Personal tools

next
previous
items

Skip to content. | Skip to navigation

Sound and independent information
on the environment

You are here: Home / Data and maps / Indicators / Global and European temperature / Global and European temperature (CSI 012/CLIM 001/CLIM 003) - Assessment published Aug 2014

Global and European temperature (CSI 012/CLIM 001/CLIM 003) - Assessment published Aug 2014

Topics: ,

Generic metadata

Topics:

Climate change Climate change (Primary topic)

Tags:
soer2010 | extreme temperatures | surface temperature | climate change | climate | scenarios | temperatures | understanding climate change
DPSIR: State
Typology: Performance indicator (Type B - Does it matter?)
Indicator codes
  • CSI 012
  • CLIM 001
  • CLIM 003
Dynamic
Temporal coverage:
1850-2100
Geographic coverage:
Earth Albania Andorra Armenia Austria Azerbaijan Belarus Belgium Bosnia and Herzegovina Bulgaria Croatia Cyprus Czech Republic Denmark Estonia Finland France Georgia Germany Greece Hungary Iceland Ireland Italy Kazakhstan Kosovo (UNSCR 1244/99) Latvia Liechtenstein Lithuania Luxembourg Macedonia (FYR) Malta Moldova Monaco Montenegro Netherlands Norway Poland Portugal Romania Russia San Marino Serbia Slovakia Slovenia Spain Sweden Switzerland The Netherlands Turkey Ukraine United Kingdom
 
Contents
 

Key policy question: Will the increase in global average temperature stay below the EU policy target of not more than 2°C above pre-industrial levels, and will the rate of increase in global average temperature stay below the proposed target of not more than 0.2°C per decade

Key messages

Global

  • Three independent long records of global average near-surface (land and ocean) annual temperature show that the decade between 2004 and 2013 was 0.75 °C to 0.81 °C warmer than the pre-industrial average.
  • The rate of change in global average temperature has been close to the indicative limit of 0.2°C per decade in recent decades.
  • Variations of global mean near-surface temperature on decadal time scales are strongly influenced by natural factors. Over the last 10-15 years global near-surface temperature rise has been slower than in previous decades. This recent slow-down in surface warming is due in roughly equal measure to reduced radiative forcing from natural factors (volcanic eruptions and solar activity) and to a cooling contribution from internal variability within the climate system (the redistribution of heat to the deeper ocean).
  • The Arctic region has warmed significantly more rapidly than the global mean, and this pattern is projected to continue into the future.
  • The best estimate for further rises in global average temperature over this century is from 1.0 to 3.7°C above the period 1971-2000 for the lowest and highest representative concentration pathway (RCP) scenarios. The uncertainty ranges for the lowest and highest RCP are 0.3–1.7°C and 2.6–4.8°C, respectively.
  • The EU and UNFCCC target of limiting global average temperature increase to less than 2°C above the pre-industrial levels is projected to be exceeded between 2042 and 2050 by the three highest of the four IPCC scenarios (RCPs).

Europe

  • Annual average temperature across the European land areas has warmed more than global average temperature, and slightly more than global land temperature. The average temperature for the European land area for the last decade (2004–2013) is 1.3°C above the pre-industrial level, which makes it the warmest decade on record.
  • Annual average land temperature over Europe is projected to continue increasing by more than global average temperature over the rest of this century, by around 2.4 °C and 4.1 °C under RCP4.5 and RCP8.5 respectively.
  • Extremes of cold have become less frequent in Europe while warm extremes have become more frequent. Since 1880 the average length of summer heat waves over western Europe doubled and the frequency of hot days almost tripled.

Key assessment

Global assessment

Past trends

Records of global average temperature show long-term warming trends since the end of the 19th century, which have been most rapid since the 1970s. Three independent analyses of global average temperature using near-surface observation records — HadCRUT4 (Morice et al. 2012); NOAA-NCDC (Smith et al. 2008); and NASA-GISS (Hansen et al. 2012), — show similar amounts of warming in 2004 to 2013, relative to pre-industrial temperatures (using the earliest observations at the end of the 19th century as a proxy), of 0.75 °C, 0.78 °C and 0.81 °C, respectively (Fig. 1). This magnitude of warming corresponds to more than one third of the 2 °C warming that is compatible with the global climate stabilisation target of the EU and UNFCCC.

Global average temperature has warmed over most of the last 140 years, but some comparatively short cooling periods have also occurred (Fig. 2). The warming rate was between 0.13 and 0.24 °C per decade for all 20-year periods since 1976, which is close to the indicative limit of 0.2 °C per decade proposed by some scientific studies (WBGU, 2003; van Vliet and Leemans, 2006). The recent slow-down in global average temperature rise means this limit is unlikely to be exceeded in the next few years (IPCC, 2013).

Over the last 10–15 years the rise in global average surface temperature has been slower than in previous decades. This slow-down is due in roughly equal measure to a reduced trend in radiative forcing from natural factors (volcanic eruptions and solar activity) and to a cooling contribution from internal variability within the climate system (in particular increased heat uptake by the oceans). Heat uptake by the oceans is clearly observed in the upper 700m over the last 60 years, and unlike the surface air temperature does not show a slow-down. Recent observations show warming also of the deeper ocean between 700 m and 2000 m depth and below 3000 m depth (IPCC, 2013).

Projections

The global average temperature will continue to increase throughout this century as a result of projected further increases in GHG concentrations. Forced by a range of future possible emissions scenarios - Representative Concentration Pathways, RCPs, underlying the IPCC climate projections (Moss et al., 2010), the central estimate for the warming averaged for the near future (2016–2035) compared to 1986–2005 is between + 0.4 °C and + 1.0 °C. By mid-century (2046–2065), the models project increases of between + 1.0 °C and + 2.0 °C, and by the end of the century (2081–2100), these ranged between + 1.0 °C and + 3.7 °C. When model uncertainty is included, the likely range is from 0.3–1.7 °C for the lowest scenario (RCP2.6) and 2.6–4.8 °C for the highest scenario (RCP8.5). The low-end RCP scenarios imply a reduction in emissions over this century to well below the levels of emissions seen in recent decades.

The EU and UNFCCC target of limiting global average warming to less than 2.0 °C above pre-industrial levels is projected to be exceeded between 2042 and 2050 by the three highest of the four RCPs (Vautard et al., 2014). These projections show greatest warming over land (roughly twice the global average warming) and at high northern latitudes. These trends are consistent with the observations during the latter part of the 20th century (IPCC, 2013).

In addition to RCP-based climate projections for this century, several studies have projected climate change up to 2300 based on the so-called extended concentration pathways (ECPs). Simulations using the ECPs suggest central estimates for global mean temperature increase by 2300, relative to pre-industrial levels, of between 1.1°C for the extension of RCP2.6 to 8.0°C for the extension of RCP8.5 (Meinshausen et al, 2011).

Specific policy question: What is the trend and rate of change in the European annual and seasonal temperature?

Global average air temperature anomalies (1850 to 2013) in degrees Celsius (°C) relative to a pre-industrial baseline period

Note: Global average air temperature anomalies (1850 to 2013) in degrees Celsius (°C) relative to a pre-industrial baseline period for 3 analyses of observations: 1) Black line - HadCRUT4 from the UK Met Office Hadley Centre and University of East Anglia Climate Research Unit, baseline period 1850-1899 (Morice et al. 2012) with the grey area representing the 95% confidence range, 2) Red line – MLOST from the US National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Centre, baseline period 1880-1899 (Smith et al., 2008), and 3) Blue line - GISSTemp from the National Aeronautics and Space Administration (NASA) Goddard Institute for Space Studies, baseline period 1880-1899 (Hansen et al., 2010). Upper graph shows annual anomalies and lower graph shows decadal average anomalies for the same datasets.

Downloads and more info

Rate of change of global average temperature, 1850–2013 (in ºC per decade)

Note: Rates of change of global average temperature (1850 to 2013) in ºC per decade, based on 10-year running average of the 3 datasets: 1) Black line - HadCRUT4 from the UK Met Office Hadley Centre and University of East Anglia Climate Research Unit, baseline period 1850-1899 (Morice et al. 2012), 2) Red line – MLOST from the US National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Centre, baseline period 1880-1899 (Smith et al., 2008), and 3) Blue line - GISSTemp from the National Aeronautics and Space Administration (NASA) Goddard Institute for Space Studies, baseline period 1880-1899 (Hansen et al., 2010).

Downloads and more info

European average air temperature anomalies (1850 to 2013) in °C over land areas only

Note: The sources of the original data: 1) Black line - HadCRUT4 from the UK Met Office Hadley Centre and University of East Anglia Climate Research Unit, baseline period 1850-1899 (Morice et al. 2012) with the grey area representing the 95% confidence range, 2) Red line – MLOST from the US National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Centre, baseline period 1880-1899 (Smith et al., 2008), and 3) Blue line - GISSTemp from the National Aeronautics and Space Administration (NASA) Goddard Institute for Space Studies, baseline period 1880-1899 (Hansen et al., 2010). Upper graph shows anomalies and lower graph shows decadal average anomalies for the same datasets. Europe is defined as the area between 35° to 70° North and -25° to 30° East, plus Turkey (35° to 40° North and 30° to 45° East).

Downloads and more info

European average air temperature anomalies (1850 to 2013) in °C over land areas only, for annual (upper), winter (middle) and summer (lower) periods

Note: European average air temperature anomalies (1850 to 2013) in °C over land areas only, for annual (upper), winter (middle) and summer (lower) periods relative to pre-industrial baseline period. 1) Black line - HadCRUT4 from the UK Met Office Hadley Centre and University of East Anglia Climate Research Unit, baseline period 1850-1899 (Morice et al. 2012) with the grey area representing the 95% confidence range, 2) Red line – MLOST from the US National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Centre, baseline period 1880-1899 (Smith et al., 2008), and 3) Blue line - GISSTemp from the National Aeronautics and Space Administration (NASA) Goddard Institute for Space Studies, baseline period 1880-1899 (Hansen et al., 2010).

Downloads and more info

Trends in warm days across Europe

Note: How to read the map: Warm days are defined as being above the 90th percentile of the daily maximum temperature. Grid boxes outlined in solid black contain at least 3 stations and so are likely to be more representative of the grid-box. Higher confidence in the long-term trend is shown by a black dot. Area averaged annual time series of percentage changes and trend lines are shown below each map for one area in northern Europe (Green line, 5.6 to 16.9 E and 56.2 to 66.2 N) and one in south-western Europe (Pink line, 350.6 to 1.9 E and 36.2 to 43.7 N).

Data source:
Downloads and more info

Trends in cool nights across Europe

Note: How to read the map: Cool nights are defined as being below the 10th percentile of the daily minimum temperature. Grid boxes outlined in solid black contain at least 3 stations and so are likely to be more representative of the grid-box. Higher confidence in the long-term trend is shown by a black dot. Area averaged annual time series of percentage changes and trend lines are shown below each map for one area in northern Europe (Green line, 5.6 to 16.9 E and 56.2 to 66.2 N) and one in south-western Europe (Pink line, 350.6 to 1.9 E and 36.2 to 43.7 N).

Data source:
Downloads and more info

Projected changes in annual, summer and winter temperature

Note: Projected changes in annual (left), summer (middle) and winter (right) near-surface air temperature (°C) in the period 2071-2100 compared to the baseline period 1971-2000 for the forcing scenarios RCP 4.5 (top) and RCP 8.5 (bottom). Model simulations are based on the multi-model ensemble average of RCM simulations from the EURO-CORDEX initiative.

Data source:
Downloads and more info

Projections of extreme temperatures as represented by the combined number of hot summer (June-August) days (TMAX>35°C) and tropical nights (TMIN>20°C)

Note: Maps show changes in extreme temperature for two future periods, relative to 1961-1990. Extreme temperatures are represented by the combined number of hot summer (June-August) days (TMAX>35°C) and tropical nights (TMIN>20°C). All projections are the average of 5 Regional Climate Model simulations of the EU-ENSEMBLES project using the IPCC SRES A1B emission scenario for the periods 1961-90, 2021-2050 and 2071-2100 (Fischer and Schär, 2010).

Data source:
Downloads and more info

Specific assessment

Annual and seasonal average in Europe

Past trends

The decadal average temperature over European land areas increased by approximately 1.3°C (± 0.1 °C) between pre-industrial times and the decade of 2004 to 2013 (Fig. 3). The interannual temperature variability over Europe is generally much higher in winter than in summer (Fig. 4 middle). The relatively rapid warming trend since the 1980s is most clearly evident in the summer (Fig. 4 lower). Particularly large warming has been observed in the past 50 years over the Iberian Peninsula, across central and north-eastern Europe, and in mountainous regions. According to the E-OBS data set (Haylock et al., 2008), warming was the strongest over Scandinavia, especially in winter, whereas the Iberian Peninsula warmed mostly in summer over the past 30 years (Fig. 5).


Projections

The average temperature over Europe is projected to continue increasing throughout this century. According to projections from the EURO-CORDEX study (Jacob et al, 2013) the increase in annual average European land temperature will be greater than the global average for land temperature. According to the multi-model ensemble mean, the annual temperature for Europe is projected to increase by around 2.4 °C for RCP4.5 emission scenario and 4.1°C for RCP8.5  (between periods 2071–2100 and 1971–2000) (Fig. 6). The warming is projected to be the greatest in north-eastern Europe and Scandinavia in winter and over southern Europe in summer.

Temperature extremes in Europe

Past trend

Consistent with the general warming trend observed across Europe, historic records also show that the number of warm days and nights as well as heat waves have become more frequent, while cool days and nights, cold spells, and frost days, have become less frequent (IPCC, 2012, IPCC 2014).

During the last decade, 500-year-long records in heat waves were broken over 65 % of Europe (Barriopedro et al, 2011).  Since 1960, significant increases in the number of warm days (Fig. 7), and decreases in the number of cool nights have been observed throughout Europe (Fig. 8). Over the period 1960 and 2013, the number of warm days (defined when maximum temperatures are higher than the 90th percentile) increased  between 3 and 10 days per decade across Europe, with the largest increases occurring in southern Europe.  

The number of warm days increased by up to10 days per decade between 1960 and 2013 in southern Europe and by up to 8 days per decade in Scandinavia (Fig. 7). Over the same time period the number of cool nights in Europe decreased by between 2 and 9 days per decade. The Iberian Peninsula, land areas to the south and east of the Mediterranean, north-western Europe and Scandinavia have shown the largest decreases in cool nights with decreases by around 6 days per decade between 1960 and 2013 (Fig. 8).

The historic records show clear long-term warming trends across Europe, but it is normal to observe considerable variability between and within years and regions. For example, average air temperature across most of Europe was well (between 1-2°C) above normal during 2011 even though below average temperatures prevailed across much of northern, western and central Europe during 2010 (Barriopedro et al., 2011). In 2013 northern Europe experienced the coldest spring seen in decades (WMO, 2013), although it was the sixth warmest year on record in Europe.


Projections

Extreme high temperatures across Europe are projected to become more frequent and last longer during this century (Fischer and Schär 2010, IPCC 2013). These changes are consistent with projections of future average warming, as well as observed trends over recent decades. During the 1961 to 1990 period only a small area in southern Spain reached 50 days with both hot summer days and tropical nights. However, climate model projections indicate that 50 days with these conditions would be common across most of the Mediterranean region by the 2071 to 2100 period (Fischer and Schär, 2010) (Fig. 9).

Data sources

More information about this indicator

See this indicator specification for more details.

Dates

Frequency of updates

Updates are scheduled every 1 year in April-June (Q2)
Document Actions
European Environment Agency (EEA)
Kongens Nytorv 6
1050 Copenhagen K
Denmark
Phone: +45 3336 7100