Climate change mitigation - National Responses (Germany)

SOER 2010 Common environmental theme (Deprecated) expired
This content has been archived on 21 Mar 2015, reason: A new version has been published
SOER Common environmental theme from Germany
Climate change Climate change
more info
German Federal Environment Agency
Organisation name
German Federal Environment Agency
Reporting country
Organisation website
Organisation website
Contact link
Contact link
Last updated
23 Nov 2010
Content license
CC By 2.5
Content provider
German Federal Environment Agency
Published: 26 Nov 2010 Modified: 21 Mar 2015 Feed synced: 23 Nov 2010 original

Responses at the national level – energy

Proportion of renewable energies in primary and final energy consumption

There has been a marked upward trend in renewable energies in recent years. According to provisional figures from the Federal Environment Ministry together they accounted for 8.7 % of the total PEC in 2009. This means that in 2009 Germany had already exceeded, by 4.5 percentage points, its target under the 2000 Sustainability Strategy of increasing the proportion of renewable energies in primary energy consumption by 4.2 % by 2010 compared to 2000 levels.

In terms of final energy consumption, renewable energies accounted for 10.4 % of the total in 2009. This broke down into a 16.3 % share of gross electricity consumption, an 8.8 % share of final energy consumption for heating and a 5.5 % share of fuel consumption.

Use of renewable energies for electricity production:

In 2009 Germany’s share of renewable energies in gross electricity consumption reaching 16.3 % exceeded the 2010 target of 12.5 % set by EU Directive 2001/77/EC. The amended Renewable Energy Act, which entered into force in 2009, aims at increasing the share of renewables to a minimum of 30 % by 2020 and to achieve a further steady increase thereafter.

The growth in electricity production from renewables in recent years has particularly been the result of using wind energy, biomass and photovoltaics. In 2009 38.6 TWh of electricity were produced from wind energy, overtaking hydroelectricity as the most important renewable source of energy.

Use of renewable energies for heating:

The total heating produced from renewable energies in 2009 was around 115 TWh. The largest share of it, around 105.3 TWh, was accounted for by the use of biomass energy in private households, heating plants and combined heat and power stations, and industry. Solar energy accounted for around 4.7 TWh and geothermal energy for around 5.0 TWh. This meant that the total share of renewable energies in heating production was 8.8 %.

The Renewable Energies Heating Act (EEWärmeG) came into force in January 2009. Since then developers constructing a new building have been required – depending on the renewable technology in question – to use a certain proportion of renewable energy for the energy supply in their building, stipulated in the Act. Alternatively owners can improve building insulation or connect to a heating network.

The market incentive programme introduced in 1999 aims primarily at expanding the heat generation from biomass, solar power and geothermal energy has been particularly important for housing stock in offering aid in the form of investment grants and low-interest loans. In recent years the programme has played a major role in increasing heat production from biomass, solar energy and geothermal energy. The aim of the Renewable Energies Heating Act is to increase the proportion of renewable energies in final energy consumption for heating to 14 % by 2020.

Use of renewable energies in the transport sector:

For a number of years now greater use has been made of biogenic fuels in the transport sector. These are vegetable oils, biodiesel and bioethanol, which are used both in a pure form – particularly vegetable oils – and mixed with conventional fuels – particularly biodiesel and bioethanol. The share of biofuels in total fuel consumption increased sharply up to 2007, but has declined since 2008. In 2009 the figure stood at 5.5 %.

The act amending the promotion of biofuels adopted in 2009 and set a target for biofuels, account for 6.25 % of total fuel consumption for 2010-2014. This will ensure that the national development target of 5.75 % in 2010 under Directive 2003/30/EC will be met. From 2015 the energy quota will be replaced by a target for net GHG reduction through biofuels of 3 % by 2015, 4.5 % by 2017 and 7 % by 2020 corresponding to biofuels providing a share of approximately 12 % of fuel consumption by 2020.

Greenhouse gas emissions prevented through the use of renewable energies

The growing use of renewable energies is reducing GHG emissions from the energy sector and is playing an important part in meeting mitigation targets. Germany has the target to cut its GHG emissions by 40 % from 1990 levels by 2020.

In 2009 the use of renewable energies reduced emissions by around 109 million tonnes CO2e. The electricity sector reduced its missions by 72.4 million tonnes of CO2e. Of this, some 57 million tonnes were accounted for by EEG Renewable Energy Sources Act. For heating around 31.3 million tonnes CO2 equivalent were avoided and in the fuel sector around 5.1 million tonnes. Taking CO2 emissions on their own, around 107 million tonnes CO2 were saved in 2009 through the use of renewable energies.

Energy efficiency of electricity production

Another important factor in reducing GHG emissions has been the increase in the conversion efficiency of fossil primary energy used in electricity production. Annual CO2 emissions from electricity production in public and industrial power plants account for around 41 % of total energy-related emissions in Germany.

The average conversion efficiency of fossil-fuel power stations in Germany has increased considerably since 1990, with the average fuel utilisation rate rising from 36.4 % in 1990 to 40.7 % in 2009. This was mainly due to the replacement of old power stations with newer and noticeably more energy efficient ones, in other words they produce more electricity from the same quantity of primary energy. In addition, there has also been the forced construction of gas power stations, which, as highly efficient combined cycle plants, are much more efficient than other fossil-fuel power stations.


Co-generation – CHP or combined heat and power – is defined as the simultaneous production of heat and electricity or mechanical energy. With CHP fuel utilisation rates of more than 90 % can be reached, making it very efficient in the use of primary energy, thereby helping to reduce CO2 emissions. In 2007 co-generation plants produced around 12 % of the Germany’s electricity.

To encourage the expansion of co-generation, the amended CHP Act came into force on January 1st, 2009. Its aim is to help to increase the CHP share of electricity production to 25 % by 2020. Co-generated electricity is subsidised with a graduated bonus for every kilowatt hour of electricity produced; grants are also provided to promote the construction and extension of heating networks. The latest statistics do not yet indicate whether this has had the desired effect of giving the expansion of CHP a fresh impetus, since reliable data are only available up to 2008. Given the lengthy planning process of major power plants the Act will become effective in the future.

According to figures from the Federal Statistical Office the net electricity production in CHP plants supplying the public and industry in 2008 was 79 TWh, a similar level to the previous year. The percentage of net heating produced by CHP for these sectors remained at around 90 %. Between 2004 and 2008 the fuel utilisation for coal in CHP plants decreased by 25 %, from 24 TWh to 18 TWh, while the proportion of gas as a primary energy source rose by about 20 % over the same period, from 43.6 TWh to 52.5 TWh. The sector is experiencing a switch towards lower-carbon gas fuels reducing emissions even further.

Responses at national level - transport

Energy consumption per journey

Transport consumes petrol, diesel, and electricity. Energy consumption fell slightly from 1999 to 2008. The freight and passenger transport performance over the same period increased but with less energy used (energy consumption per journey). This reduction can be put down to technical advances: the average energy consumption – in mega joules per tonne-kilometre (mJ/tonne-km) or passenger-km (mJ/passenger-km) – has fallen in freight transport in recent years by around 18 % compared with 1999, and in passenger transport by 10.5 %. This reduction in energy consumption has, however, been offset by growth in the freight transport sector, resulting in an increase of 10.7 % in the sector’s absolute energy consumption. Passenger transport energy consumption, however, fell by 4.6 % over the reference period.

Specific emissions from transport

The gradual tightening of exhaust requirements for newly registered cars, the fitting of catalytic converters to older vehicles and better fuel quality have also led to a reduction in specific emissions per passenger-km compared with 1991 in all fields. The proportion of less polluting cars has grown considerably, and this is also reflected in a reduction in specific pollutant emissions from road transport in Germany. The considerable reductions in sulphur dioxide (SO2) to 2 % and volatile organic compounds (VOC) to 6 % compared with the much smaller reduction in CO2 to 78 %.

With reference to total emissions from private motorised transport, it is clear that the emission reductions per passenger-km resulting from technological improvements are entirely offset for CO2 and partly offset for other pollutants by the overall increase in transport performance.

See also the Federal Environment Agency’s ‘Concept for a future climate policy – Plotting a new course in 2009’:


The country assessments are the sole responsibility of the EEA member and cooperating countries supported by the EEA through guidance, translation and editing.

European Environment Agency (EEA)
Kongens Nytorv 6
1050 Copenhagen K
Phone: +45 3336 7100