You are here: Home / Data and maps / Indicators / Final energy consumption - outlook from EEA

Final energy consumption - outlook from EEA

Indicator Specificationexpired Created 12 Apr 2007 Published 08 Jun 2009 Last modified 04 Sep 2015, 06:59 PM
This content has been archived on 12 Nov 2013, reason: Content not regularly updated
Indicator codes: Outlook 048
Required information is not filled in: Information about the starting date of the publishing schedule is missing.

Assessment versions

Published (reviewed and quality assured)
  • No published assessments


Justification for indicator selection

The energy sector is prime contributor to environmental concerns such as climate change, air pollution and water stress.

Data on final energy consumption help estimating the environmental impacts of energy use. The type and extent of energy-related pressures on the environment depends both on the sources of energy (and how they are used) and on the total amount of energy consumed. One way of reducing energy-related pressures on the environment is thus to use less energy. This may result from reducing the energy consumption for energy-related activities (e.g. for warmth, personal mobility or freight transport), or by using energy in a more efficient way (thereby using less energy per unit of demand), or from a combination of the two.

The trends in final energy consumption by sector provide a broad indication of progress made in reducing energy consumption and associated environmental impacts. The outlook presents plausible future of energy developments in pan-European region. It helps to assess achievability of policy targets related to energy consumption and energy efficiency. It can also be used to identify appropriate policy response options for making energy sector more sustainable, combat climate change and reduce water stress and air pollution.

Scientific references

  • No rationale references available

Indicator definition

Definition: Final energy consumption covers all energy supplied to the final consumer for all energy uses. It is usually disaggregated into the final end-use sectors: industry, transport, households, services and agriculture.

Model used: PRIMES

Ownership: European Environment Agency

Temporal coverage: 1990 - 2030

Geographical coverage: EU 15 : Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, Netherlands, Portugal, Spain, Sweden, United Kingdom; EU 12 : Bulgaria, Cyprus, Czech republic, Estonia, Hungary, Latvia, Lithuania, Malta, Poland, Romania, Slovakia, Slovenia. 


Final energy consumption is measured in tonnes of oil equivalent (toe).

Policy context and targets

Context description

The indicator shows the trends in total final energy consumption and the contributions of each end-use sector and each energy type. It can be useful to monitor  perfomances of the wide range of policies at pan-european and national level that attempt to influence energy consumption and energy efficiency, and, therefore, extent of environmental impacts.

Global policy context

The major documents that relate to trends of the energy consumption at the global level were developed and presented during the World Summit on Sustainable Development  in Johannesburg (WSSD,2002) in Agenda 21. WSSD, 2002 aims to achieve a sustainable energy future, including diversified energy sources using cleaner technologies. Moreover, there is a number of sub-negotiations and declarations concerning more sustainable ratio in balance between a global energy supply and consumption of different energy types.

Pan-European context

The recent pan-european policies concerning different aspects of energy consumption and efficiency have been developed under different intenational fora. 

The Committee on Sustainable Energy seeks to reform energy prices and subsidies and ways how to carry out it to meet more sustainable energy production and consumption in the region (UNECE Guidelines).

Kiev Declaration "Environment for Europe"(2003) aims at supporting further efforts to promote energy efficiency and renewable energy to meet environmental objectives.

EU policy context

On 23 January 2008 the European Commission adopted the 'Climate Action and Renewable Energy' package. The Package sets a number of targets for EU member states with the ambition to achieve the goal of limiting the rise in global average temperature to 2 degrees Celsius compared to pre-industrial times including: GHG reduction of 20% compared to 1990 by 2020. (under a satisfactory global climate agreement this could be scaled up to a 30% reduction); 20% reduction in energy consumption through improved energy efficiency, an increase in renewable energy's share to 20% and a 10% share for sustainably produced biofuels and other renewable fuels in transport. With these goals in mind, each Member State will by June 30th 2010 submit a National Renewable Energy Action Plan to the Commission.

EECCA policy context

The main policy illustrating regional objectives of EECCA countries is EECCA Environmental Strategy. One of the main goals is "to contribute to improving environmental conditions and to implement the WSSD Implementation Plan in EECCA countries" regarding energy issues as well as Kiev Declaration's energy performance tasks.


Structural goals and targets

Global level

  • Implement energy strategies for Sustainable Development, including diversified energy sources using cleaner technologies (WSSD)

Pan-European level

  • Increase the share of renewable meet environmental objectives (Kiev Declaration)

EU level

  • Greater energy recovery from waste (2006 EC Thematic Strategy on Waste)
  • By 2010: 22.1% of electricity and 12% of all energy from renewables (6EAP and Green Paper/Energy)
  • 20% replacment of vehicle fuels with alternative fuels by 2020 (A European partnership for the sustainable hydrogen economy)
  • Diversifying energy supplies, including via new infrastructure (e. g. pipelines) (2006 EC Green Paper on energy)
  • replace 20% oil with substitute fuels by 2020 (EU)
  • Trans-European Energy networks, also beyond EU (2006 EC Green Paper on energy)


  • energy infrastructure improvements for sustainability by 2025 (EECCA Strategy)

Efficiency goals and targets

Pan-European level

EU level

  • 20% savings vis-a-vis business-as-usual 2020 levels (Green paper on energy)
  • "Reduce energy demand", including via labelling for buildings and appliance (EU Sustainable Dev. Strategy, 2001)

EECCA level

  • Repair, modernise and/or decommission obsolete or accident-prone equipment at hydropower facilities (Cooperation Strategy to promote Rational and Efficient Use of Energy Resources in Central Asia)
  • Introduce energy-conservation technologies (EECCA Strategy)

Link to other policy goals and targets

Pan-european level

EU level

EECCA level

  • Improve integration of energy efficiency and environment into energy policies (EECCA Strategy)
  • Remove adverse energy subsidies (EECCA Strategy)
  • Support regional cooperation for energy trade (EECCA Strategy)
  • Incorporate energy efficiency into climate change policies (EECCA Strategy)

Related policy documents


Methodology for indicator calculation

The indicator of the Final energy consumption is produced using the PRIMES model. The model covers the horizon from 1990 to 2030 with 5 years periods. A fundamental assumption in PRIMES is that producers and consumers both respond to changes in prices.

Overview of the PRIMES Model

PRIMES is a partial equilibrium model for the European Union energy system developed by, and maintained at, The National Technical University of Athens, E3M-Laboratory. The most recent version of the model used in the calculations covers each of the EU Member States, EU candidate countries and Neighbouring countries, uses Eurostat as the main data source, and is updated with 2000 as the base year. The PRIMES model is the result of collaborative research under a series of projects supported by the Joule programme of the Directorate General for Research of the European Commission.

The model determines the equilibrium by finding the prices of each energy form such that the quantity producers find best to supply match the quantity consumers wish to use. The equilibrium is static (within each time period) but repeated in a time-forward path, under dynamic relationships. The model is behavioural but also represents in an explicit and detailed way the available energy demand and supply technologies and pollution abatement technologies. It reflects considerations about market economics, industry structure, energy/environmental policies and regulation. These are conceived so as to influence the market behaviour of energy system agents. The modular structure of PRIMES reflects a distribution of decision-making among agents that decide individually about their supply, demand, combined supply and demand, and prices. Then the market-integrating part of PRIMES simulates market clearing. PRIMES is a general purpose model. It conceived for forecasting, scenario construction and policy impact analysis. It covers a medium to long-term horizon. It is modular and allows either for a unified model use or for partial use of modules to support specific energy studies.

For more information see: here.

Methodology for gap filling

No methodology for gap filling has been specified. Probably this info has been added together with indicator calculation.

Methodology references

No methodology references available.


Methodology uncertainty

No uncertainty has been specified

Data sets uncertainty

No uncertainty has been specified

Rationale uncertainty


Further work

Short term work

Work specified here requires to be completed within 1 year from now.

Long term work

Work specified here will require more than 1 year (from now) to be completed.

General metadata

Responsibility and ownership

EEA Contact Info

Anita Pirc Velkavrh


No owners.


Indicator code
Outlook 048
Version id: 1


Permalink to this version
Permalink to latest version


DPSIR: Driving force
Typology: N/A
European Environment Agency (EEA)
Kongens Nytorv 6
1050 Copenhagen K
Phone: +45 3336 7100