# 3. Air quality in the Phare countries

So far, an overview of air quality information from central and east European countries has been difficult to get, partly due to poor availability of data and sometimes low reliability and comparability. Nevertheless, various European and national reports or other information sources highlight the variability in air quality in this area. This corresponds with the large variation in emission density, orography, climate, meteorological conditions and land-use through the territory of the Phare countries. Industrial areas, overloaded with obsolete heavy industry still provide air pollution hot spots. On the other hand, there are large areas of forest and other areas with a very low population — particularly in the northern part of the Phare area. These belong to some of the cleanest areas in Europe.

This chapter focuses on the presentation of the 1997 air quality data transmitted by the Phare countries — predominately from Euroairnet sites — in the first reporting cycle in accordance with the EoI decision (97/101/EC). Implementation of the Euroairnet in the Phare countries will lead to unification of air quality monitoring procedures, which will ensure more objective, reliable and comparable information on air quality across Europe. The extent and completeness of air quality data transmitted has been described in the previous chapter.

Air quality trends in urban areas of the Phare countries are presented in the following subchapter. In order to identify areas and pollutants for which future problems of compliance with the European air quality directives might be expected, the frequency of exceedance of health-related air quality limit values, as defined in the new daughter Directive 99/30/EC, has been evaluated.

The last part of this chapter offers an approach for modelling the spatial pollutant concentration distribution within the Phare countries based upon the relationships between the measured pollutant concentrations and surrogate data (e.g. emissions estimates per unit area or land cover statistics).

#### 3.1. Air quality monitoring results in 1997

Tables 3.1–3.5 summarise air quality in the Phare countries in 1997 on a country-by-country basis and by station type for  $SO_2$ , PM, NO<sub>2</sub>, CO and ozone respectively. For each country and station type, the arithmetic average concentration from the number of sites given in brackets is presented followed by the range of concentration statistics. Statistics, as described in Decision 97/101/EC are calculated and presented in these tables for sulphur dioxide, particulate matter (BS — black smoke, TSP and PM<sub>10</sub>), nitrogen dioxide, carbon monoxide and ozone.

For all pollutants, air quality data are also presented in maps (Figures 3.1–3.5) as spots varying in size and colour on a station-by-station basis (rural, urban background, traffic and other stations).

Table 3.6 shows summary statistics for the Phare region as a whole — maximum, 98th percentile, 95th percentile, 90th percentile, 75th percentile, median, 25th percentile, 10th percentile and minimum value are presented. These statistics have been calculated from annual sets of daily concentrations for each type of station in the whole Phare area for sulphur dioxide, particulate matter ( $PM_{10}$ , SPM and black smoke), nitrogen dioxide and ozone. As expected, with exception of ozone, the lowest concentrations for all components were measured on rural stations. The highest concentrations of SO<sub>2</sub> are associated with industrial and urban background sites. The 98th percentile of SO<sub>2</sub> is in range from 139 µg.m<sup>-3</sup> at industrial stations to 84 µg.m<sup>-3</sup> at rural stations. Median of SO<sub>2</sub> daily concentrations ranges from 22 µg.m<sup>-3</sup> at traffic to 8 µg.m<sup>-3</sup> at rural sites. The 98th percentile of  $PM_{10}$  is in range from 187 µg.m<sup>-3</sup> at industrial stations to 85 µg.m<sup>-3</sup> at rural stations. The median of  $PM_{10}$  daily concentrations ranges from 48 µg.m<sup>-3</sup> at traffic to 20 µg.m<sup>-3</sup> at rural sites. The 98th percentile of PM<sub>10</sub> solutions are statistics.

Table. 3.1

of SPM is in range from 149  $\mu$ g.m<sup>-3</sup> at traffic stations to 139  $\mu$ g.m<sup>-3</sup> at urban background stations. The median of SPM daily concentrations ranges from 46  $\mu$ g.m<sup>-3</sup> at traffic and urban stations to 36  $\mu$ g.m<sup>-3</sup> at industrial sites. There were no measurements of SPM at rural type sites. The highest concentrations of NO<sub>2</sub> are associated with traffic and urban background sites according to this analysis. The 98th percentile of NO<sub>2</sub> is in the range 91  $\mu$ g.m<sup>-3</sup> at traffic type to 42  $\mu$ g.m<sup>-3</sup> at rural stations. The median of NO<sub>2</sub> daily concentrations ranges from 43  $\mu$ g.m<sup>-3</sup> at traffic to 10  $\mu$ g.m<sup>-3</sup> at rural sites. Although this analysis indicates that the classification of stations is generally correct, the presence of zero concentrations as minimum value, instead of half of measurement method detection limit, indicates that it may be necessary to check QA/QC procedures and improve data verification procedures

|                 |                 | SO <sub>2</sub> co      | ncentrations by count     | ry and by station ty |
|-----------------|-----------------|-------------------------|---------------------------|----------------------|
|                 | Annual ave      | erage: average and rai  | nge (µg.m <sup>-3</sup> ) |                      |
| Country         | Rural           | Urban                   | Traffic                   | Industrial           |
| Bulgaria        |                 | 65(6). 26–94            |                           |                      |
| Czech Republic  | 18(19). 5–37    | 28(34). 16–43           | 26(2). 25–28              | 26(1)                |
| Estonia         |                 |                         | 5(1)                      | 8(2). 7–9            |
| Hungary         | 10(4). 5–17     | 42(3). 38–45            | 49(4). 46–51              | 35(1)                |
| Latvia          | 2(2). 2–2       |                         |                           |                      |
| Lithuania       |                 |                         | 8(1)                      |                      |
| FYROM           |                 | 25(12). 6–83            | 39(8). 13–69              | 32(4). 9–70          |
| Poland          |                 | 25(12). 10–51           |                           |                      |
| Slovak Republic |                 | 29(13). 15–63           | 24(8). 15–31              | 31(9). 6–64          |
| Slovenia        |                 | 39(2). 35–43            | 23(1)                     |                      |
| Phare           | 15(25). 1–37    | (3 182). 6–94           | 32(25). 5–69              | 29(17). 6–70         |
|                 | 98th perce      | entile: average and rar | nge (µg.m⁻³)              |                      |
| Country         | Rural           | Urban                   | Traffic                   | Industrial           |
| Bulgaria        |                 | 187(1)                  |                           |                      |
| Czech Republic  | 80(19). 27–164  | 129(33). 67–220         | 124(2). 112–135           | 117(1)               |
| Estonia         | 1(1)            |                         | 13(1)                     | 26(2). 24–28         |
| Hungary         | 49(4). 27–83    | 100(3). 98–102          | 100(4). 97–103            | 86(1)                |
| Latvia          | 7(2). 6–8       |                         |                           |                      |
| Lithuania       |                 |                         | 27(1)                     |                      |
| FYROM           |                 | 90(11). 17–208          | 137(7). 46–282            | 111(4). 30–246       |
| Poland          |                 | 94(10). 44–170          |                           |                      |
| Slovak Republic |                 | 124(9). 47–263          | 82(6). 56–137             | 135(7). 49–292       |
| Slovenia        |                 | 109(1)                  | 66(1)                     |                      |
| Phare           | 66(26). 1–164   | 116(68). 17–263         | 100(22). 13–282           | (10 915). 24–292     |
|                 | 24-h maxi       | mum: average and ran    | ge (µg.m <sup>-3</sup> )  |                      |
| Country         | Rural           | Urban                   | Traffic                   | Industrial           |
| Bulgaria        |                 | 242(1)                  |                           |                      |
| Czech Republic  | 183(19). 64–548 | 286(33). 128–752        | 187(2). 158–216           | 161(1)               |
| Estonia         | 2(1)            |                         | 17(1)                     | 54(2). 42–65         |
| Hungary         | 109(4). 39–204  | 151(3). 143–158         | 132(4). 120–146           | 124(1)               |
| Latvia          | 8(2). 6–10      |                         |                           |                      |
| Lithuania       |                 |                         | 45(1)                     |                      |
| FYROM           |                 | 245(11). 33–678         | 346(7). 120–604           | 209(4). 52–457       |
| Poland          |                 | 181(10). 92–326         |                           |                      |
| Slovak Republic |                 | 340(9). 75–1 029        | 149(6). 74–291            | 410(7) 80–1 159      |
| Slovenia        |                 | 190(1)                  | 83(1)                     |                      |
| Phare           | (26). 2–548     | (68). 33–1 029          | (22). 17–604              | (15). 42–1 159       |

**NB:** Figure between brackets = number of stations.

Table 3.2

#### PM concentrations by country and by station type

| Annual average: average and range (μg.m <sup>-3</sup> ) |                 |                       |                                 |                 |                  |  |
|---------------------------------------------------------|-----------------|-----------------------|---------------------------------|-----------------|------------------|--|
| Country                                                 | Rural           | Urban                 | Traffic                         | Industrial      | Note             |  |
| Estonia                                                 |                 |                       | 36(1)                           |                 | TSP              |  |
| Hungary                                                 |                 | 55(3). 50–59          | 53(4) 43–64                     | 68(1)           | TSP              |  |
| Slovak Republic                                         |                 | 51(8). 36–74          | 49(6). 21–65                    | 44(9). 31–90    | TSP              |  |
| Czech Republic                                          | 25(19). 13–51   | 38(34). 24–60         | 51(2). 50–52                    | 38(1)           | PM <sub>10</sub> |  |
| Poland                                                  |                 | 50(6). 34–59          | 77(1)                           | 73(1)           | PM <sub>10</sub> |  |
| FYROM                                                   |                 | 23(15). 5–42          | 29(8). 11–48                    | 25(4). 12–36    | BS               |  |
| Poland                                                  |                 | 23(6). 10–35          |                                 |                 | BS               |  |
|                                                         | 98th p          | oercentile: average a | and range (µg.m <sup>-3</sup> ) | ·               |                  |  |
| Country                                                 | Rural           | Urban                 | Traffic                         | Industrial      | Note             |  |
| Estonia                                                 |                 |                       | 332(1)                          |                 | TSP              |  |
| Hungary                                                 |                 | 127(3). 124–130       | 120(3). 106–138                 | 162(1)          | TSP              |  |
| Slovak Republic                                         |                 | 121(5). 66–162        | 127(3). 97–153                  | 110(8). 73–221  | TSP              |  |
| Czech Republic                                          | 73(19). 34–174  | 119(33). 67–168       | 148(2). 146–150                 | 116(1)          | PM <sub>10</sub> |  |
| Poland                                                  |                 | 145(4). 102–188       | 210(1)                          | 187(1)          | PM <sub>10</sub> |  |
| FYROM                                                   |                 | 90(14). 19–194        | 107(7). 32–162                  | 107(4). 62–139  | BS               |  |
| Poland                                                  |                 | 88(6). 42–143         |                                 |                 | BS               |  |
|                                                         | 24-h r          | naximum: average a    | and range (µg.m <sup>-3</sup> ) |                 |                  |  |
| Country                                                 | Rural           | Urban                 | Traffic                         | Industrial      | Note             |  |
| Estonia                                                 |                 |                       | 492(1)                          |                 | TSP              |  |
| Hungary                                                 |                 | 191(3). 181–210       | 173(3). 165–186                 | 233(1)          | TSP              |  |
| Slovak Republic                                         |                 | 188(5). 90–334        | 173(3). 122–231                 | 164(8). 109–285 | TSP              |  |
| Czech Republic                                          | 139(19). 55–330 | 232(33). 101–502      | 285(2). 266–303                 | 268(1)          | PM <sub>10</sub> |  |
| Poland                                                  |                 | 208(4). 138–294       | 279(1)                          | 399(1)          | PM <sub>10</sub> |  |
| FYROM                                                   |                 | 161(14). 31–454       | 241(7). 106–338                 | 224(4). 100–427 | BS               |  |
| Poland                                                  |                 | 203(6). 91–326        |                                 |                 | BS               |  |

#### $\ensuremath{\mathsf{NO}}_2$ concentrations by country and by station type

#### Table 3.3

|                 | Annual ave     | erage: average and ra   | nge (µg.m <sup>-3</sup> ) |                |
|-----------------|----------------|-------------------------|---------------------------|----------------|
| Country         | Rural          | Urban                   | Traffic                   | Industrial     |
| Bulgaria        |                | 13(4). 3–24             |                           |                |
| Czech Republic  | 14(16). 5–23   | 33(25). 23–48           | 46(1)                     |                |
| Estonia         |                |                         | 37(1)                     | 6(2). 5–7      |
| Hungary         | 8(4). 3–14     | 53(3). 39–66            | 50(4). 31–61              | 25(1)          |
| Latvia          | 2(2). 2–2      |                         |                           |                |
| Lithuania       |                |                         | 35(1)                     |                |
| Poland          | 21(1)          | 31(13). 20–46           | 68(2). 68–68              | 23(1)          |
| Slovak Republic |                | 27(12). 10–41           | 38(8). 28–53              | 23(9). 18–29   |
| Slovenia        |                | 17(1)                   | 51(1)                     |                |
| Phare           | 12(23). 1–23   | 31(58). 3–66            | 45(18). 28–68             | 21(13). 5–29   |
|                 | 98th perce     | entile: average and rai | nge (µg.m⁻³)              |                |
| Country         | Rural          | Urban                   | Traffic                   | Industrial     |
| Czech Republic  | 40(16). 18–66  | 70(25). 57–85           | 89(1)                     |                |
| Estonia         |                |                         | 67(1)                     | 31(2). 28–34   |
| Hungary         | 18(4). 10–26   | 94(3). 82–104           | 85(4)67–97                | 60(1)          |
| Latvia          | 5(2). 4–6      |                         |                           |                |
| Lithuania       |                |                         | 59(1)                     |                |
| Poland          | 50(1)          | 61(10). 46–78           | 112(2). 112–112           |                |
| Slovak Republic |                | 79(7). 60–126           | 74(6). 57–101             | 53(8). 40–81   |
| Slovenia        |                | 47(1)                   |                           |                |
| Phare           | 33(23). 2–66   | 70(46). 47–126          | 81(15). 57–112            | 50(11). 2881   |
|                 | 24-h maxi      | mum: average and rar    | nge (µg.m <sup>.</sup> 3) |                |
| Country         | Rural          | Urban                   | Traffic                   | Industrial     |
| Czech Republic  | 72(16). 34–111 | 114(25). 79–181         | 142(1)                    |                |
| Estonia         |                |                         | 77(1)                     | 48(2). 47–49   |
| Hungary         | 27(4). 16–40   | 120(3). 98–141          | 103(4). 75–126            | 73(1)          |
| Latvia          | 7(2). 6–8      |                         |                           |                |
| Lithuania       |                |                         | 64(1)                     |                |
| Poland          | 85(1)          | 85(10). 63–123          | 155(2). 155–155           |                |
| Slovak Republic |                | 98(7). 69–152           | 99(6). 76–137             | 71(8). 55–104  |
| Slovenia        |                | 69(1)                   |                           |                |
| Phare           | 59(23). 3–111  | 105(46). 63–181         | 106(15). 64–142           | 67(11). 47–104 |

**Note:** Figure between brackets = number of stations.

Table 3.4

#### CO concentrations by country and by station type

|                 | Annual a               | verage: average and ra | ange (µg.m <sup>-3</sup> )  |                     |
|-----------------|------------------------|------------------------|-----------------------------|---------------------|
| Country         | Rural                  | Urban                  | Traffic                     | Industrial          |
| Bulgaria        |                        | 1 336(6). 395–2 542    |                             |                     |
| Czech Republic  | 352(2). 308–396        | 669(21). 368–914       | 1 174(1)                    | 906(1)              |
| Estonia         |                        |                        | 1158(1)                     |                     |
| Hungary         |                        | 2 158(3). 2 116–2 202  | 2 744(4). 2 494–2 902       | 2 435(1)            |
| Lithuania       |                        |                        | 2 230(1)                    |                     |
| Poland          |                        | 983(1)                 | 2 860(1)                    |                     |
| Slovak Republic |                        |                        | 1 100(5). 769–1 462         | 221(1)              |
| Phare           | 352(2). 308–396        | 952(31). 368–2 542     | 1 838(13). 769–2 902        | 1 187(3). 221–2 435 |
|                 | 98th percentile: avera | ge and range (8-hourly | v moving average) (µg.      | m⁻³)                |
| Country         | Rural                  | Urban                  | Traffic                     | Industrial          |
| Bulgaria        |                        | 2 013(1)               |                             |                     |
| Czech Republic  | 807(2). 739–876        | 1 984(17). 1 381–2 823 | 3 042(1)                    | 2 275(1)            |
| Estonia         |                        |                        | 3 185(1)                    |                     |
| Hungary         |                        | 3 915(2). 3 445–4 385  | 5 232(4)4 278–5 889         |                     |
| Lithuania       |                        |                        | 5 208(1)                    |                     |
| Poland          |                        |                        | 6 256(1)                    |                     |
| Slovak Republic |                        |                        | 3 470(3). 2 359–4 773       |                     |
| Phare           | 807(2). 739–876        | 2 178(20). 1 381–4 385 | 4 456(11). 2 359–6 256      | 2 275(1)            |
|                 | 8-h max                | imum: average and rar  | nge (µg.m⁻³)                |                     |
| Country         | Rural                  | Urban                  | Traffic                     | Industrial          |
| Bulgaria        |                        | 3 950(1)               |                             |                     |
| Czech Republic  | 1 094(2). 1 036–1 151  | 3 836(17) 2 031–7 402  | 4 783(1)                    | 5 531(1)            |
| Estonia         |                        |                        | 6 137(1)                    |                     |
| Hungary         |                        | 5 716(2). 5 321–6 110  | 8 626(4). 6 880–10 894      |                     |
| Lithuania       |                        |                        | 11 161(1)                   |                     |
| Poland          |                        |                        | 11 506(1)                   |                     |
| Slovak Republic |                        |                        | 5 354(3). 3 273–7 871       |                     |
| Phare           | 1 094(2). 1 036–1 151  | 4 030(20). 2 031–7 402 | 7 650(11).<br>3 273–11 506– | 5 531(1)            |

**Note:** Figure between brackets = number of stations.

Ozone concentrations by country and by station type

### Table 3.5

|                 |                   | 020110 00               | incentrations by count          | ry and by station type |
|-----------------|-------------------|-------------------------|---------------------------------|------------------------|
|                 | Max. 1-h          | our: average and rang   | e (µg.m <sup>-3</sup> )         |                        |
| Country         | Rural             | Urban                   | Traffic                         | Industrial             |
| Czech Republic  | 167(13).135–200   | 169(16). 127–200        |                                 | 147(1)                 |
| Estonia         | 166(1)            |                         | 122(1)                          |                        |
| Hungary         | 184(4). 165–199   | 157(1)                  |                                 |                        |
| Lithuania       |                   | 130(3). 122–143         | 180(1)                          |                        |
| Poland          | 155(7). 136–175   | 176(7). 141–222         |                                 |                        |
| Slovak Republic | 174(3). 130–232   | 147(5). 126–172         | 142(2). 124–159                 | 148(3). 135–166        |
| Slovenia        | 198(2). 193–203   | 248(2). 210–285         |                                 |                        |
| Phare           | 169(30). 130–232  | 168(34). 126–285        | 146(4). 122–180                 | 148(4). 135–166        |
|                 | Max. 8-hour (movi | ing average): average   | and range (µg.m <sup>-3</sup> ) |                        |
| Country         | Rural             | Urban                   | Traffic                         | Industrial             |
| Czech Republic  | 149(13). 121–163  | 148(16). 107–187        |                                 | 131(1)                 |
| Estonia         | 152(1)            |                         | 107(1)                          |                        |
| Hungary         | 165(4). 146–177   | 136(1)                  |                                 |                        |
| Lithuania       |                   | 120(3).113–127          | 157(1)                          |                        |
| Poland          | 146(7). 130–167   | 148(7). 125–175         |                                 |                        |
| Slovak Republic | 123(3). 104–149   | 128(5). 112–145         | 116(2). 97–135                  | 132(3). 124–145        |
| Slovenia        | 174(2). 161–187   | 179(2). 162–195         |                                 |                        |
| Phare           | (30). 104–187     | (34). 107–195           | (4). 97–157                     | (4). 131–145           |
|                 | Averag            | e: average and range    | (µg.m⁻³)                        |                        |
| Country         | Rural             | Urban                   | Traffic                         | Industrial             |
| Bulgaria        |                   | 53(5). 16–122           |                                 |                        |
| Czech Republic  | 66(13). 44—81     | 44(17). 29–57           |                                 | 35(1)                  |
| Estonia         | 65(2). 59–72      |                         | 34(1)                           |                        |
| Hungary         | 69(4). 55–77      | 50(1)                   |                                 |                        |
| Latvia          | 50(1)             |                         |                                 |                        |
| Lithuania       |                   | 51(4). 48–55            | 38(1)                           |                        |
| Poland          | 56(8). 35–81      | 39(8). 27–51            |                                 |                        |
| Slovak Republic | 54(3). 31–80      | 49(9). 38–80            | 33(2). 30–36                    | 47(3). 42–51           |
| Slovenia        | 78(2). 57–99      | 38(2). 36–39            | 36(1)                           |                        |
| Phare           | (33). 31–81       | (46). 16–122            | (5). 30–36                      | (4). 35–51             |
|                 | 98th perce        | entile: average and rar | ıge (µg.m⁻³)                    |                        |
| Country         | Rural             | Urban                   | Traffic                         | Industrial             |
| Czech Republic  | 118(13). 93–134   | 110(16).74–130          |                                 | 99(1)                  |
| Estonia         | 121(1)            |                         | 72(1)                           |                        |
| Hungary         | 128(4). 112–143   | 106(1)                  |                                 |                        |
| Lithuania       |                   | 93(3). 90–97            | 98(1)                           |                        |
| Poland          | 109(7). 94–124    | 101(7).81–116           |                                 |                        |
| Slovak Republic | 92(3). 67–118     | 98(5). 82–109           | 84(2). 69–99                    | 104(3). 97–108         |
| Slovenia        | 140(2). 130–151   | 118(2). 112–123         |                                 |                        |
| Phare           | (30). 67–151      | (34). 74–130            | (4). 69–99                      | (4). 97–108            |
|                 | 24-h maxir        | num: average and ran    | ge (µg.m <sup>-3</sup> )        |                        |
| Country         | Rural             | Urban                   | Traffic                         | Industrial             |
| Bulgaria        |                   | 67(1)                   |                                 |                        |
| Czech Republic  | 130(13). 89–156   | 105(16). 73–141         |                                 | 88(1)                  |
| Estonia         | 134(1)            |                         | 82(1)                           |                        |
| Hungary         | 132(4). 115–142   | 92(1)                   |                                 |                        |
| Lithuania       |                   | 97(3). 90–107           |                                 |                        |
| Poland          | 113(7). 95–141    | 95(7). 74–128           |                                 |                        |
| Slovak Republic | 99(3). 67–131     | 98(5). 84–106           | 83(2). 68–97                    | 99(3). 93–107          |
| Slovenia        | 160(2). 148–172   | 143(2). 138–148         | 87(1)                           |                        |
| Phare           | (30). 67–172      | (35). 67–148            | (4). 68–97                      | (4). 88–107            |
|                 | 1                 | 1                       | 1                               | 1                      |













|                  | the Phare region, 1997 |       |                    |                    |                    |                    |                    |                    |                    |      |
|------------------|------------------------|-------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|------|
| Type of station  | Pollutant              | Max.  | 98th<br>percentile | 95th<br>percentile | 90th<br>percentile | 75th<br>percentile | 50th<br>percentile | 25th<br>percentile | 10th<br>percentile | Min. |
| Urban background |                        | 1 029 | 133                | 93                 | 64                 | 35                 | 18                 | 9                  | 5                  | 0    |
| Traffic          |                        | 604   | 122                | 83                 | 60                 | 41                 | 22                 | 11                 | 5                  | 0    |
| Industrial       | SO2                    | 1159  | 139                | 92                 | 61                 | 33                 | 17                 | 9                  | 5                  | 0    |
| Rural            |                        | 548   | 84                 | 50                 | 34                 | 17                 | 8                  | 3                  | 1                  | 0    |
| All              |                        | 1 159 | 125                | 85                 | 58                 | 33                 | 16                 | 8                  | 4                  | 0    |
| Urban background |                        | 502   | 130                | 96                 | 73                 | 47                 | 30                 | 20                 | 14                 | 2    |
| Traffic          | -                      | 303   | 187                | 147                | 110                | 73                 | 48                 | 33                 | 23                 | 7    |
| Industrial       | PM <sub>10</sub>       | 399   | 170                | 130                | 104                | 68                 | 45                 | 28                 | 18                 | 6    |
| Rural            |                        | 330   | 85                 | 60                 | 46                 | 31                 | 20                 | 12                 | 8                  | 1    |
| All              | -                      | 502   | 128                | 93                 | 70                 | 44                 | 28                 | 18                 | 12                 | 1    |
| Urban background |                        | 334   | 139                | 117                | 97                 | 67                 | 46                 | 31                 | 21                 | 5    |
| Traffic          | SPM                    | 492   | 149                | 119                | 95                 | 68                 | 46                 | 30                 | 0                  | 0    |
| Industrials      | 55101                  | 285   | 146                | 110                | 88                 | 59                 | 36                 | 24                 | 16                 | 0    |
| All              |                        | 492   | 146                | 115                | 94                 | 64                 | 43                 | 28                 | 17                 | 0    |
| Urban background |                        | 454   | 110                | 80                 | 56                 | 27                 | 13                 | 7                  | 4                  | 0    |
| Traffic          | BS                     | 338   | 135                | 102                | 72                 | 35                 | 16                 | 7                  | 3                  | 0    |
| Industrial       | 63                     | 427   | 121                | 85                 | 61                 | 29                 | 14                 | 7                  | 3                  | 0    |
| All              |                        | 454   | 119                | 86                 | 60                 | 29                 | 14                 | 7                  | 3                  | 0    |
| Urban background |                        | 181   | 80                 | 66                 | 56                 | 42                 | 29                 | 20                 | 14                 | 0    |
| Traffic          |                        | 155   | 91                 | 79                 | 70                 | 56                 | 43                 | 31                 | 22                 | 0    |
| Industrial       | NO <sub>2</sub>        | 104   | 54                 | 45                 | 38                 | 28                 | 19                 | 11                 | 3                  | 0    |
| Rural            | -                      | 111   | 42                 | 32                 | 24                 | 16                 | 10                 | 5                  | 2                  | 0    |
| All              |                        | 181   | 78                 | 65                 | 54                 | 39                 | 24                 | 14                 | 7                  | 0    |
| Urban background |                        | 148   | 92                 | 82                 | 74                 | 60                 | 43                 | 25                 | 11                 | 0    |
| Traffic          |                        | 97    | 68                 | 63                 | 58                 | 47                 | 33                 | 20                 | 11                 | 0    |
| Industrial       | <b>O</b> <sub>3</sub>  | 107   | 84                 | 78                 | 70                 | 60                 | 46                 | 27                 | 13                 | 2    |
| Rural            | 1                      | 172   | 119                | 107                | 98                 | 82                 | 64                 | 46                 | 29                 | 2    |
| All              |                        | 172   | 109                | 97                 | 86                 | 69                 | 51                 | 32                 | 16                 | 0    |

## Statistics of daily average concentrations (µg.m-³) of main pollutants per type of station in the Phare region, 1997

Table 3.6

#### 3.2. Air quality in cities in the Phare countries

Population in capitals and other large cities (> = 500 thousand)

The number of inhabitants in the Phare region is more than 115 million people of which approximately 17 million live in urban areas with more than 500 thousand inhabitants. About 8 million people live in cities with a population in the range 250-500 thousand and 19 million in cities with a population in the range 50-250 thousand. The highest population areas are generally the capital cities (see Table 3.7).

Until the end of the 1980s, the air quality situation in cities in the Phare region was characterised by increasing sulphur dioxide and particulate pollution. At that time, Phare cities were affected by high soot and sulphur dioxide concentrations (London type smog) in the winter season, as was the case in many other cities throughout Europe. Later, due to the reduction of coal- and lignite-based pollution sources, sulphur and soot emissions decreased significantly (see Figure. 2.1). In parallel, the ambient air concentration of sulphur dioxide and particulate matter decreased in most large cities of Phare region (Figures. 3.6 and 3.7). In Budapest, for example, an intensive campaign and technological investment programme has been undertaken to reduce the sulphur content of diesel oil consumed by the public buses, which are the major users of that type of fuel. In addition, individual coal-based heaters are being replaced by central natural gas heating systems in several Phare cities.

| City                | Country                | Population/1 000 |
|---------------------|------------------------|------------------|
| Tirana              | Albania                | 500              |
| Sofia               | Bulgaria               | 1 300            |
| Sarajevo            | Bosnia and Herzegovina | 341              |
| Prague              | Czech Republic         | 1 220            |
| Tallinn             | Estonia                | 900              |
| Skopje              | FYROM                  | 550              |
| Budapest            | Hungary                | 2 100            |
| Riga                | Latvia                 | 900              |
| Vilnius             | Lithuania              | 570              |
| Warsaw              | Poland                 | 1 500            |
| Silesia conurbation | Poland                 | 2 100            |
| Krakow              | Poland                 | 800              |
| Lodz                | Poland                 | 850              |
| Poznan              | Poland                 | 590              |
| Bucharest           | Romania                | 2 400            |
| Bratislava          | Slovak Republic        | 500              |
| Ljubljana           | Slovenia               | 273              |
| Total               |                        | 17 444           |

Table 3.7

However, the number of vehicles increased rapidly, releasing increasing amounts of nitrogen oxides, hydrocarbons and carbon monoxide; these pollutants lead to photochemical oxidant formation (ozone, PAN, etc.). The trends in nitrogen dioxide annual concentration in large cities of the Phare region in the period 1988–97 (Figure 3.8) suggest that, generally, the dominant source of this pollutant is now traffic in most of the cities of the region. There are no trends evident in the time series of annual average ozone concentrations (Figure 3.9).

The annual time series of 24-hour concentrations of the basic pollutants at selected urban background stations (Figure 3.10) show the seasonal variation of these pollutants and occurrences of episodes of extremely high concentrations of some pollutants. Figure 3.11 and Figure 3.12 depict the annual time series of 24-hour concentrations of the main pollutants at selected traffic and industrial sites. Urban background stations reflect representative levels of air pollution for assessment of population exposure in cities, whereas traffic and industrial sites represent higher exposure levels which can prevail in the central area of the city with dense traffic, or in industrialised zones.

Graphs of ordered 98th percentiles and annual mean concentration of  $SO_2$ , PM (TSP or  $PM_{10}$ ),  $NO_2$  and, for  $O_3$  maximum 8-hour and 1-hour average, show the highest pollutant concentrations and their range at urban background (Figure 3.13) and traffic and industrial sites (Figure 3.14). Figure 3.13 shows that the exceptionally high annual average urban background concentrations of sulphur dioxide, 83 and 80 µg.m<sup>-3</sup>, were detected in Titov Veles (FYROM) and Vratsa (Bulgaria) respectively. Other urban background stations with annual average concentrations of sulphur dioxide higher than 40 µg.m<sup>-3</sup> are located in Zabrze (Poland), Prievidza (the Slovak Republic), Gliwice (Poland), Budapest (Hungary), Usti n. L. and Teplice (the Czech Republic). Most of annual average urban background concentrations of sulphur dioxide lie in range of 40–15 µg.m<sup>-3</sup>.

The highest 98th percentiles of 24-hour  $SO_2$  concentrations were detected in the range 220– 185 µg.m<sup>-3</sup> in Teplice and Chomutov (the Czech Republic), Skopje (FYROM), Vratsa (Bulgaria) and Prievidza (the Slovak Republic). Other urban background stations with 98th percentile of 24-hour  $SO_2$  concentrations higher than 160 µg.m<sup>-3</sup> are situated in Zabrze and Gliwice (Poland) and Usti n. L. and Most (the Czech Republic).

As regards the nitrogen dioxide concentrations, the levels on urban background stations are only slightly lower then at the traffic sites (Figure 3.14). The highest annual average concentrations of nitrogen dioxide at urban background sites in Budapest (Köbánya and Laborc utca) were 66 and 54  $\mu$ g.m<sup>-3</sup> respectively, whereas the highest annual average concentration of nitrogen dioxide at traffic sites were detected in Krakow (Poland), 68  $\mu$ g.m<sup>-3</sup>. On the contrary, at traffic sites in Budapest (Baross tér, Kosztolányi tér and Széna tér) the 24-hour average NO<sub>2</sub> concentrations were in the range of 61–51  $\mu$ g.m<sup>-3</sup>. The highest 98th percentile of 24-hour NO<sub>2</sub> concentrations at urban sites was detected in Budapest, 103  $\mu$ g.m<sup>-3</sup>, whereas the highest 98th percentile of 24-hour NO<sub>2</sub> concentrations at urban sites was detected in Krakow (Poland) was 112  $\mu$ g.m<sup>-3</sup>.

The wide size range distribution of aerosol particles found in the atmosphere makes the sampling difficult. Some countries report TSP or black smoke (BS) while others  $PM_{10}$ . For this reason, the comparison of particulate concentration levels is difficult.

Cities in this part of Europe are still coping with the problem of atmospheric lead (Pb) arising mostly from vehicles using leaded gasoline. Older cars can only use leaded gasoline due to their engine construction. However, the number of modern cars equipped with catalytic converters is increasing and hence, an increasing fraction of gasoline consumed in the region is unleaded. During the past decade, the use of unleaded gasoline has become increasingly widespread in the Phare region (Bozó, 1998). In general, it can be stated that although air quality in the Phare region has improved in recent decades, air pollution still represents one of the major environmental issues that authorities at all levels have to cope with. In contrast to the decreasing  $SO_2$ , Pb and PM ambient concentrations, pollutants associated with road transport such as  $NO_x$ , CO, VOC and indirectly  $O_3$  have increased during the last decades. In this sense, cities in Phare region replicate, to some extent, the development of air pollution in cities of the EU countries.

To identify areas and pollutants for which problems of compliance with new European air quality standards (Directive 99/30/EC) could be expected, the number of days exceeding health-related air quality limit values was evaluated for Phare urban areas. The frequency of exceedance of given limit values are presented in Table 3.8 and depicted on a map (Figure 3.15), which shows sites exceeding limit values. This assessment indicates that the limit values for  $PM_{10}$  are likely to cause the greatest problem.

The number of people affected by air pollutant concentrations exceeding limit values is almost 14~% of the total population of the Phare countries which delivered data in 1997.

#### Figure 3.6





Figure 3.7