Personal tools

next
previous
items

Skip to content. | Skip to navigation

Sound and independent information
on the environment

You are here: Home / Data and maps / Indicators / Energy-related emissions of particulate matter / Energy-related emissions of particulate matter (ENER 007) - Assessment published Jan 2011

Energy-related emissions of particulate matter (ENER 007) - Assessment published Jan 2011

This content has been archived on 12 Nov 2013, reason: Content not regularly updated
Topics: ,

Generic metadata

Topics:

Energy Energy (Primary topic)

Tags:
particulate matter | energy | combustion | emissions | pm10
DPSIR: Pressure
Typology: Descriptive indicator (Type A - What is happening to the environment and to humans?)
Indicator codes
  • ENER 007
Dynamic
Temporal coverage:
1990-2007
Geographic coverage:
Austria Belgium Bulgaria Cyprus Czech Republic Denmark Estonia Finland France Germany Greece Hungary Iceland Ireland Italy Latvia Liechtenstein Lithuania Luxembourg Malta Netherlands Norway Poland Portugal Romania Slovakia Slovenia Spain Sweden Switzerland Turkey United Kingdom
 
Contents
 

Key policy question: Are energy-related emissions of particulate matter decreasing?

Key messages

Energy-related emissions account for 78% of all emissions of particulate matter emissions (SO2, NOx, and PM10) emissions from the EEA-32 in 2007. These emissions fell by 3.4% between 2006 and 2007 (and by 4.5% in the EU-27). Since 1990, these emissions declined by 49% in the EU and 45% in EEA member countries. The most important reductions were achieved in the energy supply and industry sectors as a result of using lower sulphur content fuels and fuel switching from coal and oil to natural gas. It is expected that in the future concentrations of PM10 in most of the urban areas in the EEA region remain well above the short-term limit air quality values.

Sectoral shares of primary and secondary particulate matter in total emissions, EEA-32

Note: The graph includes the combined emissions of primary PM10 particles (particulate matter with a diameter of 10 μm or less, emitted directly into the atmosphere) and secondary particulate-forming pollutants (the fraction of sulphur dioxide, SO2, nitrogen oxides NOx and ammonia NH3 which, as a result of photo-chemical reactions in the atmosphere, transform into particulate matter with a diameter of 10μm or less). Emissions of the secondary particulate precursor species are weighted by a particle formation factor prior to aggregation: primary PM10 = 1, SO2 = 0.54, NOx = 0.88, and (NH3) = 0.64.

Data source:
Downloads and more info

Changes (%) in emissions of primary and secondary PM10 particles by source category, 1990-2007, EEA-32 (weighted by particle formation factors)

Note: The graph shows the emissions of primary PM10 particles (particulate matter with a diameter of 10 μm or less, emitted directly into the atmosphere) and secondary particulate-forming pollutants (the fraction of sulphur dioxide, SO2, nitrogen oxides NOx and ammonia NH3 which, as a result of photo-chemical reactions in the atmosphere, transform into particulate matter with a diameter of 10μm or less). Emissions of the secondary particulate precursor species are weighted by a particle formation factor prior to aggregation: primary PM10 = 1, SO2 = 0.54, NOx = 0.88, and (NH3) = 0.64

Data source:
Downloads and more info

Key assessment

Total particulate emissions (i.e. aggregated primary and secondary PM10) have fallen by 43% in the EEA-32 and by 46% in the EU-27 between 1990 and 2007, with reductions occurring from all sources (see Figure 1). Energy-related sources of emissions all reduced by more than a fifth. Overall, energy-related emissions decreased by 49% in the EU-27 and 45% in all EEA member countries. Energy-related emissions represented 78% of all particulate emissions in 2007 (see Figure 2).

Energy–related emissions have decreased by 45% from 1990 to 2007 (see Figure 1). This reduction in emissions has mainly been achieved through a combination of using lower sulphur content fuels, fuel switching from coal and oil to natural gas, the deployment of emission abatement technologies in the energy supply and industry sectors, and an increased market penetration of road vehicles equipped with catalytic converters.

In 2007 transport is the largest source of emissions accounting for nearly 30 % of all EU-27 emissions (see Figure 2). Road transport alone produces a fifth of all emissions. Particle road transport emissions have fallen by 38 % for the EU-27 between 1990 and 2007 (see Figure 1). Emissions of primary PM10 and secondary PM10 precursors are expected to further decrease significantly between 2007 and 2010 (despite an increasing popularity in many countries of diesel vehicles, which have higher particulate emissions than petrol vehicles), as improved vehicle engine technologies continue to be adopted and stationary fuel combustion emissions are controlled through abatement measures (including particulate filters) or use of low sulphur fuels such as natural gas.

Particulate matter emissions have decreased significantly in most EEA member countries, with the top-3 reductions in Czech Republic, Germany and Slovakia (see Figure 3). However, in a few countries emissions increased during the period with increases of over 50 % in Iceland due to substantial increase in fugitive emissions.

 

Despite the reductions in emissions already achieved, it is expected that in the near future concentrations of PM10 in most of the urban areas in the EEA region remain well above the short-term limit air quality values[1]. Substantial further reductions in all sectors are therefore needed to reach the air quality limit values set in the Directive 2008/50/EC on ambient air quality and cleaner air for Europe. Additional measures to reduce the sulphur content of diesel and petrol fuels have been decided upon (Directive 2003/17/EC), which include the availability of the sulphur-free (<10 ppm sulphur or ‘zero sulphur’) fuel, and complete transition to sulphur-free fuel by 2009. Emissions of SO2 and NOx from shipping in European waters are expected to increase with an associated increase in primary and secondary PM10 precursors


[1] CSI 004 - Exceedance of air quality limit values in urban areas (version 2) - Assessment published Dec 2008 http://www.eea.europa.eu/data-and-maps/indicators/exceedance-of-air-quality-limit-1/exceedance-of-air-quality-limit

 

Data sources

More information about this indicator

See this indicator specification for more details.

Contacts and ownership

EEA Contact Info

Cinzia Pastorello

Ownership

EEA Management Plan

2009 2.9.1 (note: EEA internal system)

Dates

Document Actions

Comments

European Environment Agency (EEA)
Kongens Nytorv 6
1050 Copenhagen K
Denmark
Phone: +45 3336 7100