This page was archived on 22 Feb 2017 with reason: Other (No more updates will be done. Content about the urban environment can now be found under the topic "Sustainability transitions")
Greenhouse gas emission intensity of electricity generation in Europe

The greenhouse gas emission intensity of power generation in the EU has been continuously decreasing over the last three decades: generating 1 kilowatt hour in 2020 emitted, on average, half as much CO 2 as in 1990. Policies have been playing an important role in driving this shift towards less carbon-intensive energy sources, in particular those addressing climate change, renewable energy supply and efficient energy use, and industrial emissions. The Covid-19 pandemic hardly affected electricity use in 2020, but the continued growth of renewable electricity caused a further drop in the greenhouse gas emission intensity of electricity generation.

Read more

Imperviousness and imperviousness change in Europe

For the reference year 2015 ,  85 861 km 2   of the total area covered by the  EEA-39 countries were mapped and categorised as 'sealed surface' in the Copernicus imperviousness product. This corresponds to 1.466 % of the total EEA-39 area. Between 2006 and 2015, soil sealing (imperviousness) in all EEA-39 countries increased  by a total of 3 859 km2 , an annual average increase of 429 km 2 . During this period, the average annual increase in soil sealing relative to country area varied from 0 % to 0.088 %. In 2015, the percentage of a countries' total area that was sealed also varied greatly, with values ranging from 16.17 % (Malta) to 0.07 % (Iceland). The highest sealing values, as a percentage of country area, occurred in small countries with high population densities, while the lowest sealing values can be found in large countries with low population densities. The average annual increase in sealing was 460 km 2 between 2006-2009, increasing to 492 km 2 for the 2009-2012 period and slowing to 334 km 2 for the 2012-2015 period. The slow-down in the sealing increase between the two reference  periods occurred in 31 out of 39 countries. The same trend is visible for sealing figures normalised by the size of the country (the % of the country newly sealed on average annually for the three periods). The most problematic situation occurs in countries where there is already a high percentage of sealing and where the annual rate of increase relative to country area is high. Even more problematic are situations where, for 2012-2015,  the rate of sealing increase is accelerating, in contrast to the general trend of a slowing rate of increase.  

Read more


Document Actions