performance indicator (Type B - Does it matter?)
Permalinks
- Permalink to this version
- 0b7e656218b74dd4fa31549471e218f7
- Permalink to latest version
- D8DCPSBVAR
Older versions
For references, please go to https://www.eea.europa.eu/data-and-maps/indicators/eea-32-ammonia-nh3-emissions-1 or scan the QR code.
PDF generated on 29 Jun 2022, 03:49 PM
Document Actions
Share with others