Personal tools

Notifications
Get notifications on new reports and products. Frequency: 3-4 emails / month.
Subscriptions
Sign up to receive our reports (print and/or electronic) and quarterly e-newsletter.
Follow us
Twitter icon Twitter
Facebook icon Facebook
YouTube icon YouTube channel
RSS logo RSS Feeds
More

Write to us Write to us

For the public:


For media and journalists:

Contact EEA staff
Contact the web team
FAQ

Call us Call us

Reception:

Phone: (+45) 33 36 71 00
Fax: (+45) 33 36 71 99


next
previous
items

Skip to content. | Skip to navigation

Sound and independent information
on the environment

You are here: Home / Data and maps / Indicators / Agrophenology / Agrophenology (CLIM 031) - Assessment published Nov 2012

Agrophenology (CLIM 031) - Assessment published Nov 2012

Topics: ,

Generic metadata

Topics:

Climate change Climate change (Primary topic)

Tags:
flowering | climate change | climate | agriculture | atmosphere
DPSIR: Impact
Typology: Descriptive indicator (Type A - What is happening to the environment and to humans?)
Indicator codes
  • CLIM 031
Dynamic
Temporal coverage:
1975-2010, 2031-2050
 
Contents
 

Key policy question: How is climate change affecting the seasonal cycle of agricultural crops across Europe?

Key messages

  • Flowering of several perennial crops has advanced by about two days per decade in recent decades.
  • Changes in timing of crop phenology are affecting crop production and the relative performance of different crop species and varieties.
  • The shortening of crop growth phases in many crops is expected to continue. The shortening of the grain filling phase of cereals and oilseed crops can be particularly detrimental to yield.

Change of flowering date for winter wheat

Note: This figure shows the rate of change of the flowering date for winter wheat. The flowering date is defined as the day at which a modelization of the winter wheat reaches a development state of 100 in a scale 0 - 200 defined for the WOFOST growth model (Van Keulen H, Wolf J (1986) Modelling of agricultural production: weather soils and crops, Simulation monographs. Pudoc, Wageningen). The map shows the yearly change rate in days per year calculated for the period January 1975 - December 2010.

Data source:
Downloads and more info

Projected change in dates of flowering and maturation for winter wheat

Note: This figure shows the model estimated mean change in dates of flowering and full maturation for winter wheat for the period 2031–2050 compared with 1975–1994 for the RACMO (KNMI) and HadRCM3 (Hadley Centre.HC) projections under the A1B emission scenario.

Downloads and more info

Key assessment

Past trends

Changes in the phenological phases of several perennial crops in Europe, such as the advance in the start of the growing season of fruit trees (2.3 days/10 years), cherry tree blossom (2.0 days/10 years) and apple tree blossom (2.2 days/10 years), in line with increases of up to 1.4 ºC in mean annual air temperature have been observed in Germany during 1961–2000 [i]. Sowing or planting dates of several agricultural crops have been advanced, for example by 5 days for potatoes in Finland (1965–1999), 10 days for maize and sugar beet in Germany (1961–2000) and 20 days for maize in France (1974–2003) [ii].

An analysis of the modelled flowering date for winter wheat in Europe between 1975 and 2010 shows a general and clear increasing trend, which is most pronounced in north-western Europe (Figure 1). In parts of Europe the modelled flowering date has advanced by 0.3–0.5 days per year. This modelled advance in flowering date probably exceeds what is observed in reality, as day length responses in the plants and farmers’ choices of cultivars with longer growth duration will reduce this response.

Projections

With the projected warming of the climate in Europe, further reductions in the number of days required for flowering in cereals and maturity may be expected throughout Europe (Figure 2). The modelled changes in flowering dates in Figure 2 include the expected effects of changes in cultivar choice on flowering and maturity dates. Since many plants (including cereals) in Europe require long days to flower, the effect of warming on date of flowering is smaller than would otherwise be expected.

The flowering date for winter wheat is projected to show the greatest advance in western parts of Europe, but with a large uncertainty due to uncertainty in the underlying climate change projections. The advance in maturity date is larger than the advance in flowering date, leading to a shortening of the grain filling period, which will negatively affect yields. An independent study with a different phenology model and other climate change projections found similar advances in flowering date for winter wheat for England and Wales (14–16 days by 2050) [iii].


[i] Frank-M Chmielewski, Antje Müller, and Ekko Bruns, „Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961-2000“, Agricultural and Forest Meteorology 121, Nr. 1–2 (Enero 2004): 69–78, doi:10.1016/S0168-1923(03)00161-8.

[ii] IPCC, „IPCC Fourth Assessment Report: Climate Change 2007 (AR4)“, 2007, http://www.ipcc.ch/publications_and_data/publications_and_data_reports.shtml.

[iii] M.A. Semenov, „Impacts of climate change on wheat in England and Wales“, Journal of the Royal Society Interface 6 (2009): 343–350, doi:10.1098/rsif.2008.0285.

Data sources

More information about this indicator

See this indicator specification for more details.

Contacts and ownership

EEA Contact Info

Hans-Martin Füssel

Ownership

EEA Management Plan

2012 2.0.1 (note: EEA internal system)

Dates

Frequency of updates

Updates are scheduled every 4 years in October-December (Q4)
Document Actions
European Environment Agency (EEA)
Kongens Nytorv 6
1050 Copenhagen K
Denmark
Phone: +45 3336 7100