Personal tools

Subscriptions
Sign up to receive our reports (print and/or electronic) and quarterly e-newsletter.
Follow us
Twitter icon Twitter
Facebook icon Facebook
YouTube icon YouTube channel
RSS logo RSS Feeds
More

Write to us Write to us

For the public:


For media and journalists:

Contact EEA staff
Contact the web team
FAQ

Call us Call us

Reception:

Phone: (+45) 33 36 71 00
Fax: (+45) 33 36 71 99


next
previous
items

Skip to content. | Skip to navigation

Sound and independent information
on the environment

You are here: Home / Data and maps / Indicators / Municipal waste generation - outlook from OECD / Municipal waste generation - outlook from OECD (Outlook 013) - Assessment published Jun 2007

Municipal waste generation - outlook from OECD (Outlook 013) - Assessment published Jun 2007

This content has been archived on 12 Nov 2013, reason: Content not regularly updated
Required information is not filled in: Information about the starting date of the publishing schedule is missing.

Generic metadata

Topics:

Environmental scenarios Environmental scenarios (Primary topic)

Waste and material resources Waste and material resources

Tags:
gdp | ghg emissions | forward looking indicators | baseline | municipal waste generation
DPSIR: Pressure
Typology: Descriptive indicator (Type A - What is happening to the environment and to humans?)
Indicator codes
  • Outlook 013
Geographical coverage:

[+] Show Map

 
Contents
 

Key policy question: What are the prospects of reduction of municipal solid waste?

Key messages

Municipal waste generation is still increasing in OECD countries, but at a slower pace since 2000. There has been a relative decoupling of municipal waste generation in OECD countries from economic growth, but waste generation is continuing to increase.

OECD country municipal waste generation, 1980-2030

Note: N/A

Downloads and more info

Municipal waste generation within the OECD area

Note: N/A

Downloads and more info

Key assessment

OECD Countries

Table 1  provides data and projections from 1980 to 2030 for population, real GDP, and generation of municipal waste for the OECD and its regions. OECD data for municipal waste exist for 1980-2005, and these form the basis of the OECD Outlook projections to 2030.Within the OECD region, the increase in municipal waste generation was about 58% (2.5%/year) from 1980 to 2000, and 4.6% (0.9%/year) between 2000 and 2005 (Table 1). During the latter period, the number of OECD households increased by some 4% (0.8%/year) (OECD estimate), population increased by 3.6% (0.7%/year), GDP grew by 11% (2.2%/year), and private final consumption (PFC) rose by 13% (2.6%/year). These data therefore suggest a rather strong relative decoupling of municipal waste generation from economic growth . However, the observed reduction in the growth of municipal waste generation with respect to economic growth between 2000 and 2005 may not really reflect an improving situation.

Using these assumptions, and assuming no new policies, the generation of municipal waste is projected to increase from 2005 to 2030 within the OECD region by 38% (1.3%/year). This is less than the projections that were made in 2001, reflecting the recent downturn in municipal waste generation (OECD, 2001a; OECD, forthcoming). In 2001, it had been estimated that there would be some 835 million tonnes of waste being generated annually by 2020; it is now estimated that this figure will be closer to 800 million tonnes. A recent projection by the European Topic Centre on Resource and Waste Management (ETC/RWM, 2007b) seems to support the new estimate, since it projects that (within the EU15) the generation of municipal waste will increase by only 33% to 2030. However, in the new EU member states, municipal waste generation is projected to grow faster than this - by about 66% to 2030. The primary variable explaining the increase in municipal waste generation within the ETC/RWM projections was either the total final private consumption or the sub-categories of final private consumption such as food, beverages and clothing (ETC/RWM, 2007b).

The annual per capita generation of municipal waste within OECD countries seems to be stabilising. It was 556 kg in 2000 and 557 kg in 2005. However, if municipal waste generation increases by 38% (and population by 11%) between now and 2030, as projected here, municipal waste generation per capita will increase to 694 kg in 2030 (up 25% from 2005) (OECD, forthcoming).

Municipal waste management practices vary widely among OECD countries. In the mid-1990s, approximately 64% of municipal waste was destined for landfills, 18% for incineration, and 18% for recycling (including composting) (OECD, 2001a). In 2005, the situation looked rather different, with only 49% of municipal waste being  disposed of in landfills, 30% being recycled or composted, and 21% being incinerated or otherwise treated (OECD, forthcoming). Even more remarkable is that not only did the relative share of landfilling decrease considerably within OECD countries during this 10-year period, but the absolute amount of landfilled waste also apparently decreased almost 8% (from 346 to 320 million tonnes per year). Even so, in 2005, seven OECD countries still landfilled more than 80% of their municipal waste, and two did so for almost all of their waste (OECD, forthcoming). On the other hand, six countries landfilled less than 10% of their municipal waste in 2005, and another six countries considerably reduced their landfilling rate between 1995 and 2005 .

The OECD (2001a) projected that about 45% of municipal waste within the OECD area would be landfilled in 2020, 25% would be incinerated, and 30% would be recycled or composted. Since most of the current waste management policies, such as diversion of biodegradable waste from landfills within the EU, will be implemented by 2020, it is assumed here that the recycling rate will continue to increase until 2020, but will then gradually slow down in the Baseline situation. In fact, it has been observed in the US that the recycling rate of municipal waste in 2005 was already about 32% - up from 16% in 1995. In EU15, the recycling rate in 2005 was about 41% - up from 22% in 1995. Hence, it is assumed here that recycling will continue increasing within OECD countries, and will reach an average rate of 40% in 2030. However, the recycling rate may increase even more rapidly than this, due to the emerging recognition of the economic and environmental benefits of recycling, compared to other waste management options.


Non-OECD Countries
In 2030, the non-OECD area is expected to produce about 70% of the world's municipal waste, mainly due to rising incomes, rapid urbanisation, and technical and economic development (UNEP, forthcoming; World Bank, 2005). It is estimated that in 2030 the mean daily per capita municipal waste generation will be 1.8 kg in the OECD region, about 0.75 kg in the BRICS countries, and about 0.9 kg in the rest of the world (ROW). Total annual waste generation in 2030 is projected under the Baseline to be about 900 million tonnes for OECD countries, about 1 billion tonnes in the BRIICS countries, and around 1.1 billion tonnes in the rest of the world (ROW).
Some BRIICS countries (Brazil, Russia, Indonesia and South Africa) have already exceeded the estimated mean daily generation of municipal waste (0.75 kg/capita/day) that is projected for 2030 for this grouping of countries, although China and India still have a long way to go in this regard. On the other hand, municipal waste generation in urban China is already some 444 kg/capita/year (1.2 kg/capita/day), while the generation rate in rural areas is largely unknown.8 However, increasing incomes, rapid urbanisation, population and GDP growth will greatly accelerate municipal waste generation rates in India and China. It is estimated that in 2030  some 60% of the Chinese population will live in urban areas; in India, the urbanisation rate will be about 35%. Thus, in 2030 in China, annual urban municipal waste generation is expected to be at least 485 million tonnes (up 214% from 2004). In India, it will be around 250 million tonnes (up 130% from 2001; World Bank, 2005). This would mean that the daily per capita generation of municipal waste would be 1.5 kg in urban China, and 1.4 kg in urban India.
Considering the huge increase in municipal waste generation expected in non-OECD countries by 2030, appropriate management of this waste will be an enormous policy challenge. This will likely require that integrated waste management practices be introduced and that the large number of informal waste recyclers be integrated into the official waste management infrastructure (McDougall et al., 2001; World Bank, 2005).


Key uncertainties and assumptions
The GDP and population trends contained in Table 1 are from the economic Baseline for this Outlook (see Chapters 2 and 3 of the OECD Environmental Outlook 2008). Historical trends of municipal waste generation in the OECD and its regions have been calculated on the basis of OECD data (OECD, forthcoming). Waste generation projections in Table 1 have been extrapolated from observed municipal waste generation between 2000 and 2005. The figures for OECD and its regions in Table 1 are partly taken from Table 1, and partly calculated on the basis of Table 1 figures. The figures for BRICS countries and the rest of the world (ROW) have mainly been calculated on the basis of municipal waste generation figures found in the literature.
In general, the lack of frequent, consistent and reliable waste data remains a serious problem. For the OECD, only the data on municipal waste allows the establishment of trends, and even these may be questioned. The most recent OECD data (OECD, forthcoming) indicate that the increase in generation of municipal waste has been considerably reducedin 2000-2005, compared to previous years. However, this may not necessarily reflect the real situation, especially given that the conclusion seems inconsistent with recent trends in the economic or social "drivers" of municipal waste generation. It could be that the observed breaks in time series of several countries' data during this time-frame partly cause the lower trends. It is also possible that municipal waste has become "lighter" over the years (with more packaging and related reductions in food waste volumes), but there is no convincing data to support this hypothesis. Another explanation could be that some of the household waste (e.g. bulky waste, electric and electronic appliances), as well as commercial waste, are increasingly escaping municipal waste statistics, perhaps because they are returned to retailers or submitted to private industrial waste management systems.
There are also weak indications that the generation of hazardous waste is increasing within the OECD area, but (due to missing time series) this cannot be verified. Concerning the non- OECD countries, the situation is even more unclear, since practically no time-series data exist. Therefore, the values presented in Table 1 are "educated guesses" of the current and future status of the non-OECD municipal waste generation and management problem. The order of magnitude is probably broadly correct, but the details remain highly uncertain.

Data sources

More information about this indicator

See this indicator specification for more details.

Contacts and ownership

EEA Contact Info

Anita Pirc Velkavrh

Ownership

EEA Management Plan

2010 (note: EEA internal system)

Dates

Document Actions
European Environment Agency (EEA)
Kongens Nytorv 6
1050 Copenhagen K
Denmark
Phone: +45 3336 7100