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1 Introduction 

The ‘Guidelines for Reporting Emissions and Projections Data under the Convention on Long-range 

Transboundary Air Pollution’ (United Nations Economic Commission for Europe) (1) request:  

‘Parties should quantify uncertainties in their emission estimates using the most appropriate 

methodologies available, taking into account guidance provided in the Guidebook. Uncertainties should 

be described in the IIR’ 

This section will provide guidance in this respect, based on the achievements within the Greenhouse 

Gas Inventory Programme of the Intergovernmental Panel on Climate Change (IPCC). This section 

intends to provide the user with basic understanding of the issues of uncertainty and with default 

values to be used in a first uncertainty analysis. The principle idea behind this uncertainty analysis is 

that it is not needed to get a precise estimate for the uncertainty of each parameter and each value 

used in the inventory. In an exercise for the development of uncertainty methods in greenhouse gas 

inventories (Pulles and Meier, 2002), it was shown that varying an uncertainty range for a parameter 

over a factor of three did not significantly change the overall uncertainty in the inventory. Expressing 

the uncertainty ranges with three values per decade (2, 5, 10, 20, 50, 100, etc.) is probably sufficient. 

With such reasonably rough characterisation of the uncertainties a reasonable estimate of the 

overall uncertainty could be obtained and the parameters that are important for the overall 

uncertainty could be identified. 

The Uncertainties chapter of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories 

(IPCC, 2006) states that a structured approach to estimate inventory uncertainty is needed. Such an 

approach includes: 

 a method of determining uncertainties in individual terms used in the inventory; 

 a method of aggregating the uncertainties of individual terms to the total inventory; 

 a method of determining the significance of year-to-year differences and long-term trends in 

the inventories taking into account the uncertainty information;  

 an understanding of the likely uses for this information which include identifying areas requiring 

further research and observations and quantifying the significance of year-to-year and longer-

term changes in inventories;  

 an understanding that other uncertainties may exist, such as those arising from inaccurate 

definitions that cannot be addressed by statistical means. 

In the IPCC 2006 Guidelines, Chapter 3 of Volume 1, a comprehensive overview of these issues is 

presented in the context of a greenhouse gas inventory. This section will give some additional 

guidance to the IPCC Guidelines with special reference to the application within a Long-Range 

Transboundary Air Pollution (LRTAP) Convention / European Monitoring and Evaluation Programme 

(EMEP) emission inventory. Please refer to the IPCC Guidelines for definitions and explanations of all 

concepts and quantities. 

                                                                 
(1) Guidelines for reporting emissions and projections data (ECE/EB.AIR/125). The Guidelines and annexes are 

available online from the CEIP website (www.ceip.at/) 

http://www.ceip.at/
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2 Expressing uncertainty 

An important aspect of an uncertainty analysis concerns the ways on how to express the 

uncertainties associated with individual estimates or the total inventory. It is recommended to use 

the same quantity to express uncertainty in a LRTAP Convention inventory as required in a 

greenhouse gas inventory, namely the 95 % confidence interval. 

This 95 % confidence interval is specified by the confidence limits defined by the 2.5 percentile and 

97.5 percentile of the cumulative distribution function of the estimated quantity. Put another way, it 

is good practice to express the range of an uncertain quantity within an inventory such that:  

 there is a 95 % probability that the actual value of the quantity estimated is within the interval 

defined by the confidence limits; and  

 it is equally likely that the actual value, should it be outside the range quoted, lies above or below 

it. 

In practical terms, the 95 % confidence interval for a normal distribution lies between ± 2 standard 

deviations around the mean. Therefore, when uncertainties are not too large (standard deviations 

less than 30 % of the mean value), the (cumulative) distribution function of the estimated quantity 

might be assumed to be normal and the 95 % confidence can be estimated as being two times the 

standard deviation. 

3 Quantifying uncertainty 

3.1 Variables and parameters 

The bulk of an emission inventory is compiled by collecting activity data and appropriate emission 

factors according to the Tier 1 default approach: 

 
activities

ollutantactivity,pactivitypollutant factorEmissionrateActivityEmission  (1) 

Although for some sectors the equation to be used to estimate emissions is more complicated than 

a simple multiplication of a variable (Activity rateactivity) and a parameter (Emission factoractivity,pollutant), in 

this section we present for reasons of simplicity the quantification methods and principles using this 

simple equation. In case of a more complicated algorithm, the calculation becomes also more 

complicated but not essentially different. 

3.2 Methods 

To enable a quantitative uncertainty analysis as proposed in this section, both the variables and 

parameters need quantitative uncertainty ranges. This paragraph discusses some essential parts of 

the 2006 IPCC Guidelines on this issue. 

3.2.1 Measurements 

In some cases, periodic emission measurements may be available at a site. If these measurements 

can be linked to representative activity data, which of course is crucial, then it is possible to 
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determine a site-specific emission factor, together with an associated probability density function to 

represent annual emissions.  

This can be a complex task. To achieve representativeness it may be necessary to partition (or 

stratify) the data to reflect typical operating conditions. For example: 

 start-up and shut down can give different emission rates relative to activity data. In this case, it is 

good practice to partition the data with separate emission factors and probability density 

functions derived for steady state, start-up and shut down conditions; 

 emission factors can depend on load. In this case, the total emissions estimation and uncertainty 

analysis may need to be stratified to take account of load expressed, for example, as percentage 

of full capacity. This could be done by regression analysis and scatter plots of the emission rate 

against likely controlling variables (e.g. emissions versus load) with load becoming part of the 

activity data needed; 

 measurements taken for another purpose may not be representative. For example, methane 

measurements made for safety reasons at coalmines and landfills may not reflect total 

emissions. In such cases, it is good practice to estimate the ratio between the measured data 

and total emissions for the uncertainty analysis.  

If the data sample size is large enough, standard statistical goodness-of-fit tests can be used in 

combination with expert judgement to help in deciding which probability density function to use for 

describing variability in the data (partitioned if necessary) and how to parameterise it. However, in 

many cases, the number of measurements from which to make an inference regarding uncertainty 

will be small. Typically, as long as there are three or more data points, and as long as the data are a 

random representative sample of the quantity of interest, it is possible to apply statistical techniques 

to estimate the values of the parameters of many two-parameter distributions (e.g. normal, 

lognormal) that can be used to describe variability in the data set (Cullen and Frey, 1999). With small 

sample sizes, there will be large uncertainties regarding the parameter estimates that should be 

reflected in the quantification of uncertainty for use in the emissions inventory. Furthermore, it is 

typically not possible to rely on statistical methods to differentiate goodness-of-fit of alternative 

parametric distributions when sample sizes are very small (Cullen and Frey, 1999). Therefore, 

considerable judgement is required in selecting an appropriate parametric distribution to fit to a 

very small data set. In situations where the coefficient of variation is less than approximately 0.3, a 

normal distribution may be a reasonable assumption (Robinson, 1989). When the coefficient of 

variation is large and the quantity is non-negative, then a positively skewed distribution such as a 

lognormal one may be appropriate. Guidance on the selection of distributions is provided in 

Appendix A, copied from subsection 3.2.2.4 of the Uncertainties Chapter of the General Guidance 

Volume of the 2006 IPCC Guidelines, Conceptual Basis for Uncertainty Analysis, and the use of expert 

judgements in this context is outlined below. 

3.2.2 Literature and other documented data 

When site-specific data are unavailable, good practice will usually be to develop emission estimates 

using average emission factors drawn from references consistent with this Guidebook. These factors 

will have been measured under particular circumstances that are judged to be typical. There will be 

uncertainties associated with the original measurements, as well as with the use of the factors in 

circumstances other than those associated with the original measurements.  
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It is a key function of good practice guidance for each source category to guide the choice of emission 

factors to minimise this second source of uncertainty to the extent possible. Where such emission 

factors are used, it is good practice to estimate the associated uncertainties from: 

 original research including country-specific data: for measurement-based emission factors, the 

data from the original measurement programme may enable an assessment of the uncertainty 

and possibly the probability density function. Well-designed measurement programmes will 

provide sample data that cover the range of types of plants and their maintenance, size and age, 

so that the factors and their uncertainties can be used directly. In other cases, expert judgement 

will be needed to extrapolate from the measurements to the full population of plants in that 

particular source category;  

 this Guidebook: the sectoral chapters provide emission factors for every NFR (Nomenclature for 

Reporting) code. All emission factors for use with Tier 1 and Tier 2 methodology have (an 

estimation of) the 95 % confidence interval listed in the same table. 

Unless clear evidence to the contrary is available, the probability density functions are assumed to 

be normal. However, it is good practice that the inventory agency evaluates representativeness of 

the default for its own situation. If the default is judged to be unrepresentative and the source 

category is important to the inventory, it is good practice to develop improved assumptions based 

upon expert judgement. 

3.2.3 Expert judgement 

When empirical data are lacking, estimates of uncertainty in emission factors or direct emission 

measurements will need to be based on expert judgement. Experts are people who have special 

skills or knowledge in a particular field. A judgement is the forming of an estimate or conclusion from 

information presented to or available to the expert.  

It is important to select appropriate experts with respect to the emission of inventory inputs for 

which uncertainty estimates are needed. 

The goal of expert judgement here is to develop a probability density function, taking into account 

relevant information such as:  

 is the emission source similar to other sources? How is the uncertainty likely to compare?  

 how well is the emission process understood? Have all possible emission sources been 

identified? 

 are there physical limits on how much the emission factor can vary? Unless the process is 

reversible it cannot emit less than zero, and this may constrain a very wide uncertainty range. 

Mass balance considerations or other process data may place an upper limit on emissions; 

 are the emissions consistent with atmospheric concentrations? Emissions are reflected in 

atmospheric concentrations at site-specific and larger scales and again this may limit the 

possible emission rates. 

A degree of expert judgement is required even when applying classical statistical techniques to data 

sets, since one must judge whether the data are a representative random sample and, if so, what 

methods to use to analyse the data. This may require both technical and statistical judgement. 

Interpretation is especially needed for data sets that are small, highly skewed or censored. The 

formal methods for obtaining data from experts are known as expert elicitation. 
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The IPCC 2006 Guidelines propose a protocol for expert elicitation. The use of this protocol is strongly 

recommended to minimise misunderstandings between inventory compiler and the expert and to 

avoid unintentional bias. 

3.3 Default uncertainty ranges 

3.3.1  Activity data 

Activity data are usually derived from (economic) statistics, including energy statistics and balances, 

economic production rates, population data, etc. It is possible that these agencies have already 

assessed the uncertainties associated with their data as part of their data collection procedures. 

These uncertainties can be used to construct probability density functions. 

In some cases uncertainty data for activity rates are not easily available. Since any uncertainty 

analysis needs quantitative input, quantitative uncertainty ranges are needed. Table 3-1 proposes 

indicative ranges that could be applied in all cases where no independent data are available. 

Table 3-1 Indicative error ranges for uncertainty analysis 

Data source Error range Remarks  

The national (official) 

statistics 
- 

The official statistics of a country will, in principle, be assumed 

to be ‘fixed’ data, with no uncertainty.  

In fact, however, for energy data an indication of the 

uncertainties could be derived from the entry under ‘statistical 

differences’, representing the mismatch between production 

and consumption.   

An update of last year’s 

statistics, using gross 

economic growth factors 

0-2 % The economic system of a country will probably not shift more 

than a few per cent between successive years. Hence, if an 

update of last year’s data is used, an uncertainty of a few per 

cent seems reasonable 

IEA energy statistics OECD: 2-3 % 

non-OECD: 

5-10 % 

The International Energy Agency (IEA) publishes national energy 

statistics for many countries. For the Organisation for Economic 

Co-operation and Development (OECD) countries these 

statistics will ideally be equal to the official energy statistics. For 

other countries the uncertainties could be expected to be in the 

order of 5 to 10 % (educated guess). 

UN data bases 5-10 % These data might have a similar uncertainty as the ones 

provided by IEA. 

Default values, other 

sectors and data sources 

30-100 %  

The table proposes for the uncertainty range, when official statistics are used, a value of 0 %. This 

can, of course, not be a true uncertainty range. The value here is given to facilitate a selection of a 

certain range. It is recommended to always use experts’ opinions to make the final selection. 

3.3.2 Emission factors 

In many cases uncertainty ranges for emission factors are rather difficult to obtain. Table 3-3 

represents an application of the concepts of qualitative data rating schemes for all pollutants of 

concern in the Guidebook. This table is organized by major NFR-code groupings. It is important to 

note that any such qualitative summary is subjective and individual opinions will differ. 
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Definitions of the ratings used in Table 3-3 are presented in Table 3-2. This table also proposes 

default error ranges associated with each quality rating. The error ranges are obtained from the EU 

Guidance Report on Supplementary Assessment under EC Air Quality Directives, where they have 

been defined for application in air quality models. 

Table 3-2 Rating definitions 

 

Rating 

 

Definition 

Typical error 

range 

A An estimate based on a large number of measurements made at a large number of 

facilities that fully represent the sector 

10 to 30 % 

B An estimate based on a large number of measurements made at a large number of 

facilities that represent a large part of the sector 

20 to 60 % 

C An estimate based on a number of measurements made at a small number of 

representative facilities, or an engineering judgement based on a number of 

relevant facts 

50 to 200 % 

D An estimate based on single measurements, or an engineering calculation derived 

from a number of relevant facts 

100 to 300 % 

E An estimate based on an engineering calculation derived from assumptions only order of 

magnitude 

 

Table 3-3 Main NFR source categories with applicable quality data ratings 

NFR SOURCE CATEGORY 

S
O

2  

N
O

x  

V
O

C 

C
O
 

N
H

3  

H
M

/P
O

P 

1.A.1 Public power, cogeneration and district heating A B C B  D 

1.A.2 Industrial combustion  A B C B  D 

1.A.3.b Road transport  C C C C E E2 

1.A.3.a 

1.A.3.c 

1.A.3.d 

1.A.3.e 

Other mobile sources and machinery C D D D  E 

1.A.4 Commercial, institutional and residential combustion  B C C C  E 

1.B Extraction and distribution of fossil fuels  C C C C  E 

2 Industrial processes  B C C C E E 

3 Solvent use    B   E1 

4 Agriculture activities   D D D D E 

6 Waste treatment B B B C  D 

6 Disposal activities C C C C E E 

- Nature D3 D D E E E3 

Notes:  
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1 In some cases, solvents may be toxic compounds. 

2 Rating representative of typical pollutant source category combination; some specific cases may have higher 

ratings. 

3 Natural sources could be contributed from volcanoes and other geothermal events. 

The letter grade ratings are primarily applicable to the estimation approaches for emissions 

inventory preparation that rely on emission factors and estimates of activity indicators. In all cases, 

the application of more direct approaches based on measurement would receive higher quality 

ratings.  

The application of these subjective ratings for the aggregated source category groupings 

represented by the major NFR-code groupings can be misleading in some specific cases. For 

example, the rating specified for heavy metals/persistent organic pollutants for road transport is 

listed as E to apply in general to the understanding of the contribution of these pollutants from 

mobile sources. In fact, for the specific case of lead from mobile sources, the emission factors and 

emissions estimates are known with significantly more confidence. In such an analysis at that level 

of disaggregation, lead from mobile sources would receive a B rating. Also, at this level of 

aggregation, several source category pollutant combinations are irrelevant in that emissions of the 

pollutant from that source category are zero or so minimal as to be of little or no importance.  

4 Aggregating uncertainties 

Once the uncertainties in the source categories have been determined, they may be combined to 

provide uncertainty estimates for the entire inventory in any year and the uncertainty in the overall 

inventory trend over time.  

The error propagation equation, as discussed more extensively in the Uncertainties Chapter of the 

General Guidance Volume of the 2006 IPCC Guidelines, yields two convenient rules for combining 

uncorrelated uncertainties under addition and multiplication: 

1. Rule A: where uncertain quantities are to be combined by addition, the standard deviation of the 

sum will be the square root of the sum of the squares of the standard deviations of the 

quantities that are added with the standard deviations all expressed in absolute terms (this rule 

is exact for uncorrelated variables). 

Using this interpretation, a simple equation can be derived for the uncertainty of the sum, that 

when expressed in percentage terms U (defined as the uncertainty divided by the quantity itself) 

becomes: 

n21

2
nn

2
22

2
11

total
x...xx

)x  (U...)  x  (U)  x  (U
U




 ,    (2) 

where 

xi are the quantities, 

Ui are the uncertain quantities and the percentage uncertainties (half the 95 % 

confidence interval) associated with them, respectively, 

Utotal is the percentage uncertainty in the sum of the quantities (half the 95 % confidence 

interval divided by the total (i.e. mean) and expressed as a percentage); 
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2. Rule B: where uncertain quantities are to be combined by multiplication, the same rule applies 

except that the standard deviations must all be expressed as fractions of the appropriate mean 

values (this rule is approximate for all random variables).  

A simple equation can also be derived for the uncertainty of the product, again expressed in 

percentage terms: 

2
n

2
2

2
1total U...UUU 

,        (3) 

where 

Ui are the percentage uncertainties (half the 95 % confidence interval) associated with 

each of the quantities, 

Utotal is the percentage uncertainty in the product of the quantities (half the 95 % 

confidence interval divided by the total and expressed as a percentage). 

The inventory is principally the sum of products of emission factors and activity data. Therefore, 

Rules A and B can be used repeatedly to estimate the uncertainty of the total inventory.  

In practice, uncertainties found in inventory source categories vary from a few per cent to orders of 

magnitude, and may be correlated. This is not consistent with the assumptions of Rules A and B that 

the variables are uncorrelated with a standard deviation of less than about 30 % of the mean, but 

under these circumstances, Rules A and B may still be used to obtain an approximate result. 

Alternatively, a stochastic simulation (the Monte Carlo method) can be used, that can combine 

uncertainties with any probability distribution, range, and correlation structure provided they have 

been suitably quantified. Thus, two tiers for uncertainty analysis are described below: 

1. Tier 1: estimation of uncertainties by source category using the error propagation equation via 

Rules A and B, and simple combination of uncertainties by source category to estimate overall 

uncertainty for one year and the uncertainty in the trend; 

2. Tier 2: estimation of uncertainties by source category and in the overall inventory by stochastic 

simulation for one year and the uncertainty in the trend. More information with regard to this 

procedure is presented in IPCC (2006). 

In most cases a quantitative indicator of inventory uncertainty will be enough and the resource-

intensive application of a Monte Carlo analysis can be avoided. Section 6, Inventory management, 

improvement and QA/QC, will present this Tier 1 approach for LRTAP Convention pollutants in a 

simple calculation scheme. 

The Tier 1 method does not account for correlation and dependency between source categories that 

may occur because the same activity data or emission factors may be used for multiple estimates. 

Correlation and dependency may be significant for fossil fuels because a given fuel is used with the 

same emission factor across several sub-categories, and if (as is sometimes the case) total 

consumption of a fuel is better known than consumption disaggregated by source category, hidden 

dependencies will exist within the statistics because of the constraint provided by overall 

consumption. Dependency and correlation can be addressed by aggregating the source categories 

to the level of overall consumption of individual fuels before the uncertainties are combined. This 

entails some loss of detail in reporting on uncertainties but will deal with the dependencies where 

they are thought to be significant (e.g. where the uncertainties in fossil fuel emissions when 

aggregated from the source category level are greater than expected). 
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5 Uncertainties in trends 

An emission factor that over- or underestimates emissions in the base year will probably do so in 

subsequent years. Therefore, uncertainties due to emission factors will tend to be correlated over 

time. The Tier 1 uncertainty aggregation method, as proposed by 2006 IPCC Guidelines, is in principle 

able to deal with this issue.  

Trend uncertainties are estimated using two sensitivities: 

1. Type A sensitivity: the change in the difference in overall emissions between the base year and 

the current year, expressed as a percentage, resulting from a 1 % increase in emissions of a 

given source category and pollutant in both the base year and the current year; 

2. Type B sensitivity: the change in the difference in overall emissions between the base year and 

the current year, expressed as a percentage, resulting from a 1 % increase in emissions of a 

given source category and pollutant in the current year only. 

Conceptually, Type A sensitivity arises from uncertainties that affect emissions in the base year and 

the current year equally, whereas Type B sensitivity arises from uncertainties that affect emissions 

in the current year only. Uncertainties that are fully correlated between years will be associated with 

Type A sensitivities, and uncertainties that are not correlated between years will be associated with 

Type B sensitivities.  

The 2006 IPCC Guidelines suggest that emission factor uncertainties will tend to have Type A 

sensitivities, and activity data uncertainties will tend to have Type B. However, this association will 

not always hold and it is possible to apply Type A sensitivities to activity data, and Type B sensitivities 

to emission factors to reflect particular national circumstances. Type A and Type B sensitivities are 

simplifications introduced for the analysis of correlation. 

Once the uncertainties introduced into national emissions by Type A and Type B sensitivities have 

been calculated, they can be summed using the error propagation equation (Rule A) to give the 

overall uncertainty in the trend. 

6 The Tier 1 uncertainty aggregation 

scheme 

Table 6-1 shows the calculation scheme, which is an adaption of the spreadsheet scheme as 

presented in the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, 2006). 
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Table 6-1 Uncertainty calculation and reporting in Tier 1  

Tier 1 Uncertainty calculation and reporting 
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22 FE   





D

DG
 

Note B 1 

C

D
 

FI  

Note C 1 
2EJ   

Note D 1 

22 LK   
Note E 1 Note E 1   

  Mg Mg % % % % % % % % %     

1.A.1.a                 

1.A.1.b                 

1.A.1.c                 

1.A.2.a …                

etc.                 

Total  C  D     


2H  
    


2M  

    

1. Notes are explained on the next page.  
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NOTE A: 

If only total uncertainty is known for a source category (not for emission factor and activity 

data separately), then:  

(i) if uncertainty is correlated across years, enter the uncertainty into column F, and enter 

0 in column E; 

(ii) if uncertainty is not correlated across years, enter the uncertainty into column E and 

enter 0 in column F. 

NOTE B: 

100
C

CD
100

)CC(0.01

)CC(0.01DD0.01

i

ii

ix

ixix 


 




 
 

NOTE C: 

In the case where no correlation between emission factors is assumed, sensitivity B should 

be used and the result multiplied by 2:  

2FJK xxx 
 

NOTE D: 

In the case where correlation between activity data is assumed, sensitivity A should be 

used and the 2 is not required:  

xxx EIL   

NOTE E: 

Please use the following abbreviations: 

D – NFR source category default 

M – measurement based 

R – national referenced data 

The columns of the table are labelled A to Q and contain the following information: 

 columns A and B show the NFR source category and pollutant; 

 columns C and D are the inventory estimates in the base year and the current year (2) 

respectively, for the source category and gas specified in columns A and B, expressed in CO2 

equivalents; 

 columns E and F contain the uncertainties for the activity data and emission factors respectively, 

derived from a mixture of empirical data and expert judgement as previously described in this 

chapter, entered as half the 95 % confidence interval divided by the mean and expressed as a 

percentage. The reason for halving the 95 % confidence interval is that the value entered in 

columns E and F then corresponds to the familiar plus or minus value when uncertainties are 

loosely quoted as ‘plus or minus x %’, so expert judgements of this type can be directly entered 

in the spreadsheet. If uncertainty is known to be highly asymmetrical, enter the larger 

percentage difference between the mean and the confidence limit; 

                                                                 
(2) The current year is the most recent year for which inventory data are available. 
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 column G is the combined uncertainty by source category derived from the data in columns E 

and F using the error propagation equation (Rule B). The entry in column G is therefore the 

square root of the sum of the squares of the entries in columns E and F; 

 column H shows the uncertainty in column G as a percentage of total national emissions in the 

current year. This is a measure of the degree of uncertainty introduced into the national 

emissions total by the source category in question. The entry in each row of column H is the 

entry in column G multiplied by the entry in column D, divided by the total at the foot of column 

D. The total at the foot of column H is an estimate of the percentage uncertainty in total national 

emissions in the current year, calculated from the entries above using Rule A. This total is 

obtained by summing the squares of all the entries in column H and taking the square root; 

 column I shows how the percentage difference in emissions between the base year and the 

current year changes in response to a one per cent increase in source category emissions in 

both the base year and the current year. This shows the sensitivity of the trend in emissions to 

a systematic uncertainty in the emissions estimate (i.e. one that is correlated between the base 

year and the current year). This is the Type A sensitivity as defined above. Appendix 6A.1 of 

IPCC’s Good Practice Guidance (IPCC, 2000) provides the derivation for the formula for the 

entries in column I; 

 column J shows how the percentage difference in emissions between the base year and the 

current year changes in response to a one per cent increase in source category emissions in the 

current year only. This shows the sensitivity of the trend in emissions to random error in the 

emissions estimate (i.e. one, that is not correlated, between the base year and the current year). 

This is the Type B sensitivity as described above. The formula for the entries in column J is 

derived in Appendix 6A of IPCC’s Good Practice Guidance (IPCC, 2000); 

 column K uses the information in columns I and F to show the uncertainty introduced into the 

trend in emissions by emission factor uncertainty, under the assumption that uncertainty in 

emission factors is correlated between years. If the user decides that the emission factor 

uncertainties are not correlated between years then it is good practice to use the entry in column 

J in place of that in column I and the result multiplied by 2. The formula for the entries in column 

K is derived in Appendix 6A of IPCC’s Good Practice Guidance (IPCC, 2000); 

 column L uses the information in columns J and E to show the uncertainty introduced into the 

trend in emissions by activity data uncertainty, under the assumption that uncertainty in activity 

data is not correlated between years. If the user decides that the activity data uncertainties are 

correlated between years then it is good practice to use the entry in column I in place of that in 

column J and the 2 factor does not then apply. The formula for the entries in column L is derived 

in Appendix 6A of IPCC’s Good Practice Guidance (IPCC, 2000); 

 column M contains an estimate of the uncertainty introduced into the trend in national 

emissions by the source category in question. Under Tier 1, this is derived from the data in 

columns K and L using Rule B. The entry in column M is therefore the square root of the sum of 

the squares of the entries in columns K and L. The total at the foot of this column is an estimate 

of the total uncertainty in the trend, calculated from the entries above using the error 

propagation equation. This total is obtained by summing the squares of all the entries in column 

M and taking the square root. The formula for the entries in column M and the total at the foot 

of column M is shown in Appendix 6A of IPCC’s Good Practice Guidance (IPCC, 2000); 

 columns N to Q are used for indicators and cross referencing to footnotes: 
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o column N contains D, M or R, depending on whether the emission factor uncertainty range 

is based on default (D) information in source category guidance, measurements (M) made 

for the purpose or national referenced (R) information; 

o column O contains D, M or R, depending on whether the activity data uncertainty range is 

based on default information in sector guidance, measurements made for the purpose or 

national referenced information; 

o column P contains the reference numbers of any expert judgements used to estimate 

uncertainties in this source category; 

o column Q contains the number of an explanatory footnote to go at bottom of table to identify 

documentary reference of uncertainty data (including measured data) or other comments 

relevant to the line. 

7 Reporting uncertainties  

The LRTAP Convention Guidelines for reporting emissions and projections data (ECE/EB.AIR/125) 

request (para 31): 

´Parties shall quantify uncertainties in their emission estimates using the most 

appropriate methodologies available, taking into account guidance provided 

in the EMEP/EEA Guidebook. Uncertainties should be described in the IIR.’ 

In accordance with the guidance provided by the IPCC Guidelines, the uncertainties could be 

reported in a table analogous to the one given in Section 6, Inventory management, improvement 

and QA/QC. The Reporting Guidelines do not include a specific requirement in this respect. 

8 Glossary 

Note: Definitions copied from the glossary to the General Guidance Volume of the 2006 IPCC 

Guidelines. 

 

Confidence interval The value of the quantity for which the interval is to be estimated is a fixed but 

unknown constant, such as the annual total emissions in a given year for a given 

country. The confidence interval is a range that encloses the true value of an 

unknown fixed quantity with a specified confidence (probability). Typically, a 95 per 

cent confidence interval is assumed. From a traditional statistical perspective, the 

95 per cent confidence interval has a 95 per cent probability of enclosing the true 

but unknown value of the quantity. An alternative interpretation is that the 

confidence interval is a range that may safely be declared to be consistent with 

observed data or information. The 95 per cent confidence interval is enclosed by 

the 2.5th and 97.5th percentiles of the Probability Density Function (PDF). 

Correlation Mutual dependence between two quantities. See correlation coefficient. 

Correlation coefficient A number lying between –1 and +1, which measures the mutual dependence 

between two variables that are observed together. A value of +1 means that the 

variables have a perfect linear relationship; a value of –1 means that there is a 

perfect inverse linear relation; and a value of 0 means that there is no straight line 

relation. It is defined as the covariance of the two variables divided by the product 

of their standard deviations. 
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Distribution function A distribution function or cumulative distribution function F(x) for a random 

variable X specifies the probability P(X ≤ x) that X is less than or equal to x. 

Expert judgement A carefully considered, well-documented qualitative or quantitative judgement 

made in the absence of unequivocal observational evidence by a person or persons 

who have a demonstrable expertise in the given field. 

Monte Carlo method In these guidelines a Monte Carlo method is recommended to analyse the 

uncertainty of the inventory. The principle of Monte Carlo analysis is to perform 

the inventory calculation many times by computer, each time with the uncertain 

emission factors or model parameters and activity data chosen randomly (by the 

computer) within the distribution on uncertainties specified initially by the user. 

Uncertainties in emission factors and/or activity data are often large and may not 

have normal distributions. In this case the conventional statistical rules for 

combining uncertainties become very approximate. Monte Carlo analysis can deal 

with this situation by generating an uncertainty distribution for the inventory 

estimate that is consistent with the input uncertainty distributions on the emission 

factors, model parameters and activity data. 

Normal distribution The normal (or Gaussian) distribution has the PDF given in the following equation 

and is defined by two parameters (the mean  and the standard  deviation).  
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Probability A probability is a real number in the scale 0 to 1 attached to a random event. There 

are different ways in which probability can be interpreted. One interpretation 

considers a probability as having the nature of a relative frequency (i.e., the 

proportion of all outcomes corresponding to an event), whilst another 

interpretation regards a probability as being a measure of degree of belief.  

Probability density 

function (PDF) 

The Probability Density Function describes the range and relative likelihood of 

possible values. The PDF can be used to describe uncertainty in the estimate of a 

quantity that is a fixed constant whose value is not exactly known, or it can be used 

to describe inherent variability. The purpose of the uncertainty analysis for the 

emission inventory is to quantify uncertainty in the unknown fixed value of total 

emissions as well as emissions and activity pertaining to specific categories. Thus, 

throughout these guidelines it is presumed that the PDF is used to estimate 

uncertainty, and not variability, unless otherwise stated. 

Probability 

distribution 

Statistical definition: a function giving the probability that a random variable takes 

any given value or belongs to a given set of values. The probability on the whole set 

of values of the random variable equals 1. 

Standard deviation The population standard deviation is the positive square root of the variance. It is 

estimated by the sample standard deviation that is the positive square root of the 

sample variance. 

Uncertainty Lack of knowledge of the true value of a variable that can be described as a 

probability density function characterizing the range and likelihood of possible 

values. Uncertainty depends on the analyst’s state of knowledge, which in turn 

depends on the quality and quantity of applicable data as well as knowledge of 

underlying processes and inference methods. 

Uncertainty analysis An uncertainty analysis of a model aims to provide quantitative measures of the 

uncertainty of output values caused by uncertainties in the model itself and in its 

input values, and to examine the relative importance of these factors. 
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10 Point of enquiry 

Enquiries concerning this chapter should be directed to the co-chairs of the Task Force on Emission 

Inventories and Projections (TFEIP). Please refer to the TFEIP website (www.tfeip-secretariat.org/) for 

the contact details of the current co-chairs. 

 

http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol1.htm
file://///clu2data/dept/ACC/1.1%20Air,%20transport%20&%20noise/EMEP%20EEA%20Guidebook/GB_2016/8%20Editing/www.tfeip-secretariat.org/
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Appendix A Good practice guidance for 
selecting probability density 
functions  

Prior to selecting a PDF (3), it is good practice to account for biases in the data to the fullest extent 

possible. As noted previously, data collection and QA/QC procedures can assist in preventing or 

correcting biases. For example, if national statistics on timber harvest exist, but it is also suggested 

that these statistics have a bias of 5 per cent, then the mean estimate can be adjusted by 5 per 

cent prior to estimating the random component of the uncertainty. It is good practice that 

adjustments for bias should be done in developing the point estimate emission inventory. Another 

consideration is that the amount of bias can change over time as data measurement or collection 

procedures change, or as the geographic and temporal scope of data collection changes. Thus, the 

bias corrections may be different for different years.  

However, to the extent that biases are believed or known to exist in data even after QA/QC 

procedures have been applied, then either empirical or judgment based techniques can be applied 

to account for the bias. Apparent biases can arise in probabilistic analysis for at least two reasons: 

(1) a fitted distribution may have a mean that is different from the most likely value used in the 

point estimate of the inventory (e.g. a skewed triangular distribution based on expert judgment); 

and (2) the mean value of a prediction from a nonlinear model that has uncertain inputs can be 

different from the point estimate obtained from the same model if only point estimates of the 

mean values of the inputs are used. Thus, there are some types of biases that may be revealed 

only after an uncertainty analysis has been done. 

1. Types of Probability Density Functions  

There are many Probability Density Functions (PDFs) outlined in the statistical literature that often 

represent particular real situations. The choice of a particular type of PDF depends, at least in part, 

on the domain of the function (e.g. can it have both positive or negative values, or only non-

negative values), the range of the function (e.g. is the range narrow or does it cover orders-of-

magnitude), the shape (e.g. symmetry), and processes that generated the data (e.g. additive, 

multiplicative). These considerations are elaborated below in a brief discussion of many commonly 

used distributions of practical importance. Examples of such functions and the situations they 

represent are given below (4). 

 The normal distribution is most appropriate when the range of uncertainty is small, and 

symmetric relative to the mean. The normal distribution arises in situations where many 

individual inputs contribute to an overall uncertainty, and in which none of the individual 

uncertainties dominates the total uncertainty. Similarly, if an inventory is the sum of 

uncertainties of many individual categories, however, none of which dominates the total 

uncertainty, then the overall uncertainty is likely to be normal. A normality assumption is often 

                                                                 
(3) Note this section is copied from subsection 3.2.2.4 of the Uncertainties Chapter of the General Guidance 

Volume of the 2006 IPCC Guidelines. 

(4) Further information on methods for developing distributions based upon statistical analysis of data are 

described and illustrated by Cullen and Frey (1999). Other useful references include Hahn and Shapiro (1967), 

Ang and Tang (1975) D’Agostino and Stephens (1986), Morgan and Henrion (1990), and U.S.EPA (1996, 1997, 

1999). Some examples of probabilistic analyses applied to emission inventories are given by Frey and Zheng 

(2002) and Frey and Zhao (2004).  
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appropriate for many categories for which the relative range of uncertainty is small, e.g. fossil 

fuel emission factors and activity data. 

 The lognormal distribution may be appropriate when uncertainties are large for a non-negative 

variable and known to be positively skewed. The emission factor for nitrous oxide from 

fertiliser applied to soil provides a typical inventory example. If many uncertain variables are 

multiplied, the product asymptotically approaches log normality. Because concentrations are 

the result of mixing processes, which are in turn multiplicative, concentration data tend to be 

distributed similar to a lognormal. However, real-world data may not be as tail-heavy as a 

lognormal distribution. The Weibull and Gamma distributions have approximately similar 

properties to the lognormal but are less tail-heavy and, therefore, are sometimes a better fit to 

data than the lognormal. 

 Uniform distribution describes an equal likelihood of obtaining any value within a range. 

Sometimes the uniform distribution is useful for representing physically-bounded quantities 

(e.g. a fraction that must vary between 0 and 1) or for representing expert judgement when an 

expert is able to specify an upper and lower bound. The uniform distribution is a special case 

of the Beta distribution. 

 The triangular distribution is appropriate where upper and lower limits and a preferred value 

are provided by experts but there is no other information about the PDF. The triangular 

distribution can be asymmetrical.  

 Fractile distribution is a type of empirical distribution in which judgements are made regarding 

the relative likelihood of different ranges of values for a variable, such as illustrated in 

Figure A–1. This type of distribution is sometimes useful in representing expert judgement 

regarding uncertainty. 
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Figure A–1 Examples of some commonly used probability density function models 

 (e.g. based on Frey and Rubin, 1991) 

 

2. Issues to consider when developing the Probability 
Density Function 

The following describes how inventory compilers can satisfy the principles of comparability, 

consistency and transparency in emissions inventories when selecting a PDF: 

 where empirical data are available, it is good practice to first consider whether a normal 

distribution would be appropriate as a representation of uncertainty. If the variable must be 

non-negative, then it is good practice for the standard deviation of the normal distribution not 

to exceed 30 per cent of the mean value to avoid an unacceptably high probability of 

erroneously predicting negative values. Generally, it is good practice to avoid truncation of the 

lower tail of the normal distribution, because it changes the mean and other statistics of the 

distribution. Typically, a better alternative to truncation is to find a more appropriate 

distribution that is a better fit to the data. For example, for positively skewed data that must be 

non-negative, lognormal, Weibull, or Gamma distributions often can provide an acceptable fit; 

however, an empirical distribution of the data can also be used;  

 where expert judgement is used, the distribution function adopted might typically be normal 

or lognormal, supplemented by uniform, triangular, or fractile distributions as appropriate; 
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 other distributions may be used where there are compelling reasons, either from empirical 

observations or from expert judgement supported by theoretical argument. 

The issue of identifying which function best fits a set of data can be difficult. One approach is to 

use the square of the skewness and the kurtosis to look for functional forms that can fit the data 

(Cullen and Frey, 1999). It is good practice to apply kurtosis and skewness only if there are 

sufficient data from which to estimate these values. The function is then fitted to the data by least 

squares fit or other means. Tests are available to assess the goodness-of-fit, including the chi-

squared test and others (Cullen and Frey, 1999). In many cases, several functions will fit the data 

satisfactorily within a given probability limit. These different functions can have radically different 

distributions at the extremes where there are few or no data to constrain them, and the choice of 

one function over another can systematically change the outcome of an uncertainty analysis. 

Cullen and Frey (1999) reiterate the advice of previous authors in these cases that it must be 

knowledge of the underlying physical processes that governs the choice of a probability function. What 

the tests provide, in the light of this physical knowledge, is guidance on whether this function does 

or does not satisfactorily fit the data. 

In order to use empirical data as a basis for developing PDFs, the first critical step is to determine if 

the data are a random, representative sample, in the case of a sample from a population. Some 

key questions to ask regarding the data include: 

 are the data representative of the conditions pertaining to the emission or activity factors 

specific to national circumstances? 

 are the data a random sample? 

 what is the averaging time associated with the data set, and is it the same as for the 

assessment (which will be for annual emissions in a given year)? For example, emissions data 

might be measured during a short time period and not for an entire year. Thus, expert 

judgment may be required in order to extrapolate short-term data to a longer-term basis. 

If the data are a random, representative sample, then the distribution can be established directly 

using classical statistical techniques, even if the sample size is small. Ideally the available data will 

represent an annual average but may be necessary to convert data using an appropriate averaging 

time. For normal distributions the 95 per cent confidence interval would be plus or minus twice the 

estimated standard deviation of the population. In other cases, the data may represent an 

exhaustive census of the sum of all activity (e.g. total energy use for a particular fuel). In this case, 

information regarding errors in the measurements or survey instruments would form a basis for 

assessing uncertainty. The range of uncertainty of activity data might be bounded by using 

independent methods or consistency checks. For example, fuel consumption data can be 

compared with estimates of production, including estimates of production via different methods. 

There is a distinction between uncertainty in the mean and variability in the data for situations in 

which the data represent intra-country variability within a category. Since the goal is to estimate 

annual average emissions at the level of an individual country, it is good practice to average data 

that represent intra-country variability over the entire geographic area of the country, assess 

uncertainty in this average and use it as the basis for the inventory. Conversely, if international 

data are available at an aggregate level, without supporting details as to how such data can be 

disaggregated by country, there is a mismatch in scale that is more difficult to correct. Typically, in 

this case, the uncertainty will tend to increase as the geographic scope decreases, i.e. if the number 

of categories included decreases and if site-specific emissions data are not available. Thus, 
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uncertainty ranges that are developed for aggregated international data may have to be widened 

for applicability to individual countries. In the absence of any empirical basis for estimating the 

relative range of uncertainty at the country level versus the aggregated international level, expert 

judgement can be used. 

For a sample of an underlying population, the need is to evaluate whether the data are random 

and representative of the population. If so, classical statistical methods can be used to define the 

distribution. If not, then some combination of data analysis and elicitation of expert judgement 

regarding distributions will be required. In the former case, Cullen and Frey (1999) suggest 

exploration of the data set using summary statistics and graphics to evaluate essential features 

(e.g. central tendency, range of variation, skewness). It is good practice to consider the insights 

obtained by examining the data, combined with knowledge of the processes that generated the 

data, when selecting a mathematical or numerical representation of the distribution. 

If a parametric distribution is selected as a candidate for fitting to the data set, techniques such as 

‘maximum likelihood estimation (5)’ or the ‘method of matching moments (6)’ can be used to 

estimate the parameters of the distribution. The goodness-of-fit of the distribution can be 

evaluated in numerous ways, including comparison of the fitted cumulative distribution function 

(CDF) with the original data set, probability plots, and goodness-of-fit tests (e.g. Cullen and Frey, 

1999). It is important that the selection of a parametric distribution to represent a data set should 

be based not solely upon goodness-of-fit tests, but upon similarities in processes that generated 

the data versus the theoretical basis for a distribution (e.g. Hahn and Shapiro, 1967).  

If the data are averaged over less than one year, it may be necessary to extrapolate the uncertainty 

over the year. Consider an example in which the data set represents variability in daily average 

emissions measurements for a particular category. One approach, described in detail by Frey and 

Rhodes (1996), is to fit a parametric distribution to the data set for daily variability, use a numerical 

technique known as bootstrap simulation to estimate uncertainty in the parameters of the 

distribution, and use Monte Carlo simulation to simulate randomised annual averages of the 

emission factor. Using bootstrap simulation, the uncertainty in the sampling distribution for the 

parameters of the fitted distribution can be simulated (e.g. Efron and Tibshirani, 1993; Frey and 

Rhodes, 1996; Frey and Bammi, 2002).  

3. Dependence and correlation among inputs 

This section provides a brief overview of issues pertaining to dependence and correlation among 

inputs. More details on this topic can be found in Morgan and Henrion (1990), Cullen and Frey 

(1999), and Smith et al. (1992). 

When setting up a probabilistic analysis it is preferable to define the model so that the inputs are 

as statistically independent as possible. For example, rather than to try to estimate activity data for 

many subcategories for which data are derived at least in part by differences, it may be better to 

assign uncertainties to better known aggregate measures of activity. For example, residential fuel 

use might be estimated as the difference between total consumption and usage in the 

transportation, industrial, and commercial sectors. In this case, the estimate of uncertainty in 

                                                                 

(5) The method of maximum likelihood selects as estimates the values of the parameters that maximise the 

likelihood of the observed sample (e.g. Holland and Fitz-Simons, 1982).  

(6) The method of moments finds estimators of unknown parameters by equating corresponding sample and 

population moments. The method is easy to employ and provides consistent estimators. In many cases, the 

method of moments estimators are biased (Wackerly, Mendenhall III and Scheaffer, 1996, pp. 395–397).  
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residential fuel use is negatively correlated with the uncertainties in fuel use in the other 

subcategories, and may even be very large compared to the uncertainty in total consumption. 

Therefore, rather than trying to estimate uncertainties separately for each subcategory, it may be 

more practical to estimate uncertainty for aggregated categories, for which good estimates and 

cross-checks may be available.  

Dependencies, if they exist, may not always be important to the assessment of uncertainties. 

Dependencies among inputs will matter only if the dependencies exist between two inputs to 

which the uncertainty in the inventory is sensitive and if the dependencies are sufficiently strong. 

In contrast, weak dependencies among inputs, or strong dependencies among inputs to which the 

uncertainty in the inventory is insensitive, will be of relatively little consequence to the analysis. Of 

course, some interdependencies are important and failure to account for those relationships can 

lead to misleading results. Positive correlations between inputs tend to increase the range of 

uncertainty in the output, whereas negative correlations tend to decrease the range of uncertainty 

in the output. However, positive correlations in uncertainties when comparing two years as part of 

trend analysis will decrease uncertainty in the trend. 

Techniques can be considered for incorporating dependencies into the analysis including:  

 stratifying or aggregating the categories to minimise the effect of the dependencies; 

 modelling the dependence explicitly;  

 simulating correlation using restricted pairing methods (that are included in many software 

packages);  

 use of resampling techniques in cases where multivariate datasets are available;  

 considering bounding or sensitivity cases (e.g. one case assuming independence and another 

case assuming complete positive correlation); and 

 time series techniques can be used to analyse or simulate temporal autocorrelation. 

As a simple example, Zhao and Frey (2004) evaluated the implications of whether or not emission 

factor uncertainty estimates for different categories obtained from the same data source should 

be considered as dependent or independent among the categories, and found that it did not 

matter to the overall inventory uncertainty. Of course, this result is specific to the particular case 

studies and it is good practice to test this in other applications. As a more complex example, given 

in Box 3.1, Ogle et al. (2003) accounted for dependencies in tillage management factors, which 

were estimated from a common set of data in a single regression-type model, by determining the 

covariance (7) between factors for reduced tillage and no-till management, and then using that 

information to generate tillage factor values with appropriate correlation during a Monte Carlo 

simulation (8). One should consider the potential for correlations among input variables and focus 

on those that would be likely to have the largest dependencies (e.g. applying management factors 

for the same practice in different years of an inventory, or correlations among management 

activities from one year to the next). 

                                                                 
(7) The covariance between two variables (x and y) measures the mutual dependence between them. The 

covariance of a sample consisting of n pairs of values is the total of the products of the deviation of individual x 

values from the mean x value times the deviation of the corresponding individual y value from the mean of the 

y values, divided by (n-1). 

(8) More discussion and examples of these types of methods are given in Cullen and Frey (1999), Morgan and 

Henrion (1990), and US EPA (1996). These documents also contain reference lists with citations to relevant 

literature.  
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Box 3.1 Example of Monte Carlo uncertainty assessment dealing with correlations 

Ogle et al. (2003) performed a Monte Carlo analysis to assess uncertainty in a Tier 2 inventory that 

addressed changes in soil C attributed to land use and management of agricultural lands in the 

United States. Management factors were estimated from about 75 published studies using linear 

mixed effect models. PDFs were derived for the management effect at a depth of 30 cm following 

20 years after its implementation. Reference stocks were estimated using a National Soil Survey 

Characterisation Database, which contained pedon data collected by United States Department of 

Agriculture (USDA). PDFs were based on the mean and variance from about 3 700 pedons, taking 

into account the spatial autocorrelation of pedon locations due to clumped distribution patterns. 

The land use and management activity data were recorded in the USDA National Resources 

Inventory, which tracks agricultural land management at more than 400 000 point locations in the 

United States, along with supplemental data on tillage practices provided by the Conservation 

Technology and Information Center (CTIC). The Monte Carlo analysis was implemented using a 

commercially available software package and code developed by U.S. analysts. Their analysis 

accounted for dependencies between estimation parameters that were derived from common 

datasets. For example, factors for set-aside lands and land use change between cultivated and 

uncultivated conditions were derived from a single regression analysis using an indicator variable 

for set-asides, and hence were interdependent. Their analysis also accounted for dependencies in 

the land use and management activity data. When simulating input values, factors were 

considered completely dependent from the base and current year in the inventory because the 

relative influence of management on soil C was assumed to be the same regardless of the year 

when a practice was implemented. As such, factors were simulated with identical random seed 

values. In contrast, reference carbon stocks for the various soil types in each climate region were 

simulated independently, with different random seeds, because stocks for each region were 

constructed from separate independent sets of data. U.S. analysts chose to use 50 000 iterations 

for their Monte Carlo analysis. This was satisfactory because they were only reporting one digit 

after the decimal, and simulation results were considered relatively stable at that level of 

significance. Ogle et al. (2003) estimated that mineral soils gained an average of 10.8 Tg C yr-1 

between 1982 and 1997, with a 95 per cent confidence interval ranging from 6.5 to 15.3 Tg C yr-1. 

In contrast, managed organic soils lost an average of 9.4 Tg C yr-1, ranging from 6.4 to 13.3 Tg C yr-

1. Further, Ogle et al. (2003) found that the variability in management factors contributed 90 per 

cent of the overall uncertainty for the final estimates of soil carbon change. 
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