next
previous
items

Indicator Assessment

Energy and non-energy related greenhouse gas emissions

Indicator Assessment
Prod-ID: IND-212-en
  Also known as: ENER 001
Published 24 Jan 2011 Last modified 11 May 2021
13 min read
This is an old version, kept for reference only.

Go to latest version
This page was archived on 12 Nov 2013 with reason: Content not regularly updated

EU emissions of greenhouse gases (Kyoto gases) declined for the third consecutive year in 2007. This is largely a result of lower use of fossil fuels (particularly oil and gas) in households and services, which are among the largest sources of GHG emissions in the EU. Warmer weather and higher fuel prices were the primary causes for the drop in emissions in 2006–2007, with most of the decrease occurring in households. The EU-27’s overall domestic emissions were 9.3 % below 1990 levels, which equalled a drop of 1.2 % or 59 million tonnes of CO2 equivalent compared to 2006. In 2007, the EU-15 stood 5 % below its Kyoto Protocol base year levels. Preliminary EEA estimates suggest emissions in the EU fell further in 2008 due to lower CO2 emissions from fossil fuel combustion in the energy, industry and transport sectors.

Required information is not filled in: Information about the starting date of the publishing schedule is missing.

Greenhouse gas emissions (Kyoto gases) per country (combustion and non-combustion emissions), 2007

Note: Greenhouse gas emissions (Kyoto gases) per country split between combustion and non-combustion emissions, 2007

Data source:

Total greenhouse gas emissions by sector (%) in EU-27, 2007

Note: Annual emissions of CO2, CH4, N2O, HFC, PFC and SF6 in the UNFCCC reporting format are converted to their global warming potential GWP (100 year time horizon) for addition and comparison with the Kyoto Protocol targets: 1 t CH4 = 21 t CO2-equivalent, 1 t N2O = 310 t CO2-equivalent, 1 t SF6 = 23 900 t CO2-equivalent. HFCs and PFCs have a wide range of GWPs depending on the gas and emissions are already reported in tonnes CO2-equivalent. International transport emissions (Memo items: international aviation and international maritime transport) are shown in the chart because they are the fastest growing source of emissions in the EU. They are however not included in the national totals reported as part of the national greenhouse gas inventories under the UNFCCC.

Data source:

Changes (%) in greenhouse gas emissions by source category in the EU, 1990-2007

Note: International bunkers are international transport emissions (Memo items: international aviation and international maritime transport) and are shown in the chart because they are the fastest growing source of emissions in the EU. They are however not included in the national totals reported as part of the national greenhouse gas inventories under the UNFCCC. The sector LULUCF (Land use, land use change and forestry) is not included in the national totals under the UNFCCC either. LULUCF in the EU is a net carbon sink, resulting from higher removals by sinks than emissions from sources. A positive change in LULUCF means a reduction in emissions (i.e. a removal of emissions).

Data source:

The EU-27 reduced ‘Kyoto’ greenhouse gas emissions by 59 million tonnes of CO2 equivalents in 2007 compared to 2006. Since 1990, EU-27 emissions have fallen by 519 million tonnes (9.3% - see Figure 1), almost half of which is from Germany alone. Spain has increased its emissions by 154 million tonnes (more than 50% increase) – by and large as a result of a doubling in electricity and heat production and almost doubling in road transportation, mostly diesel.

 

Households were one of the main contributors to the net decline in CO2 emissions with a reduction of 55 million tonnes of CO2 eq in the EU-27 in 2007. They are one of the largest sources of greenhouse gas (see Figure 2) and are affected by variables such as climatic conditions, fuel prices, the existence of district heating, energy efficiency in buildings and the fuel mix for heat generation. The reduction in fuel use in 2007 was due to three main factors. Firstly, it was warmer than 2006 with fewer days requiring heating. Secondly, fuel prices continued to rise at a faster rate than gross disposable income, meaning household energy was more expensive. Thirdly, the German government raised VAT from 16% to 19% in January 2007. This, and the falling heating oil prices, prompted consumers to fill their stocks of gasoil at the end of 2006. A mild winter in 2007 and unusual high gasoil prices at the end of 2007 meant consumers did not have to refill their stocks that year. Therefore, there were much lower sales of household fuel in Germany in 2007 compared to 2006. Germany accounted for 40% of the EU-27 emissions reductions in 2007 compared to 2006.

 

Transport emissions continue to increase. The fastest growing transport modes in terms of greenhouse gas emissions since 1990 have been international aviation and international maritime transport (international bunkers in Figure 1). Together, the two sectors currently account for about 6 % of total greenhouse gas emissions in EU-27 (see Figure 2). They are currently reported as Memo items and therefore not included in the national totals under the current UNFCCC reporting.

 

Energy-related greenhouse gas emissions (energy combustion and fugitive emissions from fuels) currently accounts for 78 % of total emissions in the EU-27, with similar proportions seen across all EEA-32 countries (see Figures 2 and 3). Carbon dioxide is by far the most significant energy-related greenhouse gas, with a share of about 97 %. Methane (CH4) and nitrous oxide (N2O) emissions are only a small fraction of total energy-related emissions (2.1 % and 1.0 %, respectively). In the EEA-32 there has been a decrease of 1.0 % and 45.4 % for carbon dioxide and methane emissions, respectively, in 2007 compared with 1990. In contrast, nitrous oxide emissions have increased by 17.6 %. Most methane emissions arise from fugitive emissions from the extraction, production and distribution of fossil fuels, whilst the vast majority of nitrous oxide emissions are from energy combustion.

 

The latest EEA estimates indicate that EU greenhouse gas emissions decreased in 2008 for the fourth consecutive year. The vast majority of the decline in emissions in 2008 was due to lower CO2 emissions from fossil fuel combustion in the energy, industry and transport sectors. The 2008 emission reductions reflect the effects of the global economic recession, which began in 2008, which resulted in reduced industrial output and reduced energy consumption by industry, and correspondingly reduced freight transport. The reductions are also apparent in the verified emissions from EU ETS (Emission Trading Scheme) for 2008 http://www.eea.europa.eu/highlights/new-estimates-confirm-the-declining-trend-in-eu-greenhouse-gas-emissions

Supporting information

Indicator definition

Annual emissions of CO2, CH4, N2O, HFC, PFC and SF6 in UNFCCC reporting format (In Mt = million tonnes) converted to their global warming potential (100 year time horizon) for addition and comparison with the Kyoto Protocol targets (1 t CH4 = 21 t CO2-equivalent, 1 t N2O = 310 t CO2-equivalent, 1 t SF6 = 23 900 t CO2-equivalent. HFCs and PFCs have a wide range of GWPs depending on the gas and emissions are already reported in t CO2-equivalent). For CO2 only, the (national) totals do not include emissions from biomass burning or emissions or removals from land-use change and forestry (LUCF). The energy sector is responsible for energy-related emissions, such as those arising from fuel combustion activities and fugitive emissions from fuels. Fuel combustion activities include: energy industries, manufacturing industries and construction, transport, other sectors and other stationary or mobile emissions from fuel combustion. Fugitive emissions from fuels include: solid fuels and oil and natural gas. ’Energy production’ includes ‘Energy industries’ (i.e. public electricity and heat production, petroleum refining and the manufacture of solid fuels) and ‘Fugitive emissions’  (i.e. emissions from production, processing, transmission, storage and use of fuels, in particular coal-mining and gas production). ’Transport’ includes road transportation, national civil aviation, railways and navigation, and other non-road transportation. In accordance with UNFCCC and UNECE guidelines, emissions from international aviation and navigation are not included. ’Industry’ includes fossil fuel combustion (for heat and electricity) in manufacturing industries and construction (such as iron and steel, and non-ferrous metals). ‘Households’ includes fossil fuel combustion in households. ’Services sector’ includes fossil fuel combustion (for heat and electricity) from small commercial businesses, public institutions, agricultural businesses and military. Non-energy related emissions include ‘Industry’ (i.e. processes in manufacturing industries and construction without fossil fuel combustion including production and consumption of fluorinated gases), ‘Agriculture’ (i.e. domestic livestock (dairy and non-dairy cattle) keeping, in particular manure management and enteric fermentation and emissions from soils) ‘Waste’ (i.e. waste management facilities, in particular landfill sites and incineration plants and ‘Other non-energy’ (i.e. solvent and other product use).

Units

Emission In Mt = million tonnes


 

Policy context and targets

Context description

Under the Kyoto Protocol, the pre-2004 Member States (EU-15) are committed to reducing their combined emissions of the greenhouse gases controlled by the Protocol to 8 % below the base year level over the period 2008–2012. This overall target has been translated into a specific legally binding target for each EU-15 Member State, based on its capacity to curb emissions (Council Decision 2002/358/EC). Each of the new Member States, excepting Cyprus and Malta, has an individual target under the Kyoto Protocol. Bulgaria, the Czech Republic, Estonia, Latvia, Lithuania, Romania, Slovakia and Slovenia have reduction targets of 8 % from the base-year, while Hungary and Poland have reduction targets of 6 %. There is no joint Kyoto target for the EU-27. At a UN conference in August 2007 it was agreed that an emission reduction in the range of 25-40 % below 1990 levels is necessary to avoid the most catastrophic forecasts.

In preparation for a post-Kyoto international agreement, the European Commission has forth a range of proposals to further reduce greenhouse gas emissions by 2020. The proposals include a target for the EU-27 to reduce greenhouse gas emissions by 20 % compared to 1990, rising to 30 % when new global climate agreement reached. The 20% target will be disaggregated into trading and non-trading sectors. Emissions covered by the EU ETS scheme are to be reduced by 21% from 2005 levels by 2020 and emissions not covered by the ETS (agriculture, buildings, transport and waste) are to be reduced by 10% from 2005 levels by 2020. Individual targets for each Member State have also been proposed.

 

In addition, the package of proposals includes:

  • an extended target of 20% of all energy consumed to be generated through renewable sources by 2020, with individual targets for each Member State.
  • a minimum target of 10% use of biofuels in transport by 2020
  • a legal framework on carbon capture and storage and a Communication on the demonstration of carbon capture and storage

 

It is likely that by 2030, many options for abatement of non energy-related greenhouse gas emissions will have been already exploited, putting a greater burden on the energy sector to achieve reductions. Current policies will therefore need to be extended and enhanced and new measures will be required if long-term emission reductions and the required changes in energy production and consumption patterns (power plants, buildings, transport etc) are to be realised. Given the long lead-times in the energy sector, such changes will be determined by actions taken in the immediate future. Therefore, reducing future energy-related emissions requires additional policy action now.

Targets

No targets have been specified

Related policy documents

 

Methodology

Methodology for indicator calculation

EEA dataviewer containing annual official data submission by EU Member States to UNFCCC and EU Monitoring mechanism. Compilation of emission estimates by Member States is based on combining sectoral activity data, calorific values and carbon emission factors. Recommended methodologies for emission data estimation are compiled in the Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories (IPCC, 2006), supplemented by the ‘Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories’ (IPCC, 2000) and UNFCCC Guidelines (UNFCCC, 2000).

 

 The data has been weighted according to the following global warming potentials (GWP) for each greenhouse gas: CO2 = 1, CH4=21, N2O =310 and SF6=23900, to give total GWP emissions in Mt CO2 equivalent. HFCs and PFCs have a wide range of GWPs depending on the gas and emissions have been reported by the Member States as Mt CO2 equivalent. Greenhouse gas intensity of energy use: energy related greenhouse gas emissions from / gross inland energy consumption Average annual rate of growth calculated using: [(last year/base year)(1 / number of years) –1] x 100

Methodology for gap filling

Where data is not available for EU Member States, the data gap filling procedure has been used as agreed under the Monitoring Mechanism (EEA. 2007a).

Methodology references

No methodology references available.

 

Uncertainties

Methodology uncertainty

The IPCC (IPCC, 2000) suggests that the uncertainty in the total GWP-weighted emission estimates, for most European countries, is likely to be less than +/– 20 %. In 2007 uncertainty estimates were calculated for the EU-15 (EEA 2007a). The results suggest that the overall trend uncertainty of all EU-15 greenhouse gas emissions is estimated to be between 1 and 2 percentage points. Uncertainties at EU-15 level are between +/- 4 % and 8% for total EU-15 greenhouse gas emissions. For energy related greenhouse gas emissions the results suggest uncertainties of +/- 1 % (stationary combustion), +/- 1 % (transport) and +/- 8 % (fugitive emissions). Uncertainties for specific gases and for specific sectors are also available at the EU-15 level. For the new Member States and some other EEA countries, uncertainties are assumed to be higher than for the EU-15 Member States because of data gaps. Uncertainties in trends are much lower than in absolute values. For more information see EEA 2007a. Indicator uncertainty (scenarios) Scenario analysis always includes many uncertainties and the results should thus be interpreted with care. • uncertainties related to future socioeconomic and other developments (e.g. GDP); • uncertainties in the underlying statistical and empirical data (e.g. on future technology costs and performance); • uncertainties in the representativeness of the indicator; • uncertainties in the dynamic behaviour of the energy system and its translation into models; • uncertainties in future fuel costs and the share of low carbon technologies in the future.

Data sets uncertainty

No uncertainty has been specified

Rationale uncertainty

No uncertainty has been specified

Data sources

Other info

DPSIR: Pressure
Typology: Descriptive indicator (Type A - What is happening to the environment and to humans?)
Indicator codes
  • ENER 001
EEA Contact Info info@eea.europa.eu

Permalinks

Geographic coverage

Temporal coverage

Dates

Document Actions