next
previous
items

Indicator Assessment

Freshwater biodiversity and water quality

Indicator Assessment
Prod-ID: IND-187-en
  Also known as: CLIM 021
Published 08 Sep 2008 Last modified 11 May 2021
12 min read
This page was archived on 09 Feb 2021 with reason: Other (Discontinued indicator)
  • Several freshwater species have shifted their ranges to higher latitudes (northward movement) and altitudes in response to climate warming and other factors.
  • There are European examples of changes in life cycle events (phenology) such as earlier spring phytoplankton bloom, appearance of clear-water phase, first day of flight and spawning of fish.
  • In several European lakes, phytoplankton and zooplankton blooms are occurring one month earlier than 30-40 years ago.
  • Climate change can cause enhanced phytoplankton blooms, favouring and stabilizing the dominance of harmful cyanobacteria in phytoplankton communities, resulting in increased threats to the ecological status of lakes and enhanced health risks, particularly in water bodies used for public water supply and bathing. This may counteract nutrient load reduction measures.

This indicator is no longer being regularly updated

Updated information on this topic is available in Section 3.3.7 of the EEA Report No 12/2012 (http://www.eea.europa.eu/publications/climate-impacts-and-vulnerability-2012).

Required information is not filled in: Information about the starting date of the publishing schedule is missing.

Northward shift and changes in occurrence of selected freshwater species

Note: This indicator shows the evolution of the number of observations of Southern European dragonfly species in Flanders. Due to climate change the number of records of Southern European dragonflies increases in Flanders. Some species that were only occasional visitors in the past, such as Lestes barbarus now have permanent populations.

Data source:

Hickling, R.; Roy, D. B.; Hill, J. K. and Thomas, C. D., 2005. A northward shift of range margins in British Odonata. Global Change Biology 11 (3): 502506. (left) Biodiversity Indicators, 2006. Climate Change: Trend of Southern European dragonfly species . Research Institute for Nature and Forest, Brussels. www.natuurindicatoren.be (updated 08.05.2006). Available at www.natuurindicatoren. be/indicatorenportal.cgi?lang=en&detail=404&id_ structuur=25. (right)

Model simulation of hydrodynamics and phytoplankton dynamics during three contrasting summers in Lake Nieuwe Meer (the Netherlands)

Note: (a) the cold summer of 1956, (b) the average summer of 1991, and, (c) the hot summer of 2003

Data source:

Jöhnk, K. D.; Huisman, J.; Sharples, J.; Sommeijer, B.; Visser, P. M. and Stroom, J. M., 2008. Summer heatwaves promote blooms of harmful cyanobacteria. Global Change Biology 14: 495512.

The share of Trichoptera taxa sensitive to climate change in the European ecoregions

Note: Trichoptera taxa are species with restricted distribution ('endemic species'), species inhabiting the crenal zone (springs), that cannot move further upstream, and species adapted to low water temperatures (cold stenothermy) in European ecoregions

Data source:

Past trends

Northward and upward movement
There are European examples of aquatic species (dragonflies, brown trout) that have shifted their ranges to higher latitudes (northward movement) and altitudes in response to climate warming. Thermophilic fish and invertebrate taxa will to a certain extent replace cold-water taxa. Examples include the brown trout in Alpine rivers (Hari et al., 2006), non-migratory British dragonflies and damselflies (Hickling et al., 2005; Figure 1 left), and south European Dragonflies in Belgium (Biodiversity Indicators, 2006, see Figure 1 right).

Change in species composition and abundance
Climate change will generally have a eutrophicationlike effect (e.g. Schindler, 2001), with enhanced phytoplankton blooms (Wilhelm and Adrian, 2008), and increased dominance of cyanobacteria in phytoplankton communities, resulting in increased threat of harmful cyanobacteria and enhanced health risks, particularly in water bodies used for public water supply and bathing (Johnk et al., 2008; Mooij et al., 2005; Figure 2). More frequent extreme precipitation and runoff events are also expected to increase the load of nutrients to waters and in turn result in more eutrophication.
Changes in temperature have already had profound impacts on the species composition of macrozoobenthos (fauna that spend most of their lives buried in sediments) in northern European lakes (Burgmer et al., 2007). Fish and invertebrate communities have been found to respond to increases in water temperature in the upper Rhone River in France (Daufresne et al., 2004, 2007).

Phenology changes
Changes in growth season, earlier ice break-up or periods above a certain temperature will change lifecycle events, such as an earlier spring phytoplankton bloom, appearance of clear-water phase (because large zooplankton will appear earlier), first day of flight of aquatic insects and time of spawning of fish. Prolongation of the growing season can have major effect on population abundances with an increased number of cell divisions or generations per year.
Phytoplankton and zooplankton blooms in several European lakes are occurring one month earlier than 30-40 years ago (Weyhenmeyer 1999; 2001; Adrian et al., 2006; Noges et al., in press). Manca et al. (2007) found that increasing temperatures at Lago Maggiore have resulted in earlier and longer zooplankton blooms. Hassall et al. (2007) found that British Odonata species over the period 1960 to 2004 changed their first day of flight by 1.5 day per decade.

Invasive freshwater species
Climate change is expected to result in biological invasions of species that originate in warmer regions. For example, the subtropical filamentous highly-toxic cyanobacterium Cylindrospermopsis raciborskii thrives in waters that have high temperatures, a stable water column and high nutrient concentrations: it has recently spread rapidly in temperate regions and is now commonly encountered throughout Europe (Dyble et al., 2002).
Its spread into drinking and recreational water supplies has caused international public health concerns due to its potential production of toxins. Fish species adapted to warmer waters, such as carp, may replace native species such as perch and trout in many regions (Kolar and Lodge, 2000).

Projections

Many species are projected to shift their ranges to higher latitudes and altitudes in response to climate warming. Southern species will move further north due to further increases of temperature. Species of colder regions will move north and towards higher altitudes or will disappear when their migration is hampered (e.g. due to habitat fragmentation). Some Arctic and alpine species may disappear.

  • Increased eutrophication with enhanced algal blooms, also including new harmful invaders such as Cylindrospermopsis and Gonyostomum semen, is a possibility supported by several recent publications and observations (Findlay et al., 2005; Wilhelm and Adrian, 2008; Johnk et al., 2008; Battarbee et al., 2008; Willen and Cronberg, pers. com.), particularly in areas of Europe exposed to more heavy rains that can cause increased nutrient loading and reduced underwater light in lakes.
  • A comparison of a large set of Danish shallow lakes with a corresponding one located in the colder climate of Canada (Jackson et al., 2007) suggests that warming will decrease winter fish-kills and enhance the overwintering success of planktivorous fish which, in turn, suppress Daphnia/zooplankton development. As a result of decreased zooplankton grazing pressure, there will be more phytoplankton biomass build up per unit total phosphorus in warmer climate. 
  •  Where river discharges decrease seasonally, there may be negative impacts on Atlantic salmon. Walsh and Kilsby (2006) found that salmon in northwest England will be affected negatively by climate change by reducing the number of days with suitable flow depths during spawning time.
  • In the ongoing European research project Euro-limpacs there has been an evaluation of the sensitivity of Trichoptera taxa (Caddisflies) to climate change (see Figure 3). The main results are that more than 20 % of the Trichoptera species are projected to be endangered due to climate change in southern Europe (droughts) and in the Alpine region (too high temperatures), whereas the impacts in other parts of Europe would be less pronounced (Hering et al., 2006).

Supporting information

Indicator definition

  • Northward shift and changes in occurrence of selected freshwater species
  • Model simulation of hydrodynamics and phytoplankton dynamics during three contrasting summers in Lake Nieuwe Meer (the Netherlands)
  • The share of Trichoptera taxa sensitive to climate change in the European Ecoregions

Units

http://www.eea.europa.eu/publications/eea_report_2008_4/pp76-110CC2008_ch5-4to6_Water_quantity_and_quality.pdf


 

Policy context and targets

Context description

In April 2009 the European Commission presented a White Paper on the framework for adaptation policies and measures to reduce the European Union's vulnerability to the impacts of climate change. The aim is to increase the resilience to climate change of health, property and the productive functions of land, inter alia by improving the management of water resources and ecosystems. More knowledge is needed on climate impact and vulnerability but a considerable amount of information and research already exists which can be shared better through a proposed Clearing House Mechanism. The White Paper stresses the need to mainstream adaptation into existing and new EU policies. A number of Member States have already taken action and several have prepared national adaptation plans. The EU is also developing actions to enhance and finance adaptation in developing countries as part of a new post-2012 global climate agreement expected in Copenhagen (Dec. 2009). For more information see: http://ec.europa.eu/environment/climat/adaptation/index_en.htm

Targets

No targets have been specified

Related policy documents

No related policy documents have been specified

 

Methodology

Methodology for indicator calculation

http://www.eea.europa.eu/publications/eea_report_2008_4/pp76-110CC2008_ch5-4to6_Water_quantity_and_quality.pdf

Methodology for gap filling

http://www.eea.europa.eu/publications/eea_report_2008_4/pp193-207CC2008_ch8_Data_gaps.pdf

Methodology references

No methodology references available.

 

Uncertainties

Methodology uncertainty

http://www.eea.europa.eu/publications/eea_report_2008_4/pp193-207CC2008_ch8_Data_gaps.pdf

Data sets uncertainty

http://www.eea.europa.eu/publications/eea_report_2008_4/pp193-207CC2008_ch8_Data_gaps.pdf

Rationale uncertainty

No uncertainty has been specified

Data sources

Other info

DPSIR: Impact
Typology: Descriptive indicator (Type A - What is happening to the environment and to humans?)
Indicator codes
  • CLIM 021
EEA Contact Info info@eea.europa.eu

Permalinks

Geographic coverage

Temporal coverage

Dates

Document Actions