Personal tools

next
previous
items

Skip to content. | Skip to navigation

Sound and independent information
on the environment

You are here: Home / Data and maps / Indicators / Air pollution by ozone and health / Air pollution by ozone and health (CLIM 006) - Assessment published Nov 2012

Air pollution by ozone and health (CLIM 006) - Assessment published Nov 2012

Generic metadata

Topics:

Climate change Climate change (Primary topic)

Environment and health Environment and health

Air pollution Air pollution

Tags:
climate | air pollution | climate change | air | ozone | air emissions | o3
DPSIR: Impact
Typology: Descriptive indicator (Type A - What is happening to the environment and to humans?)
Indicator codes
  • CLIM 006
Dynamic
Temporal coverage:
1958-2009
Geographic coverage:
Austria Belgium Bulgaria Cyprus Czech Republic Denmark Estonia Europe Finland France Germany Greece Hungary Iceland Ireland Italy Latvia Liechtenstein Lithuania Luxembourg Malta Netherlands Norway Poland Portugal Romania Slovakia Slovenia Spain Sweden Switzerland Turkey United Kingdom
 
Contents
 

Key policy question: What are health effects of ozone exposure across Europe, and how are they changing?

Key messages

  • Ozone is both an important air pollutant and a GHG. Excessive exposure to ground-level ozone is estimated to cause about 20000 premature deaths per year in Europe.
  • Attribution of observed ozone exceedances, or changes therein, to individual causes, such as climate change, is difficult.
  • Future climate change is expected to increase ozone concentrations but this effect will most likely be outweighed by reduction in ozone levels due to expected future emission reductions.

Annual mean ozone concentrations by station type

Note: Annual mean ozone concentrations by station type

Data source:
Downloads and more info

Modelled change in tropospheric ozone concentrations over Europe

Note: The modelled changes shown are only due to climate variability and climate change

Downloads and more info

Key assessment

Past trends

There is no clear trend in the annual mean concentration of ozone recorded at different types of stations (urban vs. rural) over the period 1999–2009, although there is a slight decreasing tendency since 2006 in rural stations, at various geographical levels, both low-level and high-level (Figure 1). Meanwhile, a slight tendency towards increased annual mean concentrations is detected close to traffic. Ozone precursor emissions in Europe have been cut substantially recently whereas average ozone concentrations in Europe have largely stagnated. Meteorological variability and climate change could play a role in this discrepancy, including by increasing emissions of biogenic non-methane volatile organic compounds (NMVOCs) during wildfires, but increasing intercontinental transport of ozone and its precursors in the Northern Hemisphere also needs to be considered [i]. Formation of tropospheric ozone from increased concentrations of CH4 may also contribute to the sustained ozone levels in Europe [ii].

The relative contributions of local or regional emission reduction measures, specific meteorological conditions (such as heat waves), hemispheric transport of air pollution and emissions from natural sources (such as wildfires), on overall ozone concentrations is difficult to estimate. A statistical analysis of ozone and temperature measurements in Europe for 1993–2004 shows that in central-western Europe and the Mediterranean area a change in the increase in daily maximum temperatures in 2000–2004 compared with 1993–1996 contributed to extra ozone exceedances. In southern and central Europe, the observed temperature trend was responsible for 8 extra annual exceedance days (above the threshold of 120 μg/m³) on average, which corresponds to 17 % of the total number of exceedances observed in that region [iii]. A modelling study suggests that observed climate variability and change have contributed to increased ozone concentrations during the period 1979–2001 in large parts of central and southern Europe (Andersson et al., 2007). The reason for this is a combination of changes in temperature, wind patterns, cloud cover and atmospheric stability. Temperature plays a role in various processes which directly affect the formation of ozone, like the emission of biogenic NMVOCs, for example isoprene, and the photo-dissociation of nitrogen dioxide (NO2).

A study by [iv] showed that ozone trends in Europe in the years 1997–1998 were influenced by El Niño and biomass burning events and in the year 2003 by the heat wave in north-west Europe. The study did not conclude on the impact of emission reduction on long-term ozone trends, due to the influence of meteorological variability, changes in background ozone and shift in emission source patterns. Decreased anthropogenic emissions of some ozone precursors (NOX, CO, and some NMVOCs) in the past two decades have reduced the number of peak ozone concentrations [v].

In order to understand historical tropospheric ozone trends, further retrospective sensitivity analysis of precursor emission changes and hindcast modelling of ozone concentrations are needed to quantify the impact and variability of the various factors influencing ozone levels. Figure 2 shows the estimated trends in tropospheric ozone concentrations over Europe for two time periods derived from such hindcast modelling. There has been a marked increase in ozone concentrations in many regions from 1978 to 2001. However, taking into account a longer perspective starting from 1958, increases are limited to a few European regions. Unfortunately, more recent data is not available.

Projections

Climate change is expected to affect future ozone concentrations due to changes in meteorological conditions, as well as due to increased emissions of specific ozone precursors (e.g. increased isoprene from vegetation under higher temperatures) and/or emissions from wildfires that can increase under periods of extensive drought. Most of the links between individual climate factors and ozone formation are well understood (see Table 1 below) [vi]. Nevertheless, quantification of future levels of ground-level ozone remains uncertain due to the complex interaction of these processes. Available studies indicate that projected climate change affects different regions in Europe differently, by increasing average summer ozone concentrations in southern Europe and decreasing them over northern Europe and the Alps [vii]. Preliminary results indicate that in a long time perspective (2050 and beyond), envisaged emission reduction measures of ozone precursors have a much larger effect on concentrations of ground-level ozone than climate change [viii]. Climate change in combination with the emission reductions will influence the future levels of ground-level ozone.

Table 1 Selection of meteorological parameters that might increase under future climate change and their impact on ozone levels

Increase in ...

Results in ...

Impacts on ozone levels ...

Temperature

Faster photochemistry

Increases (high NOx)
Decreases (low NOx)

Increased biogenic emissions (VOC, NO)

Increase

Atmospheric humidity

Increased ozone destruction

Increases (high NOx)
Decreases (low NOx)

Drought events

Decreased atmospheric humidity and higher temperatures

Increases

Plant stress and reduced stomata opening

Increases

Increased frequency of wild fires

Increases

Blocked weather patterns

More frequent episodes of stagnant air

Increases

Increase in summer/dry season heat waves

Increases

Source: [ix]


[i] EEA, Air Pollution by Ozone Across Europe During Summer 2009 EEA Technical report (Copenhagen: European Environment Agency, 2010), http://www.eea.europa.eu/publications/air-pollution-by-ozone-across-europe-during-summer-2009; EEA, The European Environment – State and Outlook 2010: Air Pollution — SOER 2010 Thematic Assessment (Copenhagen: European Environment Agency, 2010), http://www.eea.europa.eu/soer/europe/air-pollution.

[ii] EEA, Air Pollution by Ozone Across Europe During Summer 2011 EEA Technical report (Copenhagen: European Environment Agency, 2012), http://www.eea.europa.eu/publications/air-pollution-by-ozone-2011.

[iii] EEA, Impacts of Europe’s Changing Climate - 2008 Indicator-based Assessment. Joint EEA-JRC-WHO Report EEA Report (Copenhagen: European Environment Agency, 2008), http://www.eea.europa.eu/publications/eea_report_2008_4.

[iv] R. C. Wilson et al., “Have Primary Emission Reduction Measures Reduced Ozone Across Europe? An Analysis of European Rural Background Ozone Trends 1996–2005,” Atmospheric Chemistry and Physics 12, no. 1 (January 9, 2012): 437–454, doi:10.5194/acp-12-437-2012.

[v] EEA, Air Quality in Europe — 2011 Report EEA Technical report (Copenhagen: European Environment Agency, 2011), http://www.eea.europa.eu/publications/air-quality-in-europe-2011; EEA, Air Pollution by Ozone Across Europe During Summer 2011.

[vi] Daniel J. Jacob and Darrell A. Winner, “Effect of Climate Change on Air Quality,” Atmospheric Environment 43, no. 1 (January 2009): 51–63, doi:10.1016/j.atmosenv.2008.09.051; P.S. Monks et al., “Atmospheric Composition Change – Global and Regional Air Quality,” Atmospheric Environment 43, no. 33 (October 2009): 5268–5350, doi:10.1016/j.atmosenv.2009.08.021.

[vii] C. Andersson and M. Engardt, “European Ozone in a Future Climate: Importance of Changes in Dry Deposition and Isoprene Emissions,” Journal of Geophysical Research 115, no. D2 (January 22, 2010), doi:10.1029/2008JD011690; J. Langner, M. Engardt, and C. Andersson, “European Summer Surface Ozone 1990-2100,” Atmospheric Chemistry and Physics Discussions 12, no. 3 (March 16, 2012): 7705–7726, doi:10.5194/acpd-12-7705-2012.

[viii] J. Langner, M. Engardt, and C. Andersson, “Modelling the Impact of Climate Change on Air Pollution over Europe Using the MATCH CTM Linked to an Ensemble of Regional Climate Scenarios,” in Air Pollution Modelling and Its Application XXI, ed. Douw G. Steyn and Silvia Trini Castelli, vol. 4 (Dordrecht: Springer Netherlands, 2011), 627–635, http://www.springerlink.com/index/10.1007/978-94-007-1359-8_103.

[ix] Royal Society, Ground-level ozone in the 21st century: future trends, impacts and policy implications. Fowler, D. (Chair) Science Policy Report (London: The Royal Society, 2008), http://royalsociety.org/policy/publications/2008/ground-level-ozone/.

Data sources

More information about this indicator

See this indicator specification for more details.

Contacts and ownership

EEA Contact Info

Alberto González Ortiz

Ownership

EEA Management Plan

2012 2.0.1 (note: EEA internal system)

Dates

Frequency of updates

Updates are scheduled every 4 years in October-December (Q4)
Document Actions
European Environment Agency (EEA)
Kongens Nytorv 6
1050 Copenhagen K
Denmark
Phone: +45 3336 7100