2. Driving forces and pressures

2.1. Socioeconomic background in the Phare countries

The activities of a human society - exploitation of resources, production of goods, transportation and consumption - all affect the environment. All these various activities contribute directly or indirectly to air pollution. In the Phare countries, the range of socioeconomical activities which can cause environmental change is extremely wide. There are, however, certain similarities among the different economies in relation to air quality.

Basic statistical socioeconomic data for individual Phare countries are given in Table 2.1
(Statistical compendium, 1996).

Basic geographical and socioeconomic statistics in the Phare countries

Country	Total area $\left.\mathbf{(k m}^{2}\right)$	Agriculture land $\left(\mathbf{k m}^{2}\right)$	Forested area $\left.\mathbf{(k m}^{2}\right)$	Population $(1$ 000)	Population density $\left(\right.$ per $\left.\mathbf{k m}^{2}\right)$	GDP 1994 (Mio USD)	GDP 1994 per capita (USD)
Albania	28750	11260	10960	3369	117	1689	700
Bosnia and Herzego- vina	51130	20000	20000	3628	71	7768	1307
Bulgaria	110910	60180	39130	8549	77	16985	1106
Czech Republic	78840	42760	26290	10275	130	25777	3498
Estonia	45100	14540	20170	1507	33	2317	1510
FYROM	25713	12910	10200	1946	76	3470	1552
Hungary	93030	61220	17190	10162	109	31155	4072
Latvia	64600	25400	28700	2572	40	9370	1173
Lithuania	65300	35130	19634	3744	57	7596	1132
Poland	322580	187070	87320	38499	119	61360	2503
Romania	238390	147980	66800	22830	96	30023	1274
Slovak Republic	49040	24460	19890	5325	109	11190	2331
Slovenia	20250	7880	10664	1925	95	15789	7206

Political changes in central and eastern Europe during the period 1985-90 affected the general social and economic situation in these countries. The decline in economic growth during this period resulted in a general decline in production in the region, which also continued after 1990. In comparison to the situation in the beginning of the 1990s, energy and solid fuel consumption has decreased in most of the Phare countries (Table 2.2). In addition, the decrease in production connected with economic transformation in the Phare countries and, the direct restructuring processes that resulted in a decline in energy intensive production, led to a decrease in energy and solid fuel consumption. In Estonia, the Czech Republic, Hungary and Poland, the structure of fuel consumption has also changed, with an increase in natural gas consumption.

On the other hand, the intensity of traffic (number of cars) has increased considerably in the Phare Countries since the beginning of the 1990s (Table 2.2) and has now become an important contributor to environmental stress.

The intensity of human activity as a decisive environmental stress factor is closely related to the population density. The land cover map (Figure 2.1) shows the areas with highest
population density in the Phare region to be the capital cities and industrial regions such as Silesia in southern Poland and northern Moravia, north-western Bohemia region (part of Black Triangle region), the region of Györ and Tatabanya in north-eastern Hungary, Dimitrovgrad and Marica in south-eastern Bulgaria and Baia Mare in Romania. These regions are amongst the most industrialised in Phare area and contain a high proportion of the region's heavy industry (coal mining, coke, iron and steal production, etc.).

Areas with high population density are also characterised by a high density of transport. Transit traffic by heavy trucks and private cars increases significantly the number of cars inside the cities. During the last few years a start has been made (e.g. in Budapest and Prague) to build orbital motorways around the cities so as to enable vehicles to avoid entering the cities unnecessarily.

Country	Gross inland energy consumption 1000 toe		Solid fuel consumption (1 000 toe)		Gas consumption (1 000 toe)		Passenger cars (per 100 inhabitants)	
	1990	1995	1990	1995	1990	1995	1990	1996
Albania	2204	1020	630	38	204	23	-	-
Bosnia and Herzegovina	753	1595	-	348	490	211	-	-
Bulgaria	26770	20568	8782	7213	5394	4583	15	19^{*}
Czech Republic	46785	39013	29697	20855	5264	6547	23	33
Estonia	10208	5126	6415	3610	1785	3121	15	28
FYROM	2993	2572	1562	-	279	-	11	12^{*}
Hungary	28427	25103	6201	4184	8911	9163	19	21
Latvia	3274	3702	435	215	2144	1010	11	15
Lithuania	16883	8510	809	184	4672	2041	13	21
Poland	97880	94472	75379	70330	8850	8902	14	19
Romania	60518	44026	11683	10094	28830	19316	-	-
Slovak Republic	21197	17447	7395	5232	5344	5268	17	19
Slovenia	5226	5583	1416	1224	686	671	30	38

Note: * = 1994 data; - = no data.

2.2. Atmospheric emissions

At the beginning of the 1990s, about 38% of sulphur dioxide and 16% of NMVOC emitted throughout Europe were produced in the Phare countries. Approximately 90% of SO_{2} emissions in the Phare area were produced by electricity and heat generation. More than 50 $\%$ of SO_{2} in each Phare country was emitted from large point sources. More than 90% of CO_{2} in this part of Europe arose from the combustion of fossil fuels. The proportion of trafficrelated emissions varied between 25% (Slovenia) to 5% (Romania). In 1990, the percentage of cars equipped with catalytic converters was negligible. According to Corinair90, NMVOC and NO_{x} emission from road transport in 1990 accounted for approximately 50% of the national total emissions in Slovenia, Estonia and Hungary, about 35% in Lithuania and approximately 20% in Bulgaria, the Czech Republic, the Slovak Republic and Poland. The proportion of CO emission from traffic was more than 60% in Hungary, Estonia, Slovenia and Lithuania (Marecková, private communication). The increased proportion of road transport emission in national totals is indicated by 1996 estimates (in Bulgaria: for $\mathrm{NO}_{\mathrm{x}} 32 \%$, for CO 48% and for NMVOC 19%; in the Czech Republic: for $\mathrm{NO}_{\mathrm{x}} 52.2 \%$, for CO 32.8% and for NMVOC 23.2 \%).

The extraction and distribution of fossil fuels are important sources of CH 4 , particularly coal mining and the natural gas distribution network (9% in Lithuania - 56% in Romania). For NMVOC emissions, extraction, distribution, and storage of crude oil and crude oil products are the most important processes.

NMVOC emissions occur within all main source sectors. However, the proportion attributed to the different groups varies from country to country. Combustion of fossil fuels is the main cause of $\mathrm{SO}_{2}, \mathrm{CO}$ and CO_{2} emissions in all countries. The proportion varies among the countries due to the national differences. However, it should be noted that differences in emission contributions are also - at least in part - due to differences in the national approach and methodology used to compile the emission inventory.

The decrease in solid fuel consumption, as documented in Table 2.2, fuel switching with an increasing share of natural gas compared to coal, restructuring of the economies, renewal of power plants and finally, abatement measures on large point sources (flue gas desulphurisation) are the main reasons for the remarkable decrease of SO_{2} emissions in the Phare countries in the last 10 years (Figure 2.2). Trends in annual emissions of nitrogen dioxide, NMVOC and carbon monoxide are presented in Figures 2.3-2.5 (emission data see EMEP, 1999). For those countries where an emission inventory of particulate matter has been compiled, similar decreasing trends were observed (Table 2.3).

Annual atmospheric emissions of particulate matter (1000 t)

Country	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
Czech Republic	840	673	631	529	501	441	344	201	179	128
Poland		2400	1950	1680	1580	1495	1395	1308	1250	1130
Slovak Republic	308	321	304	234	181	147	91	93	70	63

In spite of the considerable decrease in sulphur dioxide emission, these emissions, calculated per capita, are still much higher in the Phare countries compared to the average for EU-15 countries, as illustrated in Table 2.4. In contrast, NO_{x} emissions per capita are, on average, higher in EU-15 countries.

Atmospheric emissions per capita								
Country	NO_{x}			SO_{2}			CO_{2}	
	1990	1995	1997	1990	1995	1997	1990	1995
	(kg/capita)			(kg/capita)			(t/capita)	
Albania	7.1	7.1	7.1	28.2	9.5	21.4	0.3	0.1
Bosnia and Herzegovina	22.1	4.4	22.1	132.3	151.6	132.3	:	:
Bulgaria	44.0	31.1	26.3	236.3	175.1	159.7	10.6	8.6
Czech Republic	72.2	40.1	41.2	182.6	106.2	68.2	16.1	12.6
Estonia	45.1	31.2	29.9	158.6	73.0	79.0	26.3	13.1
FYROM	18.2	18.2	2.8	49.6	49.6	8.1	:	:
Hungary	23.4	18.7	19.5	99.4	69.4	64.7	7.3	6.3
Latvia	36.2	16.3	13.6	46.3	22.9	22.9	9.0	4.4
Lithuania	42.2	17.4	15.2	59.3	25.1	20.6	11.2	6.4
Poland	33.2	29.1	30.1	83.4	61.7	56.7	10.0	8.6
Romania	23.9	18.4	14.1	57.4	57.4	39.9	7.5	5.6
Slovak Republic	42.3	34.0	23.1	102.0	44.9	37.9	11.3	8.4
Slovenia	32.2	34.8	36.9	100.8	61.8	62.3	6.8	7.3
Phare countries	34.3	25.2	24.8	99.8	72.4	62.0	9.8	7.5
EU 15	36.2	31.2	29.6	44.6	29.0	25.1	9.0	8.6

During the 1990s, mobile sources (mainly passenger cars, buses and lorries) have become an increasingly important emission source in the Phare countries. Hence, the type, quality and age of car fleets in the Phare countries now have a strong influence on the emission characteristics in Phare cities. It is also likely that differences in car fleet characteristics are contributing significantly to differences in urban ambient air quality within the Phare region.

