Indicator Specification

Water-limited crop productivity

Indicator Specification
  Indicator codes: CLIM 032
Published 20 Nov 2012 Last modified 20 Dec 2016
7 min read
This is an old version, kept for reference only.

Go to latest version
This page was archived on 20 Dec 2016 with reason: Other (New version data-and-maps/indicators/crop-yield-variability-2 was published)
Projected changes in effective solar radiation Projected changes in water-limited crop yield Projected change in water-limited wheat production

Assessment versions

Published (reviewed and quality assured)
  • No published assessments


Justification for indicator selection

Crop biomass production derives from the capture and conversion of solar energy through the process of photosynthesis. However, this process may be restricted by low (or high) temperatures or by water limitations. A simple index can be used by which the effective annual radiation for plant growth is estimated by summing daily contributions of solar radiation on days with mean temperature above 5 ºC, minimum temperature above 0 ºC and sufficient soil water for supporting crop transpiration. In practice the response depends on soil type that may have large differences in capacity for storing soil moisture and on possibilities for supplementary irrigation. Crop yield also depends on the timing of the crop growth and yield formation. Yields in cereal and oilseed crops respond particularly to the duration of the grain filling period. The impacts of unfavourable meteorological conditions and extreme events vary considerably, depending on the timing of occurrence and the development stage of the crops. Changes in the occurrence of extreme events such as heat waves, droughts, heavy precipitation and floods will greatly affect crop yield leading to increased variability and economic consequences.

Scientific references

Indicator definition

  • Projected changes in effective solar radiation
  • Projected changes in water-limited crop yield
  • Projected change in water-limited wheat production


  • MJ/m²
  • %
  • tons/NUTS-2 region

Policy context and targets

Context description

In April 2013 the European Commission presented the EU Adaptation Strategy Package ( This package consists of the EU Strategy on adaptation to climate change /* COM/2013/0216 final */ and a number of supporting documents. One of the objectives of the EU Adaptation Strategy is Better informed decision-making, which should occur through Bridging the knowledge gap and Further developing Climate-ADAPT as the ‘one-stop shop’ for adaptation information in Europe. Further objectives include Promoting action by Member States and Climate-proofing EU action: promoting adaptation in key vulnerable sectors. Many EU Member States have already taken action, such as by adopting national adaptation strategies, and several have also prepared action plans on climate change adaptation.

The European Commission and the European Environment Agency have developed the European Climate Adaptation Platform (Climate-ADAPT, to share knowledge on observed and projected climate change and its impacts on environmental and social systems and on human health; on relevant research; on EU, national and subnational adaptation strategies and plans; and on adaptation case studies.


No targets have been specified.

Related policy documents

  • Climate-ADAPT: Adaptation in EU policy sectors
    Overview of EU sector policies in which mainstreaming of adaptation to climate change is ongoing or explored
  • Climate-ADAPT: Country profiles
    Overview of activities of EEA member countries in preparing, developing and implementing adaptation strategies
  • DG CLIMA: Adaptation to climate change
    Adaptation means anticipating the adverse effects of climate change and taking appropriate action to prevent or minimise the damage they can cause, or taking advantage of opportunities that may arise. It has been shown that well planned, early adaptation action saves money and lives in the future. This web portal provides information on all adaptation activities of the European Commission.
  • EU Adaptation Strategy Package
    In April 2013, the European Commission adopted an EU strategy on adaptation to climate change, which has been welcomed by the EU Member States. The strategy aims to make Europe more climate-resilient. By taking a coherent approach and providing for improved coordination, it enhances the preparedness and capacity of all governance levels to respond to the impacts of climate change.

Key policy question

How is climate change affecting the water-limited productivity of agricultural crops across Europe?



Methodology for indicator calculation

Projected changes in effective solar radiation are taken from two climate models, which is an indicator for water limited crop productivity, for the period 2031-2050 compared with 1975-1994 for the KNMI and Hadley Centre (HC) climate model projections under the A1B emission scenario.

The mean relative changes in water-limited crop yield are simulated by the ClimateCrop model for the 2050s compared with 1961–1990 for 12 different climate models projections under the A1B emission scenario. The ClimateCrop model was applied to explore the combined effects of projected changes in temperature, rainfall and CO2 concentration across Europe, considering effects of adaptation. The mean projected changes show a pattern of decreases in yields along the Mediterranean and large increases in Scandinavia. However, throughout large parts of western and central Europe mean changes in crop yields are likely to be small.

The simulated change in water-limited wheat production for 2030 compared with 2000 was estimated for the A1B emission scenario using a cold (ECHAM5) (left) and a warm (HADCM3) (right) climate change projection. The production changes are shown for 25x25 km grids assuming current area of wheat cropping. 

Methodology for gap filling

Not applicable

Methodology references


Data specifications

EEA data references

  • No datasets have been specified here.

External data references

Data sources in latest figures



Methodology uncertainty

Not applicable

Data sets uncertainty

Effects of climate change on the growing season and crop phenology can be monitored directly, partly through remote sensing (growing season) and partly through monitoring of specific phenological events such as flowering. There is no common monitoring network for crop phenology in Europe, and data on this therefore has to be based on various national recordings, often from agronomic experiments. Crop yield and crop requirements for irrigation are not only affected by climate change, but also by management and a range of socio-economic factors. The effects of climate change on these factors therefore have to be estimated indirectly using agrometeorological indicators and through statistical analyses between climatic variables and factors such as crop yield.

The projections of climate change impacts and adaptation in agriculture rely heavily on modelling, and it needs to be recognised that there is often a chain of uncertainty involved in the projections going from emission scenario, through climate modelling, downscaling and to assessments of impacts using an impact model. The extent of all these uncertainties is rarely quantified, even though some studies have assessed uncertainties related to individual components. The crop modelling community has only recently started addressing uncertainties related to modelling impacts of climate change on crop yield and effect of possible adaptation options, and so far only few studies have involved livestock systems. Future studies also need to better incorporate effects of extreme climate events as well as biotic hazards (e.g. pests and diseases).

Further information on uncertainties is provided in Section 1.7 of the EEA report on Climate change, impacts, and vulnerability in Europe 2012 (

Rationale uncertainty

No uncertainty has been specified

Further work

Short term work

Work specified here requires to be completed within 1 year from now.

Long term work

Work specified here will require more than 1 year (from now) to be completed.

General metadata

Responsibility and ownership

EEA Contact Info

Hans-Martin Füssel


European Environment Agency (EEA)


Indicator code
CLIM 032
Version id: 2
Primary theme: Agriculture Agriculture

Frequency of updates

Updates are scheduled every 4 years


DPSIR: Impact
Typology: Descriptive indicator (Type A - What is happening to the environment and to humans?)


Document Actions