All official European Union website addresses are in the europa.eu domain.
See all EU institutions and bodiesGezegenimiz için bir şey yap, sadece gerektiğinde bu sayfayı yazdır. Eğer milyonlarca insan aynısını yaparsa, küçük bir hareket bile çok büyük bir fark yaratabilir!
Indicator Specification
Various greenhouse gases (GHG) exist. They are characterized by the ability to affect the radiation balance on earth and are crucial for the global climate. Without these gases, the global average temperature would be about 32oC lower than it is now (i.e. -18oC instead of the current +14oC global mean temperature average).
The GHGs differently affect the climate system. In order to sum the effects of different GHGs on the atmosphere, the so-called GHG equivalent concentration has been defined. This is the concentration of CO2 that would cause the same amount of radiative forcing as the mixture of CO2 and other GHGs (Figure 5). CO2-equivalent concentrations, rather than radiative forcings, are presented here, because they are more easily understood by the general public. For an overview on radiative forcing, the reader is referred to IPCC (2007a).
There are, in general, three ways the GHG equivalent concentration can be aggregated, all presented here. Firstly, an approach often used is to group together the six Kyoto Protocol GHGs (i.e. CO2, CH4, N2O, HFCs, PFCs & SF6), as they are the main antropgenic GHGs. A second approach is to group all long-living GHGs (i.e. Kyoto Protocol gases plus the Montreal Protocol Gases CFCs, HCFCs & CH3CCl3). Velders et al (2007) has shown that reducing the concentration of these Montreal gases has a considerable beneficial effect also for the climate. Finally, in a third approach, ozone, water vapour and aerosols are also be included to show the net effect of all GHGs on the earth’s radiation balance, and as such, the climate system. The data record of this third approach is shorter due to the lack of long-term data series for ozone. The consideration of all GHGs together can provide a lower concentration level compared to the other two approaches due to the cooling effect of aerosols. For the current period (e.g. in 2009), the three approaches lead to quite different concentration levels (see assessment), but for the long-term the three approaches could converge as a result of the decrease in Montreal Protocol gases that is starting to occur (Montzka et al. 2011). Global sulphur and aerosols emissions are also likely to be reduced due to non-climate related policies.
Although the emissions of GHGs mainly occur in the northern hemisphere, the use of global average values is considered justified because the atmospheric lifetime of GHGs is long compared with the timescales of global atmospheric mixing. This leads to a rather uniform mixing around the globe. The exceptions are ozone, sulphur and aerosols. However, as described earlier, these gases are less relevant over the long-term.
The indicator shows the observed trends of greenhouse gas concentrations. The various greenhouse gases have been grouped in three different ways (see rationale). Except for the concentration of individual GHGs, the effect on the enhanced greenhouse effect is presented as CO2-equivalent concentrations, which is the CO2 concentration that would cause the same amount of radiative forcing as the mixture of all GHGs. Global annual averages are considered, because in general the gases mix quite well in the atmosphere.
Atmospheric concentration in parts per million in CO2-equivalent (ppm CO2-eq.).
GHG concentrations is a key indicator relevant to international climate negotiations as the overall objective of the United Nations Framework Convention on Climate Change (UNFCCC), is ‘to stabilize atmospheric greenhouse gas concentrations at a level that would prevent dangerous anthropogenic interference with the climate system’ (UNFCCC, 1993). Both at the global (UNFCCC, 2009) and the EU level (October 2008 Environment Council conclusions) this ‘dangerous anthropogenic interference’ has been recognised by formulating the objective of keeping the long-term global average temperature rise below 2°C compared to pre-industrial times. Studies have assessed the probability of keeping the long-term temperature rise below this 2°C target in relation to different stabilization levels of GHGs in the atmosphere (Meinshausen, 2006; den Elzen et al., 2007; Van Vuuren et al., 2008). These studies showed that to have a 50% probability of limiting the global mean temperature increase to 2 °C (above pre-industrial levels), the concentration of all GHGs in the atmosphere would need to be stabilised below about 450 ppm CO2 equivalent (range 400-500 ppm CO2 eq.). This includes ozone, water vapour and aerosols. For CO2 only, the 50% probability concentration threshold is around 400 ppm, and for all Kyoto gases about 480 ppm CO2 equivalent (range 432 – 532 ppm CO2 eq. ). Note that the value for the Kyoto gases only, is higher than when considering all GHGs, due to the cooling affect of aerosols (currently about 1.2 W.m-2 or about 70 ppm CO2 eq.). According to the scientific literature the probability of staying below the 2oC becomes very low when stabilization at 550 ppm CO2 eq, ranging between 0% and 37%, considering all GHGs.
The ultimate objective of the United Nations Framework Convention on Climate Change (UNFCCC) is to achieve 'stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. Such a level should be achieved within a time-frame sufficient to allow ecosystems to adapt naturally to climate change, to ensure that food production is not threatened and to enable economic development to proceed in a sustainable manner'.
To reach the UNFCCC objective, the EU has specified more quantitative targets in its 6th environmental action programme (6th EAP) which mentions a long-term EU climate change objective of limiting global temperature rise to a maximum of 2oC compared with pre-industrial levels. This target was confirmed by the Environment Councils of 20 December 2004 and 22-23 March 2005. Scientific insight shows that in order to have a high chance of meeting the EU policy target of limiting global temperature rise to 2oC above pre-industrial levels, global GHG concentrations may need to be stabilised at much lower levels, e.g. 450 ppm CO2-equivalent. Stabilisation of concentrations at well below 550 ppm CO2-equivalent may be needed and global GHG emissions would have to peak within two decades, followed by substantial reductions by 2050 compared with 1990 levels.
The EU Environment Council (October 2008) adopted the conclusion that to achieve stabilisation in an equitable manner, developed countries should reduce emissions by about 15-30% by 2020 and 80-95% by 2050, below the base year levels (1990).
The Copenhagen Accord (Dec. 2009) recognised the objective of keeping the maximum global average temperature rise below 2 °C, although without specifying the base year or period, and the need for a review in 2015 to consider a possible goal of limiting temperature rise to 1.5 °C using new scientific insights.
For atmospheric CO2, the global average values are directly taken from NOAA (2011).
Global average concentration values for the other gasses are mainly based on CDIAC (2011). Radiative forcings are calculated with approximate equation according to (IPCC, 2001; IPCC, 2007a), based on the observed atmospheric concentrations and using radiative efficiencies for CO2, CH4, and N2O based on IPCC (2007a), and according to WMO (2002) for the other gases. Slightly updated values became available for some substances (WMO, 2011a). However, too late for this assessment. Updates will be included in a next version. The equations used to compute the contribution of the individual gasses are presented below:
Trace gas |
Parameterisation, Radiative forcing, change in F (Wm-2) |
Constants |
---|---|---|
CO2 |
change in F = alpha ln (C/C0) C and C0 are the current and pre-industrial concentrations (ppm) of CO2, respectively |
alpha = 5.35 |
CH4 |
change in F = alpha (sq. root of M - sq. root of M0 ) - (f (M,N0) - f (M0,N0)) where f (M,N)= 0.47 ln [1+2.01*10-5 (MN)0.75 + 5.31*10-15 M(MN)1.52] M and M0 are the current and pre-industrial concentrations (ppb) of CH4, respectively; N and N0 are the current and pre-industrial concentrations (ppb) of N2O, respectively. |
alpha = 0.036 |
N2O |
change in F = alpha (sq. root of N - sq. root of N0 ) - (f (M0,N) - f (M0,N0)) where
f (M,N)= 0.47 ln [1+2.01*10-5 (MN)0.75 + 5.31*10-15 M(MN)1.52] M and M0 are the current and pre-industrial concentrations of CH4, respectively; N and N0 are the current and pre-industrial concentrations of N2O, respectively. |
alpha = 0.12 |
HFC, PFC & SF6 |
change in F = alpha (X-X0) X and X0 are the current and pre-industrial concentrations (ppb) of gas X, respectively. |
Values for alpha depend on molecule, and are taken from WMO, 2002. |
In order to calculate the concentration of all long-living Greenhouse Gasses also the Montreal Gasses (i.e. CFCs & HCFCs) need to be included. A similar approach is applied for these gasses
CFCs & HCFCs |
change in F = alpha (X-X0) X and X0 are the current and pre-industrial concentrations (ppb) of gas X, respectively. |
Values for alpha depending on molecule (see below), taken from WMO, 2002. |
Overview of used alpha values for chlorine Kyoto and Montral Gasses
Kyoto gasses |
Montreal gasses |
||
HFC-23 |
0.16 |
CFC-11 |
0.25 |
HFC-134a |
0.159 |
CFC-12 |
0.32 |
CF4 |
0.116 |
CFC-13 |
0.25 |
C2F6 |
0.26 |
CFC-113 |
0.3 |
SF6 |
0.52 |
CFC-114 |
0.31 |
CFC-115 |
0.18 |
||
|
|
HCFC-22 |
0.2 |
|
|
HCFC-141 |
0.14 |
|
|
HCFC-142 |
0.163 |
|
|
CCl |
0.13 |
|
|
CH4CC |
0.01 |
|
|
CH4CCl3 |
0.06 |
|
|
CH3Br |
0.05 |
In calculating the radiative forcing (and accompanying concentration levels) of the Montreal Protocol gases, the effect of ozone depleting substances on the stratospheric ozone layer was also considered. Velders et al (2007) estimated that the observed changes in stratospheric ozone between 2000 and 2010 contributed a forcing of -0.06 W.m2 (or about 10 ppm ppm CO2 eq.). To quantify the concentration of all greenhouse gases, important in relation to the 2oC target, the forcing of ozone, water vapor in the atmosphere and aerosols have been added. Due to uncertainties in the measurements and the large inter-annual and seasonal variation, the forcing is kept constant over the years for ozone and water vapour (IPCC, 2007a). These values are 0.35 and 0.07 W.m-2 for ozone and water vapor, respectively (IPCC, 2007a, pg 204). For aerosols a constant value of -1.2 W.m2 was used back to 2000. Between 1990 and 2000 2% higher values were assumed, and between 1970 and 1990 10% higher values (back to 1.35 W.m2 in 1970) (Bollen et al, 2009).
For all three representations of the GHG concentration (i.e. Kyoto gasses only, all long-living GHG and all Greenhouse gasses including zone and aerosols), the following approach has been used, adding the different climate forcing:
|
Ceq = C0 exp ((SUM change in F) / alpha) Ceq is the current CO2-equivalent concentration; C is the pre-industrial CO2 concentration. Summation is over radiative forcings of all greenhouse gases considered. |
alpha = 5.35 |
If measurements from a station are missing for a certain year, the global trend is derived from available stations data.
Global average concentrations since approximately 1980 are determined by averaging measurements from several ground-station networks (SIO, NOAA/CMDL,ALE/GAGE/AGAGE), each consisting of several stations distributed across the globe.
Absolute accuracies of global annual average concentrations are of the order of 1 % for CO2, CH4 and N2O, and CFCs; for HFCs, PFCs, and SF6, absolute accuracies can be up to 10-20 %. However, the year-to- year variations are much more accurate. Radiative forcing calculations have an absolute accuracy of 10% (IPCC, 2001); trends in radiative forcing are much more accurate.
The dominant sources of error for radiative forcing are the uncertainties in modelling radiative transfer in the Earths atmosphere and in the spectroscopic parameters of the molecules involved. Radiative forcing is calculated using parameterisations that relate the measured concentrations of greenhouse gases to radiative forcing. The overall uncertainty in radiative forcing calculations (all species together) is estimated to be 10 % (IPCC, 2001). Radiative forcing is also expressed as CO2-equivalent concentration; both have the same uncertainty. The uncertainty in the trend in radiative forcing/CO2-equivalent concentration is determined by the precision of the method rather than the absolute uncertainty discussed above. The uncertainty in the trend is therefore much less than 10 %, and is determined by the precision of concentration measurements (0.1 %).
It is important to note that global warming potentials are not used to calculate radiative forcing. They are used only to compare the time-integrated climate effects of emissions of different greenhouse gases.
Atmospheric concentrations of greenhouse gases are a well-established indicator of changes in atmospheric composition, which causes changes of the global climate system. Here we only present observed trends, having lower uncertainties than model projections.
Work specified here requires to be completed within 1 year from now.
Work specified here will require more than 1 year (from now) to be completed.
No resource needs have been specified
For references, please go to https://www.eea.europa.eu/data-and-maps/indicators/atmospheric-greenhouse-gas-concentrations or scan the QR code.
PDF generated on 2023.03.22 08:58
Engineered by: AÇA Web Ekibi
Software updated on 12 March 2023 21:56 from version 23.1.28
Software version: EEA Plone KGS 23.3.11