Personal tools

next
previous
items

Skip to content. | Skip to navigation

Sound and independent information
on the environment

You are here: Home / Data and maps / Indicators / Electricity production by fuel / Electricity production by fuel (ENER 027) - Assessment published Sep 2010

Electricity production by fuel (ENER 027) - Assessment published Sep 2010

Indicator Assessmentexpired Created 08 Mar 2010 Published 14 Sep 2010 Last modified 11 Mar 2014, 01:48 PM
Topics: ,
This content has been archived on 06 Nov 2013, reason: Other (This indicator is no longer being regularly updated)


This indicator is discontinued. No more assessments will be produced.

Generic metadata

Topics:

Energy Energy (Primary topic)

Tags:
electricity | fuels | energy
DPSIR: Driving force
Typology: Descriptive indicator (Type A - What is happening to the environment and to humans?)
Indicator codes
  • ENER 027
Dynamic
Temporal coverage:
1990-2007
Geographic coverage:
Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Russia, Slovakia, Slovenia, Spain, Sweden, Turkey, United Kingdom
 
Contents
 

Indicator definition

Total gross electricity generation covers gross electricity generation in all types of power plants. The gross electricity generation at the plant level is defined as the electricity measured at the outlet of the main transformers. i.e. the consumption of electricity in the plant auxiliaries and in transformers is included.

Electricity production by fuel is the gross electricity generation from plants utilising the following fuels: coal and lignite. oil. nuclear. natural and derived gas. renewables (wind. hydro. biomass and waste. solar PV and geothermal) and other fuels. The latter include electricity produced from power plants not accounted for elsewhere such as those fuelled by certain types of industrial wastes which are not classed as renewable. Other fuels also include the electricity produced as a result of pumping in hydro power stations.

The share of each fuel in electricity production is taken as the ratio of electricity production from the relevant category against total gross electricity generation. It should be noted that the share of renewable electricity in this indicator, based on production, is not directly comparable with the share required under Directive 2001/77/EC which is based upon the share of renewables in electricity consumption. The difference between both shares is accounted for by the net balance between imports and exports of electricity and by how much domestic electricity generation is increased or reduced as a result.

Units

Electricity generation is measured in either GWh or TWh (1000 GWh)


 


Key policy question: Is the electricity production becoming less carbon intensive in Europe?

Key messages

Fossil fuels and nuclear energy continue to dominate the fuel mix for electricity production in EU-27. In 2007, the share in total gross electricity production of the electricity generated from fossil fuels was 55.4 %, and of the electricity generated from nuclear was 27.9 %. By comparison, the electricity generated from renewable sources was 15.7% (in 2007). The total electricity production increased significantly by 35.0 % since 1990, thus offsetting some of the emissions reductions achieved due to fuel switching from solid fuels to natural gas.

Gross electricity production by fuel, EU-27

Note: Gross electricity production by fuel, EU-27 Data shown are for gross electricity production and include electricity production from both public plants and auto-producers. Renewables include electricity produced from hydro (excluding pumping), biomass, municipal waste, geothermal, wind and solar PV. The share of renewables presented in the chart is that for production and hence does not correspond to the share, for consumption, as required by Directive 2001/77/EC. The difference between both shares is accounted for by the net balance between imports and exports of electricity. The EU-27 value for 1990 includes (former) West Germany only and since 1991 it refers to Germany. ‘Other fuels’ include electricity produced from power plants not accounted for elsewhere, such as those fuelled by certain types of industrial wastes. It also includes the electricity generated as a result of pumping in hydro-power stations.

Data source:

Eurostat. Energy statistics: Supply, transformation, consumption - electricity  - annual data. http://epp.eurostat.ec.europa.eu/portal/page/portal/energy/data/database

Downloads and more info

Share of electricity production by fuel type, 1990-2007 (%), EU-27

Note: Share of electricity production by fuel type, 1990-2007 (%), EU-27

Data source:

Eurostat. Energy statistics: Supply, transformation, consumption - electricity  - annual data. http://epp.eurostat.ec.europa.eu/portal/page/portal/energy/data/database

Downloads and more info

Share of electricity production by fuel type in 2007

Note: Share of electricity production by fuel type in 2007. The share of renewables above refers to production and therefore it does not necessarily match exactly the share. for consumption. as required by Directive 2001/77/EC. The difference between both shares is accounted for by the net balance between imports and exports of electricity. ‘Other fuels’ include electricity produced from power plants not accounted for elsewhere. such as those fuelled by certain types of industrial wastes. It also includes the electricity generated as a result of pumping in hydro-power stations. For Iceland no data for 2007 were available from Eurostat, the 2006 data were used as an estimate.

Data source:

Eurostat. Energy statistics: Supply, transformation, consumption - electricity  - annual data. http://epp.eurostat.ec.europa.eu/portal/page/portal/energy/data/database

IEA. Energy balances: Electricty output in GWh.  http://data.iea.org/IEASTORE/DEFAULT.ASP

Downloads and more info

Key assessment

    • Electricity production from fossil fuels continues to dominate total gross electricity production in EU-27, with an almost constant share of 55 % all the way from 1990 to 2007. Natural gas was the fuel of choice for new power plants between 1990-2007, choice mainly driven by economic considerations (more advantageous gas prices compared to coal) and environmental concerns. This fuel switching led to a decrease in greenhouse gas and air pollution emissions from public power generation but increased the dependency on imported fuels (see ENER12). However, with an increase in natural gas prices relative to coal since 1999 (IEA, 2005) as well as a decrease in hydro electricity production since 2002 due to decreased rainfall, the use of coal in power generation has increased in recent years. Although the share of coal in electricity production has remained more or less constant since 1999, its use has increased in absolute terms due to the overall increase in electricity demand. Consequently, emissions from public power generation have begun to rise again (see ENER 01, 06, 07, 08 and 09)
    • In 2007, the average carbon intensity of the electricity production in EU-27 was 392 grCO2 /kWh[1].


    [1] Forthcoming EEA indicator. The main sources of data are Eurostat’s energy balances and the EU greenhouse gas inventory to the UNFCCC. Autoproducers are not considered in this methodology because CO2 from autoproducers are reported in the respective sector so the associated electricity production had to be excluded from the calculation. Import/exports of electricity also are excluded in this methodology because CO2 emissions from stationary sources are based on the territorial definition used for UNFCCC reporting.

 

Specific policy question: What are the trends concerning the electricity production from renewable sources in Europe?

Specific assessment

  • The total electricity produced from renewable sources increased by 67.8 % between 1990 and 2007, at an annual average growth rate of 3.1 %. The absolute growth of electricity production from renewable sources between 1990 and 2007 was 212 TWh (see Figure 1). However, 1 percentage point of this increase was observed from 2006-2007 alone, which could be largely attributed to increased renewable electricity production in Germany (+26.5 %) and Spain (+13.5 %). Substantial growth will be required to meet the indicative EU-27 target of a 20 % share of renewable electricity in final electricity consumption by 2020 (see also ENER 30 and ENER 29).

Specific policy question: What are the trends concerning the electricity production from natural gas in Europe?

Specific assessment

  • The total electricity produced from natural gas increased by 252.1 % between 1990 and 2007, at an annual average growth rate of 7.7 %. The absolute growth of electricity production from natural gas between 1990 and 2007 was 544 TWh. The primary motive for the switch to gas was economic, with low gas prices for much of the 1990s compared to coal and stricter environmental legislation. Because of this, significant investments were made in the transportation infrastructure for the delivery of gas from within and outside the EU-27 (see Figure 2). This rapid increased in gas demand also contributed to the increase in fossil fuels imports (see ENER12).

Specific policy question: What are the trends concerning the electricity production from solid fuels in Europe?

Specific assessment

  • The total electricity produced from solid fuels increased by 6.5 % between 1990 and 2007, at an annual average rate of 0.4 %. The absolute growth of electricity production from solid fuels between 1990 and 2007 was 61 TWh (see Figure 2) The electricity production from coal and lignite picked up in recent years due to narrowing of the price differential between solid fuels and natural gas and security of supply reasons (see also ENER 12).

Specific policy question: What are the trends concerning the electricity production from nuclear power plants in Europe?

Specific assessment

  • The total electricity produced from nuclear increased by 17.7 % between 1990 and 2007, at an annual average rate of 1.0 %. The absolute growth of electricity production from nuclear between 1990 and 2007 was 140 TWh. The share of electricity production from nuclear in gross electricity production declined in recent years due to the fact that few additional nuclear plants have been built. However, in recent years an increased interest towards building new nuclear power plants (or extending existing ones) can be observed in countries like the UK, the Baltic States, Poland, Sweden, and Finland or extending the life times of existing NPP’s (for instance in the Netherlands) due to concerns over security of supply, high volatility of energy commodity prices and climate change (see also ENER 13).

Data sources

Policy context and targets

Context description

Environmental context

The indicator shows the evolution of the shares of electricity production from different fuels in total gross electricity production and aims to indicate to what extent there has been a decarbonisation of the electricity production in Europe. Electricity production from fossil fuels (such as crude oil, oil products, hard coal, lignite and natural and derived gas) has a number of negative effects on the environment and human health , CO2 and other greenhouse gas emissions, air pollution levels (e.g. SO2 and NOX), water pollution and biodiversity loss. These effects are fuel-specific : for instance, natural gas, for instance, has approximately 40 % less carbon than coal per unit of energy content, and 25 % less carbon content than oil, and contains only marginal quantities of sulphur (see ENER26). There are other environmental pressures coming from energy production: air pollution, land –use changes and crop-escape (that could result in large scale introduction of invasive species) from biomass, surface and groundwater pollution, ecosystem services and biodiversity loss, etc. The pressure on the environment and human health from energy consumption can be diminished by decreasing energy consumption and switching to energy sources that have a lower impact on the environment and human health.

While nuclear power produces less greenhouse gas emissions and atmospheric pollution over the life cycle compared to conventional sources, there is a risk of accidental radioactive releases, and highly radioactive waste (for which no generally acceptable disposal route has yet been established) is accumulating.

 The efficiency with which electricity is produced also determines the scale of the environmental impacts of electricity production and consumption (see ENER19), as it determines the amount of input fuel required to generate a given quantity of electricity.

The impact also depends upon the total amount of electricity demanded and hence the level of electricity production required (see ENER18 for more details on electricity consumption). Thus another way of reducing energy-related pressures on the environment includes using less electricity on the demand-side, through improved efficiency, conservation or a combination of the two.

Policy context

A Roadmap for moving to a competitive low carbon economy in 2050 (COM(2011) 112 final)
Presents a roadmap for action in line with a 80-95% greenhouse gas emissions reduction by 2050.

Energy 2020 – A strategy for competitive, sustainable and secure energy (COM(2010) 639 final)
Presents the five priorities of the new energy strategy defined by the Commission.

Council adopted on 6 April 2009 the climate-energy legislative package containing measures to fight climate change and promote renewable energy. This package is designed to achieve the EU's overall environmental target of a 20 % reduction in greenhouse gases and a 20 % share of renewable energy in the EU's total energy consumption by 2020.The climate action and renewable energy (CARE) package includes the following main policy documents:

  • Directive 2009/29/ec of the European parliament and of the Council amending directive 2003/87/ec so as to improve and extend the greenhouse gas emission allowance trading scheme of the community
  • Directive 2009/31/ec of the European parliament and of the Council on the geological storage of carbon dioxide
  • Directive 2009/28/ec of the European parliament and of the Council on the promotion of the use of energy from renewable sources
  • Community guidelines on state aid for environmental protection (2008/c 82/01)
  • Directive 2008/101/ec of the European parliament and of the Council amending directive 2003/87/ec so as to include aviation activities in the scheme for greenhouse gas Emission allowance trading within the community
  • Regulation (ec) no 443/2009 of the European parliament and of the Council setting emission performance standards for new passenger cars as part of the community’s integrated approach to reduce CO2 emissions from light-duty vehicles


Second Strategic Energy Review; COM(2008) 781 final
Strategic review on short, medium and long term targets on EU energy security.

    Targets

    No targets have been specified

    Related policy documents

    • 443/2009
      Regulation (ec) no 443/2009 of the European parliament and of the Council setting emission performance standards for new passenger cars as part of the community's integrated approach to reduce CO2 emissions from light-duty vehicles.
    • 2008/101/EC
      Directive 2008/101/ec of the European parliament and of the Council amending directive 2003/87/ec so as to include aviation activities in the scheme for greenhouse gas Emission allowance trading within the community
    • 2008/c 82/01
      Community guidelines on state aid for environmental protection (2008/c 82/01)
    • 2009/28/EC
      Directive 2009/28/ec of the European parliament and of the Council on the promotion of the use of energy from renewable sources
    • 2009/29/ec
      Directive 2009/29/ec of the European parliament and of the Council amending directive 2003/87/ec so as to improve and extend the greenhouse gas emission allowance trading scheme of the community.
    • 2009/31/EC
      Directive 2009/31/ec of the European parliament and of the Council on the geological storage of carbon dioxide.
    • COM (2011) 112 - A Roadmap for moving to a competitive low carbon economy in 2050
      With its "Roadmap for moving to a competitive low-carbon economy in 2050" the European Commission is looking beyond these 2020 objectives and setting out a plan to meet the long-term target of reducing domestic emissions by 80 to 95% by mid-century as agreed by European Heads of State and governments. It shows how the sectors responsible for Europe's emissions - power generation, industry, transport, buildings and construction, as well as agriculture - can make the transition to a low-carbon economy over the coming decades.
    • COM(2008) 781
      COM(2008) 781 final - Second Strategic Energy Review
    • COM(2010) 639 final: Energy 2020 – A strategy for competitive, sustainable and secure energy
      A strategy for competitive, sustainable and secure energy

    Methodology

    Methodology for indicator calculation

    Average annual rate of growth calculated using: [(last year/base year) ^ (1/number of years) –1]*100

    Share of electricity production by fuel calculated as ratio of electricity production by fuel type to total gross electricity generation.
    The coding (used in the Eurostat database) for the gross electricity generation is :

    Coal fired power stations:

    • Anthracite : main electricity activity 22_108501, main activity CHP 22_108502, autoproducers electricity 22_108503, autoproducers CHP 22_108504
    • Coking coal : main electricity activity 22_108511, main activity CHP 22_108512, autoproducers electricity 22_108513, autoproducers CHP 22_108514
    • Bituminous : main electricity activity 22_108521, main activity CHP 22_108522, autoproducers electricity 22_108523, autoproducers CHP 22_108524
    • Sub Bituminous : main electricity activity 22_108531, main activity CHP 22_108532, autoproducers electricity 22_108533, autoproducers CHP 22_108534
    • Lignite/brown coal : main electricity activity 22_108541, main activity CHP 22_108542, autoproducers electricity 22_108543, autoproducers CHP 22_108544
    • Peat : main electricity activity 22_108551, main activity CHP 22_108552, autoproducers electricity 22_108553, autoproducers CHP 22_108554
    • Patent fuel : main electricity activity 22_108561, main activity CHP 22_108562, autoproducers electricity 22_108563, autoproducers CHP 22_108564
    • Coke oven coke: main electricity activity 22_108571, main activity CHP 22_108572, autoproducers electricity 22_108573, autoproducers CHP 22_108574
    • Gas coke : main electricity activity 22_108581, main activity CHP 22_108582, autoproducers electricity 22_108583, autoproducers CHP 22_108584
    • Coal tar : main electricity activity 22_108591, main activity CHP 22_108592, autoproducers electricity 22_108593, autoproducers CHP 22_108594
    • BKB/briquettes : main electricity activity 22_108601, main activity CHP 22_108602, autoproducers electricity 22_108603, autoproducers CHP 22_108604

    Oil fired power stations:

    • Crude oil : main electricity activity 22_108701, main activity CHP 22_108702, autoproducers electricity 22_108703, autoproducers CHP 22_108704
    • NGL (Natural Gas Liquid) : main electricity activity 22_108711, main activity CHP 22_108712, autoproducers electricity 22_108713, autoproducers CHP 22_108714
    • Refinery gas : main electricity activity 22_108721, main activity CHP 22_108722, autoproducers electricity 22_108723, autoproducers CHP 22_108724
    • LPG : main electricity activity 22_108731, main activity CHP 22_108732, autoproducers electricity 22_108733, autoproducers CHP 22_108734
    • Naphta: main electricity activity 22_108741, main activity CHP 22_108742, autoproducers electricity 22_108743, autoproducers CHP 22_108744
    • Kerozene type jet fuel: main electricity activity 22_108751, main activity CHP 22_108752, autoproducers electricity 22_108753, autoproducers CHP 22_108754
    • Other Kerozene: main electricity activity 22_108761, main activity CHP 22_108762, autoproducers electricity 22_108763, autoproducers CHP 22_108764
    • Gas/diesel oil: main electricity activity 22_108771, main activity CHP 22_108772, autoproducers electricity 22_108773, autoproducers CHP 22_108774
    • Residual fuel oil: main electricity activity 22_108781, main activity CHP 22_108782, autoproducers electricity 22_108783, autoproducers CHP 22_108784
    • Bitumen: main electricity activity 22_108791, main activity CHP 22_108792, autoproducers electricity 22_108793, autoproducers CHP 22_108794
    • Petroleum coke: main electricity activity 22_108801, main activity CHP 22_108802, autoproducers electricity 22_108803, autoproducers CHP 22_108804
    • Other oil products: main electricity activity 22_108811, main activity CHP 22_108812, autoproducers electricity 22_108813, autoproducers CHP 22_108814

    Natural gas fired power stations:

    • main electricity activity 22_108891, main activity CHP 22_108892, autoproducers electricity 22_108893, autoproducers CHP 22_108894

    Derived gas fired power stations

    • Gas works gas : main electricity activity 22_108611, main activity CHP 22_108612, autoproducers electricity 22_108613, autoproducers CHP 22_108614
    • Coke oven gas : main electricity activity 22_1086211, main activity CHP 22_108622, autoproducers electricity 22_108623, autoproducers CHP 22_108624
    • Blast furnace gas : main electricity activity 22_108631, main activity CHP 22_108632, autoproducers electricity 22_108633, autoproducers CHP 22_108634
    • Oxygen steel furnace gas : main electricity activity 22_108641, main activity CHP 22_108642, autoproducers electricity 22_108643, autoproducers CHP 22_108644

    Biomass fired power stations

    • Industrial wastes : main electricity activity 22_108901, main activity CHP 22_108902, autoproducers electricity 22_108903, autoproducers CHP 22_108904
    • Municipal wastes (renewable): main electricity activity 22_108911, main activity CHP 22_108912, autoproducers electricity 22_108913, autoproducers CHP 22_108914
    • Municipal wastes (non-renewable): main electricity activity 22_108921, main activity CHP 22_108922, autoproducers electricity 22_108923, autoproducers CHP 22_108924
    • Wood, wood wastes and other solid fuels: main electricity activity 22_108931, main activity CHP 22_108932, autoproducers electricity 22_1089313, autoproducers CHP 22_108934
    • Landfill gas: main electricity activity 22_108941, main activity CHP 22_108942, autoproducers electricity 22_1089343, autoproducers CHP 22_108944
    • Sludge gas: main electricity activity 22_108951, main activity CHP 22_108952, autoproducers electricity 22_1089353, autoproducers CHP 22_108954
    • Other biogas: main electricity activity 22_108961, main activity CHP 22_108962, autoproducers electricity 22_1089363, autoproducers CHP 22_108964
    • Other liquid biofuels: main electricity activity 22_108971, main activity CHP 22_108972, autoproducers electricity 22_1089373, autoproducers CHP 22_108974

    Solar

    • Main electricity from photovoltaic 14_1070421, main solar thermal 14_1070422, autoproducers solar 14_1070423

    Pumped hydro

    • Main electricity from pumped hydro 15_107036, autoproducers pumped hydro 14_107037

    Nuclear

    • Main electricity activity 15_107030, main activity CHP 15_107031, autoproducers electricity 15_107032, autoproducers CHP 15_107033

    It should be noted that in the Eurostat database ‘Other fuels – 107012’ also includes ‘gross production from photovoltaic systems - 107023’ and although almost negligible in overall terms it has been subtracted from 107012 in the calculation of the indicator.
    For the denominator, where required: total gross electricity generation 107000

    Geographical coverage:
    The Agency had 32 member countries at the time of writing of this fact sheet. These are the 27 European Union Member States and Turkey plus the EFTA countries (Iceland, Switzerland and Norway). Liechtenstein and Iceland are not anymore covered separately by Eurostat

    Temporal coverage:
    1990-2009

    Methodology and frequency of data collection:
    Data collected annually.Eurostat definitions and concepts for energy statistics http://epp.eurostat.ec.europa.eu/cache/ITY_SDDS/en/nrg_quant_esms.htm

      Methodology for gap filling

      No methodology for gap filling has been specified. Probably this info has been added together with indicator calculation.

      Methodology references

      No methodology references available.

      Uncertainties

      Methodology uncertainty

      Biomass and wastes, as defined by Eurostat, cover organic, non-fossil material of biological origin, which may be used for heat production or electricity generation. They comprise wood and wood waste, Biogas, municipal solid waste (MSW) and biofuels. MSW comprises biodegradable and non-biodegradable wastes produced by different sectors. Non-biodegradable municipal and solid wastes are not considered to be renewable, but current data availability does not allow the non-biodegradable content of wastes to be identified separately, except for that from industry.

      Also, electricity data (unlike that for overall energy consumption) for 1990 refers to the western part of Germany only.

      Electricity consumption within the national territory includes imports of electricity from neighbouring countries. It also excludes the electricity produced nationally but exported abroad. In some countries the contribution of electricity trade to total electricity consumption and the changes observed from year to year need to be looked at carefully when analysing trends in electricity production by fuel. Impacts on the (national) environment are also affected since emissions are accounted where the electricity is produced whereas consumption is accounted where the electricity is consumed

      Data sets uncertainty

      Data has been traditionally compiled by Eurostat through the annual Joint Questionnaires, shared by Eurostat and the International Energy Agency, following a well established and harmonised methodology. Methodological information on the annual Joint Questionnaires and data compilation can be found in Eurostat's web page for metadata on energy statistics. http://epp.eurostat.ec.europa.eu/cache/ITY_SDDS/en/nrg_quant_esms.htm

      Rationale uncertainty

      No uncertainty has been specified

      More information about this indicator

      See this indicator specification for more details.

      Contacts and ownership

      EEA Contact Info

      Anca-Diana Barbu

      Ownership

      EEA Management Plan

      2009 2.9.1 (note: EEA internal system)

      Dates

      Frequency of updates

      This indicator is discontinued. No more assessments will be produced.
      Filed under: , ,

      Comments

      European Environment Agency (EEA)
      Kongens Nytorv 6
      1050 Copenhagen K
      Denmark
      Phone: +45 3336 7100