

Evaluating the impact on innovation and climate policies on emissions: where do we stand?

EEEN September 2016 DG CLIMA

Policymakers need ex-post evaluation:

why are emissions going down? What is the impact of climate policies on emissions?

Track progress - development of EU greenhouse gas emissions, 1990-2014

Total

1990-2013

Per sector

Ex-post evaluation: changes in GHG emissions mainly driven by technological changes

New approach based on decomposition to explain progress in terms of GHG intensity

Decomposition analysis identifies:

- Technological improvements (shift towards less carbonintensive technologies) as main driving force behind GHG emission reduction
- Small impact of structural changes in the economy

Source: European Commission

Ex-post evaluation: electricity sector

- Carbon intensity of thermal public electricity and heat generation
- Share of biomass for public electricity and heat in thermal power plants
- Fuel efficiency of public thermal power plants
- Share of heat production in thermal electricity and heat generation
- Share of electricity generation by autoproducers
- Share of hydro and geothermal in electricity generation
- Share of solar in total electricity generation
- Share of wind in total electricity generation
- Share of nuclear in total electricity generation
- Share of domestic electricity production in total electricity consumption
- Electricity demand

Total emission change

Key drivers:

Increasing demand (+)

Increased share of RES: wind, solar & biomass (-)

Increased fuel efficiency (-)

→ Overall emissions have decreased (-)

Household sector

Passenger transport sector

Passenger transport

Key drivers:

Increasing demand for passenger transport (+)

Increasing car efficiency (-)

Increasing use of biofuel (-)

Modal shift (small) (-)

→ Overall emissions have decreased (-)

Ex-post evaluation: milk sector

Decomposition analysis (LMDI-I) of CH4 emissions for 'EU-28'

Estimating the effect of the EU ETS on emissions

Counterfactual scenario estimated with econometrics modelling (dashed blue)

Difference with verified emissions: 185 Mt in 2012

Estimates in line with the scientific literature

*ETS emissions are scoped or mapped using Eurostat data for the years preceding the ETS

Estimating the effect of Taxation, Renewable and other policies

Name of the effect	Effect on total emissions:
Activity Effect: + 1% GDP	+ 0.22% CO ₂ emissions
Combined Intensity and Fuel-Mix Effect: + 1 National Climate Policy + 1% (Energy Tax Revenues /GDP) + 1% Share of Renewable Energy Use in Tot. + 1% Others	- 0.02% CO ₂ emissions - 0.09% CO ₂ emissions - 0.15% CO ₂ emissions 0% (not significantly different from zero)
Other Factors: + 1% heating degree days + 1% Others	+ 0.20% CO ₂ emissions 0% (not significantly different from zero)

Basic Econometric Structural Decomposition

Model: $ln([re]_it)=constant+ \beta_re ln[([re]_(it-1))+\beta_nr ln([nonrenewable])]$ $_it)+\beta_pol [Policies]_(it-1)+ [[\beta^']_prices [[Prices]_(it-1)+]] [[\beta']_con [Controls]_it+\epsilon_it]$

> Assess the impact of tax, renewable share and the number of PAMs (as listed in the *IEA Climate Policies and Measures database)* on emissions

*ETS emissions are scoped or mapped using Eurostat data for the years preceding the ETS

Estimating the effect of Taxation, Renewable and other policies (II)

- Renewable has a large impact on emission reductions
- Energy taxation also contributes to emission reductions

Questions?

Thanks for your attention!

