Personal tools

next
previous
items

Skip to content. | Skip to navigation

Sound and independent information
on the environment

You are here: Home / Data and maps / Indicators / Energy-related emissions of particulate matter

Energy-related emissions of particulate matter

Note: new version is available!
This content has been archived on 12 Nov 2013, reason: Content not regularly updated
Topics: ,
Contents
 

Assessment versions

Published (reviewed and quality assured)
  • No published assessments

Justification for indicator selection

Energy-related emissions of primary PM10 (i.e. particulate matter with a diameter of 10μm or less, emitted directly into the atmosphere) , and secondary PM10 precursors (the fraction of NOx, SO2, and NH3 emissions which, as a result of photo-chemical reactions in the atmosphere, transform into particulate matter with a diameter of 10 μm or less), contribute to elevated levels of fine particles in the atmosphere. The inhalation of such particles has harmful effects on human health and may increase the frequency and severity of a number of respiratory problems, which may increase the risk of premature death.

 

Scientific references:

  • No rationale references available

Indicator definition

Combination of primary PM10 data, and emissions of secondary PM10 precursors (SO2 and NOx and NH3) weighted using aerosol formation factors (according to de Leeuw, 2002) NOx = 0.88, SO2 = 0.54 and NH3 = 0.64. Gaps in reported data have been filled by EEA/ETC-ACC where necessary using simple interpolation techniques.

PM10 definition: "PM10" shall mean particulate matter which passes through a size-selective inlet with a 50 % efficiency cut-off at 10 μm aerodynamic diameter (Air Quality Framework Directive, first Daughter Directive, article 2 (11) - (Council Directive 1999/30/EC of 22 April 1999 relating to limit values for sulphur dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter and lead in ambient air, Official Journal L 163 , 29/06/1999 P. 0041 - 0060):

Units

PM10 emission in kt

Policy context and targets

Context description

Levels of fine particulate matter and precursor emissions are controlled in the European Union by 3 main types of regulation:
• Air quality standards.
• Emission standards for specific (mobile or stationary) sources.
• National emission ceilings and transboundary air pollution standards for emission precursors.
There are no direct emission limits or targets for primary PM10 within the European Union, although there are limits on emissions of the precursor pollutants NOx, SO2 and NH3. Limit values for the concentration of PM10 are set under EU Directive 99/30/EC relating to ambient air quality assessment and management (European Commission 1999).
Several EU-wide limits and targets exist for the reduction of SO2, NOx and NH3 emissions, including the National Emissions Ceiling (NEC) Directive (2001/81/EC) and the Gothenburg Protocol of the UNECE LRTAP Convention (UNECE 1999). These are discussed further in factsheet EN06. As part of the review of the NEC Directive that is currently taking place, the feasibility of introducing national emission ceiling targets for particulate matter is being investigated. A proposal for the revised directive is expected in spring 2008.

Targets

There are no specific EU emission targets for primary PM10. However, emissions of the precursors NOx, SOx and NH3 are covered by the NECD and the Gothenburg Protocol to the UNECE LRTAP Convention. Both instruments contain emission ceilings (limits) that countries must meet by 2010. See also indicators CSI 003.

Related policy documents

  • Directive 2001/81/EC, national emission ceilings
    Directive 2001/81/EC, on nation al emissions ceilings (NECD) for certain atmospheric pollutants. Emission reduction targets for the new EU10 Member States have been specified in the Treaty of Accession to the European Union 2003  [The Treaty of Accession 2003 of the Czech Republic, Estonia, Cyprus, Latvia, Lithuania, Hungary, Malta, Poland, Slovenia and Slovakia. AA2003/ACT/Annex II/en 2072] in order that they can comply with the NECD.
  • UNECE Convention on Long-range Transboundary Air Pollution
    UNECE Convention on Long-range Transboundary Air Pollution.

Methodology

Methodology for indicator calculation

Annual country data submissions to UNECE/LRTAP Convention/EMEP. Combination of emission measurements and emission estimates based on volume of activities and emission factors. Recommended methodologies for emission data collection are compiled in the Joint EMEP/CORINAIR Atmospheric Emission Inventory Guidebook 3rd edition EEA Copenhagen (EEA 2009).
Emissions of secondary PM10 are estimated using aerosol ‘formation factors’ obtained from de Leeuw, 2002. Factors are NOx = 0.88, SO2 = 0.54 and NH3 = 0.64. Results are in PM10 equivalents (kilotonnes - kt).

The energy supply sector includes public electricity and heat production, oil refining, production of solid fuels and fugitive emissions from fuels. The transport sector includes emissions from road and off-road sources (e.g. railways and vehicles used for agriculture and forestry). Industry (Energy) relates to emissions from combustion processes used in the manufacturing industry including boilers, gas turbines and stationary engines. ‘Other (energy-related)’ covers energy use principally in the services and household sectors.

Methodology for gap filling

EEA/ETC-ACC gap-filling methodology: To allow trend analysis, where countries have not reported data for one, or several years, data has been interpolated to derive annual emissions. If the reported data is missing either at the beginning or at the end of the time series period, the emission value has been considered to equal the first (or last) reported emission value. It is recognised that the use of gap-filling can potentially lead to artificial trends, but it is considered unavoidable if a comprehensive and comparable set of emissions data for European countries is required for policy analysis purposes. A list of the data used within this sheet which has been gap-filled is available from http://dataservice.eea.europa.eu/dataservice/metadetails.asp?id=818

Methodology references

No methodology references available.

Data specifications

EEA data references

Data sources in latest figures

Uncertainties

Methodology uncertainty

Officially reported data following agreed procedures and Emission Inventory Guidebook (EEA 2009) Primary PM10 data reported by countries remains uncertain in terms of quality for many countries. In many cases the available reported data does not include all years.

Data sets uncertainty

The reported primary PM10 data is likely to be very uncertain. Much of the uncertainty in the overall reported PM10 emissions comes from uncertainties associated with emission factors. For many countries there is little country-specific data available from which PM10 emission factors can be determined. Emission factors in the literature can be very variable due to the differences that occur between sector processes both within and between different countries. For many countries a complete time series of PM10 data is not available from 1990, and so significant interpolation and extrapolation has had to be performed to obtain a complete time series of data. Similarly not all countries report emissions from every sector. In contrast, the uncertainties of sulphur dioxide emission estimates in Europe are relatively low, as the sulphur emitted comes from the fuel burnt and therefore can be accurately estimated. However, because of the need for interpolation to account for missing data the complete dataset used here will have higher uncertainty. EMEP has compared modelled (which include emission data as one of the model parameters) and measured concentrations throughout Europe (EMEP 2005). From these studies the uncertainties associated with the modelled annual averages for a specific point in time have been estimated in the order of ±30 %. This is consistent with an inventory uncertainty of ±10 % (with additional uncertainties arising from the other model parameters, modelling methodologies, and the air quality measurement data etc). NOx emission estimates in Europe are thought to have higher uncertainty than pollutants such as SO2, as the NOx emitted comes both from the fuel burnt and the combustion air and so cannot be estimated accurately from fuel nitrogen alone. EMEP has compared modelled and measured concentrations throughout Europe (EMEP 2005). From these studies differences for individual monitoring stations of more than a factor of two have been found. This is consistent with an inventory of national annual emissions having an uncertainty of ±30% or greater (there are also uncertainties in the air quality measurements and especially the modelling). The trend is likely to be much more accurate than for individual absolute annual values; the annual values are not independent of each other. However it is not clear that all countries backdate changes to methodologies so early years may have been estimated on a different basis to later years.

Rationale uncertainty

No uncertainty has been specified

Further work

Short term work

Work specified here requires to be completed within 1 year from now.

Long term work

Work specified here will require more than 1 year (from now) to be completed.

General metadata

Responsibility and ownership

EEA Contact Info

Cinzia Pastorello

Ownership

European Environment Agency (EEA)

Identification

Indicator code
ENER 007
Specification
Version id: 2
Primary theme: Energy Energy

Permalinks

Permalink to this version
1a40ac691be7244db599e8c0c10efce3
Permalink to latest version
6UQM07VKD4

Classification

DPSIR: Pressure
Typology: Descriptive indicator (Type A - What is happening to the environment and to humans?)

Geographic coverage

Comments

European Environment Agency (EEA)
Kongens Nytorv 6
1050 Copenhagen K
Denmark
Phone: +45 3336 7100