EEA Technical report No 16/2014

Approximated EU GHG inventory:

Proxy GHG emission estimates for 2013

30 September 2014

Contact persons	Ricardo Fernandez
	European Environment Agency (EEA)
	Ricardo.fernandez@eea.europa.eu
	Lukas Emele
	Oeko Institut - EEA's European Topic Centre on Air Pollution and Climate Change Mitigation (ETC/ACM)
	l.emele@oeko.de

Contents

Ac	knowl	edgemei	nts	14
Exe	ecutive	e Summa	nry	15
1.	Back	ground	and objective	27
2.	Euro	pean GI	HG emissions in 2013 using Member States proxy data	30
	2.1	Trends	s and general results	31
	2.2	Sectora	al results	41
		2.2.1	Energy	42
		2.2.2	Industrial Processes	43
		2.2.3	Agriculture	44
		2.2.4	Waste	46
	2.3	ETS / E	ESD	47
3.	Euro	pean GI	HG emissions in 2013 using EEA proxy data	52
	3.1	Metho	dologies and data sources	52
	3.2		ainties, differences and QA/QC in EEA proxy data	
	3.3	Differe	ences in emission estimates between Member States and EEA data	64
4.	Refe	erences		70
5.	Ann	exes		72
	5.1	Annov	I. Detailed results for each Member States as reported by Member	
	5.1		1. Detailed results for each Member states as reported by Member	72
		5.1.1	Austria	
		5.1.2	Belgium	74
		5.1.3	Bulgaria	
		5.1.4	Сургия	
		5.1.5	Czech Republic	<i>77</i>
		5.1.6	Germany	<i>7</i> 8
		5.1.7	Denmark	<i>7</i> 9
		5.1.8	Estonia	80
		5.1.9	Spain	81
		5.1.10	Finland	82
		5.1.11	France	83
		5.1.12	Greece	84
		5.1.13	Hungary	85
		5.1.14	Croatia	86
		5.1.15	Ireland	87
		5.1.16	Italy	88
		5.1.17	Lithuania	89
		5.1.18	Luxembourg	
		5.1.19	Latvia	
		5.1.20	Malta	93

	5.1.21	Netherlands	94
	5.1.22	Poland	95
	5.1.23	Portugal	9 <i>6</i>
	5.1.24	Romania	97
	5.1.25	Sweden	98
	5.1.26	Slovenia	99
	5.1.27	Slovakia	100
	5.1.28	United Kingdom	101
5.2	Annex	II. Detailed results for each Member States as calculated by EEA	102
	5.2.1	Austria	103
	5.2.2	Belgium	104
	5.2.3	Bulgaria	105
	5.2.4	Cyprus	106
	5.2.5	Czech Republic	107
	5.2.6	Germany	108
	5.2.7	Denmark	109
	5.2.8	Estonia	110
	5.2.9	Spain	111
	5.2.10	Finland	112
	5.2.11	France	113
	5.2.12	Greece	114
	5.2.13	Hungary	115
	5.2.14	Croatia	116
	5.2.15	Ireland	117
	5.2.16	Italy	118
	5.2.17	Lithuania	119
	5.2.18	Luxembourg	120
	5.2.19	Latvia	121
	5.2.20	Malta	122
	5.2.21	Netherlands	123
	5.2.22	Poland	124
	5.2.23	Portugal	125
	5.2.24	Romania	126
	5.2.25	Sweden	127
	5.2.26	Slovenia	128
	5.2.27	Slovakia	129
	5.2.28	United Kingdom	130
	5.2.29	EU-15	131
	5.2.30	EU-28	132
5.3	Annex	III. Methodology for the proxy calculated by EEA	133
	5.3.1	Energy	
	5.3.2	Industrial Processes	
	5.3.3	Agriculture	175
	5.3.4	Waste	181

	5.3.5	Other source categories	. 182
5.4	Annex	(IV. Methods and data sources used for the proxy calculated by EEA	. 184

List of tables

Table 1	Summary table of approximated GHG emissions for 2013 for EU-15 (total emissions without LULUCF)			
Table 2	Summary table of approximated GHG emissions for 2013 for EU-28 (total emissions without LULUCF)			
Table 3	Emissions by sector, change 2012-2013	41		
Table 4	Energy sector emissions, change 2012-2013	42		
Table 5	Industrial Processes emissions, change 2012-2013	43		
Table 6	Agriculture sector emissions, change 2012-2013	45		
Table 7	Waste sector emissions, change 2012-2013	47		
Table 8	Global warning potentials from different IPCC Assessment Reports	48		
Table 9	ETS and non-ETS 2013 proxy emissions with SAR and AR4 GWPs	49		
Table 10	Time of availability of data used for the proxy inventory	56		
Table 11	Difference between proxy inventory estimated for 2012 and submitted 2012 inventory	58		
Table 12	Uncertainties of the EU approximated GHG inventory for 2013	58		
Table 13	Comparison of EEA and Member States proxies (total without LULUCF)	64		
Table 14	Overview of approaches used for the estimation of CO ₂ emissions from 1.A fuel combustion	133		
Table 15	2013 CO ₂ emissions for source category 1.A Fuel combustion in various approximation approaches	137		
Table 16	CO ₂ emissions for source category 1.A Fuel Combustion	138		
Table 17	CH ₄ emissions for source category 1.A Fuel Combustion	139		
Table 18	N ₂ O emissions for source category 1.A Fuel Combustion	140		
Table 19	CO ₂ emissions for 1.A.1 Energy Industries	145		
Table 20	CH ₄ emissions for 1.A.1 Energy Industries	146		
Table 21	N ₂ O emissions for 1.A.1 Energy Industries	147		
Table 22	CO ₂ emissions from 1.A.2 Manufacturing Industries and Construction	150		
Table 23	CH ₄ emissions from 1.A.2 Manufacturing Industries and Construction	151		

Table 24	Table 24 N ₂ O emissions from 1.A.2 Manufacturing Industries and Construction			
Table 25	CO ₂ emissions for source category 1.A.3	157		
Table 26	CH ₄ emissions for source category 1.A.3	158		
Table 27	N ₂ O emissions for source category 1.A.3	159		
Table 28	CO ₂ emissions for source category 1.A.4	161		
Table 29	CH ₄ emissions for source category 1.A.4	162		
Table 30	N ₂ O emissions for source category 1.A.4	163		
Table 31	Best fit trends for calculating CO ₂ and CH ₄ emissions from 1B2a, 1B2b and 1B2c	166		
Table 32	CO ₂ emissions from 1.B.1 Fugitive Emissions from Solid Fuels	167		
Table 33	CH ₄ emissions from 1.B.1 Fugitive Emissions from solid Fuels	168		
Table 34	CO ₂ emissions from 1.B.2 Fugitive Emissions from Oil and Natural Gas	168		
Table 35	CH ₄ emissions from 1.B.2 Fugitive Emissions from Oil and Natural Gas	169		
Table 36	CO ₂ emissions from 2.A Mineral Products	172		
Table 37	CO ₂ emissions from 2.C Metal Production	174		
Table 38	CH ₄ emissions in Gg from 4.A Enteric Fermentation	176		
Table 39	CH ₄ emissions in Gg from 4.B Manure Management	178		
Table 40	N2O emissions in Gg from 4.B Manure Management	179		
Table 41	N ₂ O emissions in Gg from 4.D Agricultural Soils	181		
Table 42	Methods and data: CO ₂ emissions from 1.A Fuel combustion	184		
Table 43	Methods and data: CH4 and N2O emissions from 1.A Fuel combustion	185		
Table 44	Methods and data: CO ₂ , CH ₄ and N ₂ O emissions for 1.A.1 Energy industries	186		
Table 45	Methods and data: CO ₂ emissions from 1A1a Public electricity and heat production	187		
Table 46	Methods and data: CH ₄ emissions from 1A1a Public electricity and heat production			
Table 47	Methods and data: N ₂ O emissions from 1A1a Public electricity and heat production			
Table 48	Methods and data: CO ₂ emissions from 1A1b Petroleum refining	190		

Table 49	Methods and data: CH ₄ emissions from 1A1b Petroleum refining	191
Table 50	Methods and data: N ₂ O emissions from 1A1b Petroleum refining	
Table 51	Methods and data sources used for CO2, CH4 and N2O emissions from 1A1c Manufacture of solid fuels and other energy industries	193
Table 52	Methods and data: CO2 emissions from 1.A.2 Manufacturing industries and construction	194
Table 53	Methods and data: CH4 emissions from 1.A.2 Manufacturing industries and construction	195
Table 54	Methods and data: N2O emissions from 1.A.2 Manufacturing industries and construction	196
Table 55	Methods and data: CO ₂ emissions from 1.A.3 Transport	197
Table 56	Methods and data: CH4 and N2O emissions from 1.A.3 Transport	198
Table 57	Methods and data: CO ₂ emissions from 1.A.4 Other sectors	199
Table 58	Methods and data: CH4 and N2O emissions from 1.A.4 Other sectors	199
Table 59	Methods and data: CO ₂ emissions from 1.B.1 Fugitive emissions from solid fuels	200
Table 60	Methods and data: CH ₄ emissions from 1.B.1 Fugitive emissions from solid fuels	202
Table 61	Methods and data: CO ₂ emissions from 1B2a Fugitive emissions from oil	204
Table 62	Methods and data: CH ₄ emissions from 1B2a Fugitive emissions from oil	205
Table 63	Methods and data: CO2 emissions from 1B2b Fugitive emissions from gas	206
Table 64	Methods and data: CH ₄ emissions from 1B2b Fugitive emissions from gas	207
Table 65	Methods and data: CO ₂ emissions from 1B2c Venting	208
Table 66	Methods and data: CH4 emissions from 1B2c Venting	209
Table 67	Methods and data: CO ₂ emissions from 1B2c Flaring	210
Table 68	Methods and data: CH4 emissions from 1B2c Flaring	211
Table 69	Methods and data: CO ₂ emissions from 2.A.1 Cement Production	212
Table 70	Methods and data: CO ₂ emissions from 2.A.2 Lime Production	213
Table 71	Methods and data: CH ₄ emissions from 2.A Mineral products	214
Table 72	Methods and data: CO ₂ emissions from 2.B.1 Ammonia Production	215

Table 73	Methods and data: N ₂ O emissions from 2.B.2 Nitric Acid Production	216
Table 74	Methods and data: N ₂ O emissions from 2.B.3 Adipic Acid Production	217
Table 75	Methods and data: CH ₄ emissions from 2.C Metal production	217
Table 76	Methods and data: CO2 emissions from 2.C Metal production	219
Table 77	Methods and data: N ₂ O emissions from 2.C Metal production	219
Table 78	Methods and data: CO ₂ emissions from 2.C.1 Iron and steel production	221
Table 79	Methods and data: CO ₂ emissions from 2.D Other production	222
Table 80	Methods and data: SF6 emissions	223
Table 81	Methods and data: HFC emissions	223
Table 82	Methods and data: PFC emissions	225
Table 83	Methods and data: CO ₂ emissions from 2.G Other	226
Table 84	Methods and data: CH ₄ emissions from 2.G Other	227
Table 85	Methods and data: N ₂ O emissions from 2.G Other	228
Table 86	Methods and data: CO ₂ emissions from 3 Solvent and other product use	229
Table 87	Methods and data: N ₂ O emissions from 3 Solvent and other product used	229
Table 88	Methods and data: CH4 emissions from 4.A. Enteric fermentation and from 4.B Manure management	231
Table 89	Methods and data: CH4 emissions from 4.A Enteric Fermentation, Horses	233
Table 90	Methods and data: CH4 emissions from 4.B Manure Management, Horses	233
Table 91	Methods and data: CH4 emissions from 4.A Enteric Fermentation, Mules and Asses	234
Table 92	Methods and data: CH4 emissions from 4.B Manure Management, Mules and Asses	234
Table 93	Methods and data: CH4 emissions from 4.A Enteric Fermentation,	235
Table 94	Methods and data: CH4 emissions from 4.B Manure Management, Poultry	235

Table 95	Methods and data: CH ₄ emissions from 4.A Enteric Fermentation, Other	236
Table 96	Methods and data: CH ₄ emissions from 4.B Manure Management, Other	236
Table 97	Methods and data: N2O emissions from 4.B Manure management	237
Table 98	Methods and data: CH4 emissions from 4.C Rice cultivation	238
Table 99	Methods and data: CH4 emissions from 4.D Agricultural soils	240
Table 100	Methods and data: N2O emissions from 4.D Agricultural soils	241
Table 101	Methods and data: CH4 emissions from 4.F Field burning of agricultural residues	242
Table 102	Methods and data: N2O emissions from 4.F Field burning of agricultural residues	243
Table 103	Methods and data: CH ₄ emissions from 6.A Solid waste disposal on land	244
Table 104	Methods and data: CH4 emissions from 6.B Wastewater handling	245
Table 105	Methods and data: N ₂ O emissions from 6.B Wastewater handling	245
Table 106	Methods and data: CO ₂ emissions from 6.C Waste incineration	246
Table 107	Methods and data: CH4 emissions from 6.C Waste incineration	248
Table 108	Methods and data: N2O emissions from 6.C Waste incineration	249
Table 109	Methods and data: CO ₂ emissions from 6.D Other	249
Table 110	Methods and data: CH ₄ emissions from 6.D Other	250
Table 111	Methods and data: N ₂ O emissions from 6.D Other	251

List of figures

Figure 1	Trends in total greenhouse gas emissions	31
Figure 2	Member States emissions, change 2012-2013	36
Figure 3	Member States emissions, change 1990-2013	38
Figure 4	Emissions by sector, change 2012-2013	41
Figure 5	Energy sector emissions, change 2012-2013	4 3
Figure 6	Industrial Processes emissions, change 2012-2013	44
Figure 7	Agriculture sector emissions, change 2012-2013	45
Figure 8	Waste sector emissions, change 2012-2013	47
Figure 9	ETS and non-ETS emissions, change 2012-2013	51
Figure 10	Differences between approximated and submitted 2012 inventories	60
Figure 11	Difference by sector, proxy and submitted 2012 inventories (%)	62
Figure 12	Difference by sector, proxy and submitted 2012 inventories (Mt)	63

Abbreviations

AD Activity data

AR Activity rate

AR4 IPCC Fourth Assessment Report: Climate Change 2007 (AR4)

BP British Petroleum

CH₄ Methane

EUTL European Union Transaction Log

CO₂ Carbon dioxide

CO₂eq Carbon dioxide equivalent

CRF Common reporting format

EC European Commission

EEA European Environment Agency

ESD Effort Sharing Decision

ETC/ACM European Topic Centre on Air Pollution and Climate Change Miti-

gation

ETS Emissions Trading Scheme

EU European Union

EU-15 Austria, Belgium, Denmark, Finland, France, Germany, Greece,

Ireland, Italy, Luxembourg, the Netherlands, Portugal, Spain, Swe-

den and the United Kingdom.

EU-27 Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Es-

tonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden and the Unit-

ed Kingdom

EU-28 Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Den-

mark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden and the

United Kingdom

GDP Gross domestic product

GHG Greenhouse gas

GWP Global warming potential

HFCs Hydrofluorocarbons

IEA International Energy Agency

IEF Implied emission factor

IPCC Intergovernmental Panel on Climate Change

LULUCF Land use, land-use change and forestry

Mt Million tons

N₂O Nitrous oxide

PFCs Perfluorocarbons

QA/QC Quality assurance and quality control

SAR IPCC Second Assessment Report: Climate Change 1995 (SAR)

SF₆ Sulphur Hexafluoride

UNFCCC United Nations Framework Convention on Climate Change

Acknowledgements

This report was prepared by the European Environment Agency's (EEA) Topic Centre for Air Pollution and Climate Change Mitigation (ETC/ACM).

The coordinating author was Lukas Emele (Oeko-Institut). Other authors were, in alphabetical order, Graham Anderson (Oeko-Institut), Anke Herold (Oeko-Institut), Wolfram Jörß (Oeko-Institut) and Carina Zell (Oeko-Institut).

The EEA project managers were Ricardo Fernandez and Spyridoula Ntemiri. The EEA acknowledges and greatly appreciates the input and comments received from other EEA colleagues (Blaz Kurnik and John van Aardenne), the European Commission, EU Member States and other EEA member countries during the consultation period within the Eionet and the Working Group 1 on Annual greenhouse gas inventories of the Climate Change Committee of the European Commission.

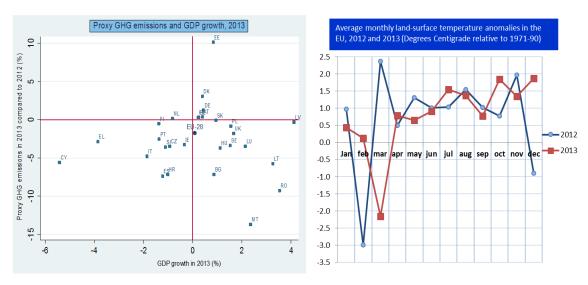
Executive Summary

Objective of the report

This report provides estimates of greenhouse gas (GHG) emissions in the European Union (EU) and its Member States for the year 2013, covering the full GHG inventory (all sectors, except land use, land-use change and forestry (LULUCF), and all gases). These estimates are also referred to as approximated ('proxy') estimates or inventories in this report as they cover the year for which no official GHG inventories have been prepared yet. The proxy estimates are based on incomplete activity and/or emissions data at country level and they should be considered as preliminary until the official inventory submissions are reported to UNFCCC in 2015. The proxy inventories in this report are based on GHG emission estimates reported by Member States to the European Commission under existing EU legislation¹ and on calculations made by the European Environment Agency (EEA) using activity and/or emissions data at country level. The official submission of 2013 inventories to the United Nations Framework Convention on Climate Change (UNFCCC) will take place in 2015. The proxy estimates greatly improve the timeliness of information on GHG emissions and are used for analysis of emission trends and progress to EU climate targets.

2013 presents a special case in GHG emissions reporting as it entails a change in the methodology and Global Warming Potentials (GWPs) used to estimate non-CO₂GHG gases. Under the UNFCCC rules, the official GHG inventories for 2013, to be submitted in 2015, will have to follow the 2006 IPCC Guidelines for national inventories and use the GWPs from the IPCC Fourth Assessment Report (AR4). These changes will reduce the comparability of the 2013 estimates with the previous inventories, in particular in areas where the revised IPCC methodologies will trigger changes in the methods used. As it is impossible to accurately quantify the different impacts arising from these changes on the 2013 inventory estimates, it is expected that the approximated estimates will show larger deviations relative to the final inventories submitted in 2015 than the approximated results for the past years.

The executive summary and Chapter 2 are based on proxy estimates reported by Member States as well as EEA estimates when Member States did not report proxy estimates by 31 of July. Chapter 3 is based on EEA proxy estimates for all Member States. The estimates in both chapters are based on GWPs from the IPCC Second Assessment Report (SAR) However, for reasons of consistency the paragraphs referring to the split between EU ETS and non-ETS emissions are based on GWPs from the IPCC AR4 and the scope-corrected ETS data for 2012.


Regulation (EU) 525/2013 of the European Parliament and of the Council on a mechanism for monitoring and reporting greenhouse gas emissions (EU MMR).

Proxy GHG emission estimates for 2013 at EU level

The 2013 inventory estimates indicate that for the EU-28 emissions continued to decrease slightly between 2012 and 2013. Compared to the 2012 official emissions reported to the UNFCCC and published earlier this year, the fall in emissions between 2012 and 2013 is estimated to be – 80.0 million tonnes of CO₂-equivalents (Mt CO₂-eq) or – 1.8 % for the EU-28 (total GHG emissions without LULUCF). For EU-28, total GHG emissions in 2013 are estimated to be – 20.7 % below 1990 emissions.

The 1.8 % emission decrease for EU-28 came along with a slight increase in Gross domestic product (GDP) of 0.1 % on average in 2013 compared to 2012. As in 2012, notwithstanding economic developments in specific sectors and countries, there was no common pattern between GDP and GHG emissions on average for the EU in 2013. The economic situation in the EU improved during 2013 compared to 2012, where GDP had contracted by – 0.5 %. Yet, GHG emission reductions in 2013 compared to 2012 were even larger than in 2012 compared to 2011 (1.8 % and 1.3 %, respectively). Some Member States achieved significant emission reductions in 2013 while also recording positive economic growth (see figure ES.0).

Figure ES.0 GHG emissions, GDP growth and monthly temperatures in the EU, changes 2012-2013

Note: GDP from DG ECFIN's Ameco database, European Commission. Average monthly land-surface temperatures from the E-OBS dataset, EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu) (Haylock et al., 2008).

Source: EEA.

For the understanding of emission trends, climate factors need to be considered as well. The winter in Europe was generally warmer in 2013 than it was in 2012. Higher winter temperatures led to lower heating demand and lower emissions from the residential and commercial sectors².

Figure ES.4 shows the expected change in total GHG emissions in 2013 broken down by European Emissions Trading System (ETS) and non-ETS sectors for the EU and by Member State. Between 2012 and 2013 emission reductions in the EU-28 were greater for the installations covered by the ETS (a decline in emissions of – 4.3 %) (see Figure ES.4) than they were in the non-ETS sectors (where emissions remained at a relatively stable level, growing by 0.2 %).

On a sectoral basis, the largest absolute emission reduction in the EU occurred in the energy sector (i.e. all combustion activities). GHG emissions fell by -80.7 Mt CO₂-eq (-2.2 %) across the EU-28. This decrease in emissions in the energy sector reflects the decline of gross inland energy consumption in the EU-28 in 2013. Within the energy sector, emissions decreased mostly in energy industries (-59.5 Mt CO₂-eq), manufacturing industries and construction (-10.1 Mt CO₂-eq) as well as for transportation (-11.3 Mt CO₂-eq).

Primary energy consumption in the EU-28 dropped by – 0.3 % and reached the lowest level since 1995. The contribution of fossil fuels to the energy mix declined while renewables further increased.

Based on Eurostat monthly fuel consumption data (Eurostat, 2014), total fuel consumption in the EU fell by -2.5 %, with different trends for the different fossil fuel types. Coal consumption dropped most significantly by -4.0 %. Natural gas consumption fell by -0.7 % and consumption of liquid fuels was reduced by -2.5 %. The changes in solid fuel consumption between 2012 and 2013 are strongly connected with the trends in electricity generation. Hydroelectric generation increased by 8 % in the EU with strong regional differences: south-eastern Europe experienced high rainfalls and a very favourable year for hydro electricity production, while the northern countries faced the opposite conditions with low rainfall and declining net hydro generation.

Electricity production from renewable sources other than hydro increased considerably. Net wind generation grew by about 20 % in the EU (Eurostat, 2013). Also solar consumption continued with a strong growth by 17 %. Thus, the use of renewables continues to play an important role in GHG mitigation efforts by the EU and its Member States.

Nuclear electricity production across the EU-28 decreased slightly by -1% in 2013 compared to 2012 according to Eurostat monthly data.

GHG emissions from industrial processes increased slightly in 2013 compared to 2012, up by 0.8 % in the EU-28. Emissions from mineral products fell by -1.4 % in the EU-28 in 2013 compared to 2012. This is consistent with the decrease in emissions from cement and lime production under the EU ETS in the same period. Emissions released by metal production rose by 3.3 % in the

Data based on the E-OBS, EU-FP6 project ENSEMBLES. No heating degree days available from Eurostat for the year 2013 at the time of production of this report.

EU-28 between 2012 and 2013. Emissions from chemical production remained relatively stable in the EU-28 (falling by only – 0.3 % between 2012 and 2013).

Figure ES.1 shows the emission trend for total GHG emissions without LULUCF in the EU-15 and EU-28 in the period 1990–2013 (3).

Million tonnes CO2 equivalent 5 750 5 500 EU-28 expected change for 2012-2013 = -1.8 % 5 250 5 000 4 750 4 500 EU-15 expected change for 2012-2013 = -1.4 % 4 250 4 000 3 750 EU-15 2013 EEA estimate 3 500 1992, 1993, 1994, 1995, 1996, 1991

Figure ES. 1 Trends in total GHG emissions

Note: Total GHG emissions without LULUCF, based on the 2014 EU GHG inventory submitted to the UNFCCC for the years 1990-2012 as well as proxy estimates for 2013 submitted by Member States using the GWPs from the IPCC SAR.

Source: EEA

source: EEA

Change in GHG emissions in the period 1990-2013

Figure ES.2 presents the estimated change in GHG emissions for each Member State between 1990 and 2013 (4).

³ This is not equivalent to the difference to base year emissions because of accounting rules such as the selection of the base year (which varies from country to country) for F-gases and the continuing recalculations of GHG inventories.

⁴ The percentage change cannot be directly compared to the emission reduction obligations under the Kyoto Protocol and the Effort Sharing Decision because Member State net balances under the ETS need to be taken into account and the fixed base-year emissions are not identical to the latest recalculation of 1990 emissions. Furthermore, Member State use of flexible mechanisms and LULUCF activities also contribute to compliance with the Kyoto targets.

Based on these 2013 estimates, total EU-15 emissions in 2013 will be 16.3 % below the 1990 level and 16.6 % below base year level. For EU-28, total GHG emissions excluding LULUCF in 2013 are estimated to be almost 20.7 % below 1990 emissions. Including CO₂ emissions from international aviation the reduction in total GHG emissions would reach 19.3 % in 2013 — less than a percentage point from the EU's internal 20 % emission reduction target.

A wide range of factors and policies (climate-related and non climate-related) have contributed to the long-term decline in GHG emissions in the EU, particularly for CO₂. These include improvements in energy efficiency, the shift to less carbon-intensive fossil fuels, and the strong increase in renewable energy use⁵. Implementation of the EU's Climate and Energy Package should lead to further reductions in emissions. The effects of the Montreal Protocol in reducing emissions of ozone-depleting substances have also indirectly contributed to very significant reductions in emissions of some potent GHGs such as chlorofluorocarbons. Specific polices to reduce fluorinated gases (F-gases) have also slowed the growth in consumption of fluorinated gases with high global warming potential. Other EU policies such as the Nitrates Directive, the Common Agriculture Policy (CAP), and the Landfill Waste Directive have also been successful in indirectly reducing GHG emissions from non-CO₂ gases such as methane and nitrous oxides.

⁵ See EEA, 'Why did GHG emissions decrease in the EU between 1990 and 2012?', http://www.eea.europa.eu/publications/why-are-greenhouse-gases-decreasing

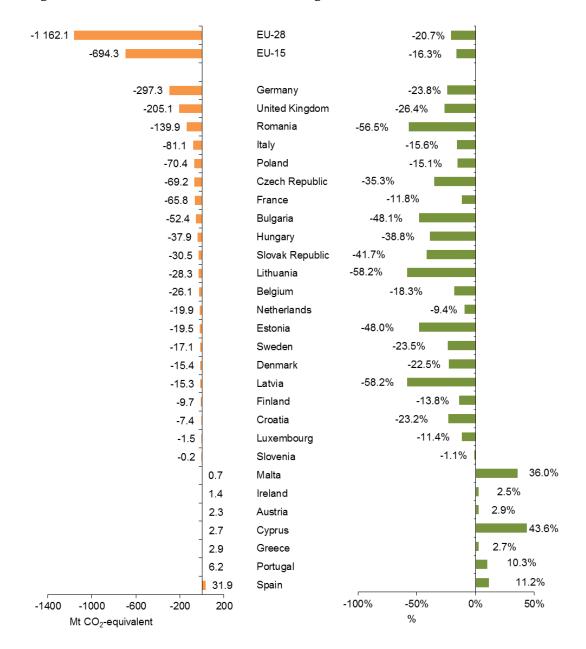


Figure ES. 2 Member States emissions, change 1990-2013

Note: Total GHG emissions without LULUCF, based on the 2014 EU GHG inventory submitted to the UNFCCC as well as proxy estimates for 2013 submitted by Member States using the GWPs from the IPCC SAR.

Source: EEA

Change in GHG emissions in the period 2012–2013 at Member State level

As Figure ES.3 illustrates, GHG emissions decreased in 21 Member States (Spain, Italy, Romania, the United Kingdom, Czech Republic, Bulgaria, Poland, Greece Hungary, Sweden, Ireland, Croatia, Portugal Lithuania, Slovenia, Cyprus, Malta, Luxembourg, Finland, Latvia and Slovakia). The largest absolute decrease of emissions occurred in Spain (– 25.2 Mt CO₂-eq or – 7.4 % compared to 2012), Italy (22.1 Mt CO₂-eq or – 4.8 % compared to 2012), followed by Romania (11.0 Mt CO₂-eq or 9.3 %) and the United Kingdom (– 10.4 Mt CO₂-eq or – 1.8 %). The largest

relative fall in emissions compared to the previous year took place in Malta (-13.7 %), followed by Romania (-9.3 %), Spain (-7.4 %), Croatia (-7.2 %) and Bulgaria (-7.1 %). The largest absolute growth in emissions occurred in Germany (11.7 Mt CO₂-eq or 1.2 %) and the largest relative increase in Estonia (10.1 %). Chapter 2 of the main report includes explanations for some of the change in emissions by Member State.

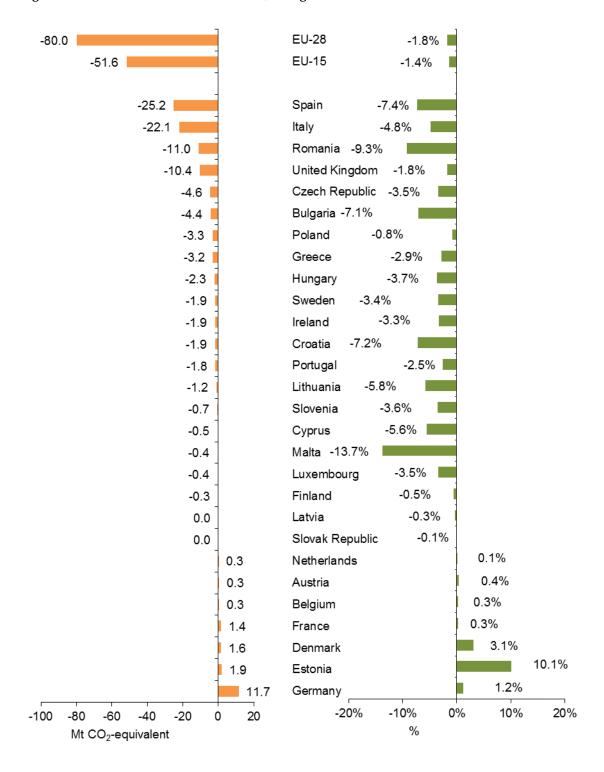


Figure ES. 3 Member States emissions, change 2012-2013

Note: Total GHG emissions without LULUCF, based on the 2014 EU GHG inventory submitted to the UNFCCC as well as proxy estimates for 2013 submitted by Member States using the GWPs from the IPCC SAR.

Source: EEA

Twenty-one Member States submitted preliminary 2013 GHG data to the European Commission and the EEA by 31 July 2014. Austria, Belgium, Croatia, Estonia, Finland, France, Germany, Hungary, Italy, Latvia, Lithuania, Malta, the Netherlands, Poland, Slovakia, Slovenia and Spain submitted complete emissions in the form of Common reporting format (CRF) Summary 2 tables. Denmark, Greece Sweden and the United Kingdom submitted largely complete CRF Summary 2 tables⁶.

According to the country estimates, as shown in Figure ES.3, the expected change in GHG emissions in 2013 compared to 2012 is as follows: Austria (+ 0.4 %), Belgium (+ 0.3 %), Croatia (- 7.2 %), Denmark (+ 3.1 %), Estonia (+10.1 %), Finland (- 0.5 %), France (+ 0.3 %), Germany (+ 1.2 %), Greece (- 2.9 %), Hungary - 3.7 %), Italy (- 4.8 %), Latvia (- 0.3 %), Lithuania - 5.8 %), Malta (- 13.7 %), the Netherlands (+ 0.1 %), Poland (- 0.8 %), Slovakia (- 0.1 %), Slovenia (- 3.6 %), Spain (- 7.4 %), Sweden (- 3.4 %) and the United Kingdom (- 1.8 %).

Using the available proxy emission estimates by Member States, EU-28 emissions are expected to decrease by 1.8 % between 2012 and 2013 (and matching to 1.8 % when using EEA proxy estimates only).

In general, the preliminary estimates from both sources (i.e. both EEA-sourced proxy data and Member States' own estimates) matched well with differences smaller than \pm 2 %, except for Croatia (where the difference was 4.5 %), Greece (5.0 %), Lithuania (3.1 %), Malta (2.3 %) and Slovakia (3.1 %).

Official 2013 GHG emissions for the EU will be available in the late May or early June 2015, when the EEA publishes the EU GHG inventory 1990–2013, and the inventory report 2015 for submission to the UNFCCC.

first submission before 31/07 were taken into account.

⁶ Luxembourg submitted proxy data on 14th August 2014. As this submission was after the deadline, proxy data of Luxembourg could not be taken into account in the calculations of the EU proxy but it is presented in Annex 5.1 for transparency reasons. Belgium submitted revised proxy data on 15th September 2014. As these revised data were submitted after the deadline, only the proxy data of Belgium's

Figure ES. 4 ETS and non-ETS emissions, change 2012-2013

Note: EU-27 as Croatia only joined in EU ETS in 2013

Source: EU 2014 submission to UNFCCC for 2012, proxy estimates for 2013 and verified emissions from European Union Transaction Log (EUTL) as of August 2014. The split between ETS and non-ETS is based on GWPs from the AR4 and the scope corrected ETS data for 2012 (see section 2.3 of the full report).

Rationale for proxy GHG emission estimates

The EU, as a Party to the UNFCCC, reports annually on GHG emissions within the area covered by its Member States (i.e. emissions occurring within its territory). National GHG inventories for EU Member States are only available with a delay of one and a half years. Inventories submitted on 15 April of the year X therefore include data up to the year X–2. For example, the data submitted on 15 April 2014 included data covering all of 2012, but not 2013. Thus, the timeliness of the data is not always optimal and does not allow for timely analysis of emission trends and progress towards targets.

The latest official EU data available (1990–2012) covering all countries, sectors and gases was released in May 2014 with the annual submission of the EU GHG inventory to the UNFCCC (EEA, 2014a). The inventory data include GHG emissions not controlled by the Montreal Protocol, both from sectors covered by the ETS and from non-trading sectors. However, whereas UNFCCC emissions run on a year X–2 basis, Kyoto registries and EU ETS information are available on a year X–1 basis. Verified EU ETS emissions are therefore already available for 2013 (EEA, 2014b).

There are clear advantages in generating proxy GHG estimates for all sectors. Under the Kyoto Protocol, the EU-15 took on a common commitment to reduce emissions by 8 % between 2008 and 2012 compared to emissions in the base year. When Member States set national emission caps for installations under the ETS for the period 2008–2012, they allocated part of their Kyoto emission budget (Kyoto Assigned Amounts) to the EU ETS and fixed the overall contribution of the ETS sectors towards reaching Kyoto national targets. ETS information runs on a year X–1 timeline but success in reducing emissions from sectors not covered by the EU ETS (running on a year X–2 timeline) will determine whether governments need to use Kyoto flexible mechanisms to achieve their targets.

Starting this year, the legal basis for the proxy GHG emission estimates is Regulation (EU) 525/2013 on a mechanism for monitoring and reporting GHG emissions (EU MMR). Article 8 requires Member States to submit to the Commission, where possible, approximated GHG inventories for the year X-1 by 31 July every year. These estimates are used to assess progress towards GHG emission targets.

Publishing a proxy GHG emissions report also fulfils the goals of the 'Beyond GDP' process (EU, 2014), which encourages authorities to produce data on the environment with the same frequency and timeliness as they produce data on the economy.

Methodology for proxy GHG emission estimates

The present report sets out estimated GHG emissions for 2013 based on national EU Member States estimated GHG emissions, submitted to EEA by 31 July 2014 (see Annex I). From these data, aggregated EU-15 and EU-28 proxy 2013 GHG emission estimates were derived (see Chapter 2).

Under the recently adopted Regulation (EU) 525/2013 on a mechanism for monitoring and reporting GHG emissions (EU MMR) and its implementing provisions, Member States are to submit, where possible, to the European Commission approximated GHG inventories by 31 July every year for the preceding year X–1 (in this case 2013). Where a Member State has not

submitted a 'proxy' inventory, the EEA uses its own estimates for gap-filling purposes in order to have a complete approximated GHG inventory at Union level.

Member States are responsible for the methodological choice regarding their own estimates. For gap-filling, the EEA uses the latest activity data available at country level to estimate the emissions. For emission sources for which no appropriate datasets exist, emissions are extrapolated from past trends, or emissions from the previous year are kept constant if historic data do not show a clear linear trend. The emission estimates assume no change in emission factors or methodologies as compared to the latest official inventory submissions to UNFCCC for the year X–2. On this basis, a detailed bottom-up approach has been developed covering the full scope of emissions included in a GHG inventory submission.

The GHG estimates in this report have been compiled by the EEA's European Topic Centre on Air Pollution and Climate Change Mitigation (ETC/ACM). Chapter 2 shows the complete dataset of EU proxy GHG emission estimates, based on the submissions made by Member States and EEA's gap-filling of the remaining Member States which did not submit, where applicable. Chapter 3 shows the proxy GHG emission estimates by Member State based entirely on the methods and data sources developed by the EEA and its ETC/ACM as described in Annex III. The detailed results for each Member State are shown in Annex I and Annex II of this report in order to ensure complete transparency regarding the different GHG estimates available.

The EEA has used the proxy estimates of 2013 GHG emissions produced by Member States to assess progress towards GHG emission targets in its annual 'Trends and projections' report (to be published end-October). In that report, the EEA's proxy estimates for 2013 were only used for countries that lack their own estimates to track progress towards national and EU targets.

Where Member States' estimates are missing, gaps are filled with estimates by the EEA and its ETC/ACM (see Annex II). In recent years, a methodology to estimate GHG emissions using a 'bottom-up' approach has been developed (see Annex III). It uses data sources (or estimates) that were published prior to the end of July of 2014 for individual countries, sectors and gases to derive EU GHG estimates for the preceding year (X-1). For transparency, this report shows the country-level GHG estimates from which the EU estimates have been derived. The estimates cover total GHG emissions as reported under the Kyoto Protocol and the UNFCCC excluding the LULUCF sector.

Estimates by the EEA and ETC/ACM are made for all major source categories in all sectors. For the most important source categories, data sources with updated activity or emissions data for the year t-minus-1 were identified and used to calculate emissions. For source categories for which no international datasets with updated activity data exist or which are too complex for such an approach, emissions were extrapolated from past trends (linear extrapolation), or emissions from the previous year were kept constant if historic data did not show a clear trend. On this basis, a detailed bottom-up approach was developed covering the full scope of emissions included in a GHG inventory submission.

The EEA estimates (see Chapter 3 and Annex II) are based on publicly available datasets at the national, European and international levels. These datasets are disaggregated by major source categories in all sectors reported under the UNFCCC and the Kyoto Protocol.

1. Background and objective

The approximated GHG inventory is an early estimate for the GHG emissions for the year preceding the current year and is available around September each year. The legal basis for the Proxy GHG emission estimates is Regulation (EU) 525/2013 of the European Parliament and of the Council on a mechanism for monitoring and reporting greenhouse gas emissions (EU MMR). Article 8 requires Member States to submit to the Commission approximated greenhouse gas inventories for the year X-1 by 31 July every year. Then, the European Environment Agency (EEA) assists the Commission in the compilation of the Union approximated greenhouse gas inventory. When Member States do not provide their own proxy emission estimates, the EEA produces gap-filled estimates in order to have a complete approximated GHG inventory for the European Union.

In relation to the scope, the Proxy GHG estimates cover total GHG emissions, for all gases, sectors, years and Member States, as reported under the Kyoto Protocol and the UNFCCC excluding the land use, land-use change and forestry (LULUCF) sector.

Member States are responsible for the methodological choice regarding their own estimates. For gap-filling, the EEA uses the latest activity data available at country level to estimate the emissions. For emission sources for which no appropriate datasets exist, emissions are extrapolated from past trends, or emissions from the previous year are kept constant if historic data do not show a clear trend. The emission estimates assume no change in emission factors or methodologies as compared to the latest official inventory submissions to UNFCCC for the year X-2. On this basis, a detailed bottom-up approach was developed covering the full scope of emissions included in a GHG inventory submission. The EEA proxy estimates are used both for gap-filling purposes, when Member States do not provide their own proxy estimates, and as verification of the estimates provided by Member States.

This report provides approximated estimates of greenhouse gas (GHG) emissions in the EU and its Member States for the year 2013. They are also referred to as 'proxy' estimates in this report, and they are based on GHG emission estimates reported by Member States and on calculations made by the EEA using activity and/or emissions data at country level. The official submission of 2013 data to the United Nations Framework Convention on Climate Change (UNFCCC) will take place in 2015.

There are clear advantages in generating proxy GHG estimates for all sectors. Under the Kyoto Protocol, the EU-15 took on a common commitment to reduce emissions by 8 % between 2008 and 2012 compared to emissions in the base year. When Member States set national emission caps for installations under the ETS for the period 2008–2012, they allocated part of their Kyoto emission budget (Kyoto Assigned Amounts) to the EU ETS and fixed the overall contribution of the ETS sectors towards reaching Kyoto national targets. ETS information runs on a year t-1 timeline but success in reducing emissions from sectors not covered by the EU ETS (running on a year t-2 timeline) will determine whether governments need to use Kyoto flexible mechanisms to achieve their targets. Therefore, a proxy estimate of the previous year's emissions has improved tracking and analysis of progress towards Kyoto targets, as it has been done in the annual EEA report on greenhouse gas emission trends and projections in Europe.

In addition, the 2009 EU's Climate and Energy Package encourages trading and non-trading sectors to run on similar timelines. The Package represents the EU's response to limiting the rise in global average temperature to no more than 2 °C above pre-industrial levels. To achieve this

Member States agreed to reduce total EU GHG emissions by 20% compared to 1990 by 2020. Both ETS and non-ETS sectors will contribute to the 20% objective. Minimising overall reduction costs to reach the 20 % objective implies a 21% reduction in emissions from EU ETS compared to 2005 by 2020 and a reduction of approximately 10% compared to 2005 by 2020 for non-trading sectors. From 2013, there will be an EU-wide cap on emissions from ETS installations (instead of national allocation plans as under Kyoto) and national targets for the non-trading sectors. As with Kyoto, meeting the 2020 national targets will by and large be determined by how countries reduce emissions in the non-trading sectors. Proxy GHG estimates can therefore help tracking progress to towards EU and national targets for 2020. The EEA has also used the proxy estimates of 2013 GHG emissions produced by EEA member countries to assess progress towards GHG emission targets in its annual *Trends and Projections Report*. In that report, the EEA's own proxy estimates for 2013 were only used for countries that lack their own estimates to track progress towards national and EU targets.

The EEA and its European Topic Centre on Air Pollution and Climate Change Mitigation have developed a methodology to estimate GHG emissions using a bottom up approach — based on data or estimates for individual countries, sectors and gases — to derive EU GHG estimates in the preceding year (t–1). In this report the methodological approach from 2013 has changed. In accordance with the reporting of approximated greenhouse gas inventories under Article 8 of the MMR, all member states will produce their own proxy greenhouse gas estimates. This report marks a change of approach in the way that these Member States proxies are used. In previous reports the analysis and calculations took advantage of available Member States proxy emission estimates for quality assurance and quality control.

This year's proxy report makes as much use as possible of the Member States proxy inventories. In effect the proxy inventory for the whole EU-28 is based directly on the Member States proxies. Missing or incomplete Member States proxies have been gap filled with proxy data that has been calculated with the same bottom-up country specific methods that were used in previous years.

This report provides greenhouse gas estimates one year before the official submission of national greenhouse gas inventories to UNFCCC. The estimates are based on the proxy inventories received from the member states with gap-filling where necessary. Table 0 shows an overview of different emission estimates by EU bodies. More information can be found on the EEA website 'Note on different emission estimates by EU institutions' http://www.eea.europa.eu/publications/different-emission-estimates-by-eu-bodies

Table 0 Overview of EU data sources for GHG estimates

What	Who	When	Timeliness	Geographical scope	Sectoral Scope	EU reporting obligation
EU GHG inventory to UNFCCC	EEA	15 April (draft sub- mission) & 27 May (final submission)	X-2	EU and its 28 Member States	All gases and sectors (100% of emissions)	EU MMR (525/2013)
Proxy GHG inventory	EEA	30 September	X-1	EU and its 28 Member States and other EEA member countries when availa- ble	All gases and sectors (100% of emissions) except LULUCF	EU MMR (525/2013)
EU ETS	DG CLIMA	Early April and May	X-1	EU-28, Iceland, Norway and Liechtenstein	12,000 installations (~45% of total emissions)	EU ETS Directive (2003/87/EC)
CO ₂ early estimates	Eurostat	April / May	X-1	EU and its 28 Member States	CO ₂ from fossil fuel combus- tion (~80% of total emis- sions)	Eurostat's work pro- gramme
EDGAR global database	JRC	August / September	X-1	Global cover- age	All gases and sectors (100% of emissions)	JRC's work programme

2. European GHG emissions in 2013 using Member States proxy data

Twenty-one Member States submitted preliminary 2013 GHG data to the European Commission and the EEA by 31 July 2014. Austria, Belgium, Croatia, Estonia, Finland, France, Germany, Hungary, Italy, Latvia, Lithuania, Malta, Netherlands, Poland, Slovakia, Slovenia and Spain submitted complete emissions in the form of CRF Summary 2 tables. Denmark, Greece Sweden and United Kingdom submitted largely complete CRF Summary 2 tables. Where emissions from a complete sector were missing, this was gap filled using GHG emissions from the EEA proxy (see chapter 3). If emissions for a sector were submitted but data for subsectors and/or gases were missing, the Member State preliminary data was distributed to subsectors/gases using Member States preliminary data and shares calculated by EEA proxy. Where LULUCF data was provided, this data was omitted (NE), as for the EU-15 and EU-28 proxy GHG inventory, emissions from LULUCF are not calculated. As Bulgaria, Cyprus, Czech Republic, Ireland, Luxembourg, Portugal and Romania did not submit preliminary GHG inventories by 31 July 2014, GHG emissions from EEA proxy was used for these Member States. Member States data as submitted is presented in chapter 5.1.7

The inventory reporting year 2013 is special because under the UNFCCC countries are required to use revised Global Warming Potentials and updated inventory methodologies based on the 2006 IPCC Guidelines for the national GHG inventories for the reporting year 2013. These changes will reduce the comparability of the 2013 estimates with the previous inventories, in particular in areas where the revised IPCC methodologies will trigger changes in the methods used. As it is impossible to predict the quantitative effects arising from these changes on the 2013 inventory estimates, it is expected that the approximated estimates will show larger deviations relative to the final inventories submitted in 2015 than the approximated results for the past years.

This also has a special implication on the calculation of ETS / ESD shares. The approximated GHG inventory is calculated using global warming potentials (GWP) from the IPCC Second Assessment Report: Climate Change 1995 (SAR) but available ETS data is already calculated using GWPs from the IPCC Fourth Assessment Report: Climate Change 2007 (AR4). Therefore, total estimated emissions for 2013 have to be converted applying GWP correction factors. For further methodological details, see chapter 2.3.)

Luxembourg submitted proxy data on 14th August 2014. As this submission was after the deadline, proxy data of Luxembourg is presented in section 5.1.18 for transparency reasons, but was not taken into account in the calculations of this report. Belgium submitted revised proxy data on 15th September 2014. As these revised data was submitted after the deadline, only the proxy data of the first submission was taken into account.

2.1 Trends and general results

The 2013 inventory estimates indicate that for EU-28 emissions continued to decrease slightly between 2012 and 2013. Compared to the 2012 official emissions published earlier this year, the fall in emissions between 2012 and 2013 is estimated to be -80.0 Mt CO2eq or -1.8 % for the EU-28 (total greenhouse gas emissions without LULUCF). For EU-28, total GHG emissions in 2013 are estimated to be -20.1 % below 1990 emissions.

The 1.8% emission decrease for EU-28 came along with a slight increase in GDP of 0.1% on average in 2013 compared to 2012. As in 2012, notwithstanding economic developments in specific sectors and countries there was no common pattern between GDP and GHG emissions on average for the EU in 2013. The economic situation in the EU improved during 2013 compared to 2012, where GDP had contracted by -0.5%. Yet, GHG emission reductions in 2013 were even larger than in 2012 (1.8% and 1.3%, respectively). Some Member States achieved significant emission reductions in 2013 while also recording positive economic growth.

The winter in Europe was generally warmer in 2013 than it was in 2012. Higher winter temperatures led to lower heating demand and lower emissions from the residential and commercial sectors.

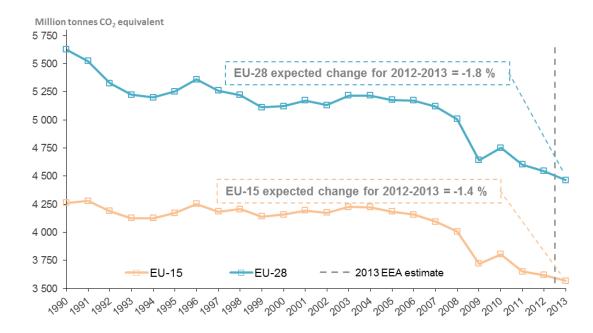


Figure 1 Trends in total greenhouse gas emissions

Note: Total GHG emissions without LULUCF, based on the 2014 EU GHG inventory submitted to the UNFCCC for the years 1990-2012 as well as proxy estimates for 2013 submitted by Member States using the GWPs from the IPCC SAR.

On a sectoral basis, the largest absolute emission reduction in the EU occurred in the Energy sector (i.e. all combustion activities). GHG emissions fell by -80.7 Mt CO₂eq (-2.2 %) across the

EU-28. This decrease in emissions in the Energy sector reflects the decline of gross inland energy consumption in the EU-28 in 2013. Within the energy sector, emissions decreased mostly in energy industries (-59.5 Mt CO2eq) and manufacturing industries and construction (-10.1 Mt CO2eq) as well as for transportation (-11.3 Mt CO2eq).

Primary energy consumption in the EU-28 dropped by -0,3 % and reached the lowest level since 1995 and the contribution of fossil fuels to the energy mix declined while renewables further increased.

Based on Eurostat monthly fuel consumption data (Eurostat, 2014), total fuel consumption in the EU fell by -2.5 %, with different trends for the different fossil fuel types: Coal consumption dropped most significantly by -4.0 %. Natural gas consumption fell by -0.7 % and consumption of liquid fuels was reduced by -2.5 %. Many Member States experienced strong declines in coal consumption between 2012 and 2013: Austria by -7.4 %, Bulgaria by -14.8 %, Spain by -31.7 %, Greece by -12.8 %, Hungary by -10 %, Ireland by -15.1 %, Italy by -10.5 %, Romania by -28.0 % and Slovenia by -17.1 %. Few Member States showed increasing coal consumption, most pronounced was the increase in Denmark by 26.6 %, followed by Lithuania with 17.4 % growth, Estonia with 7.9 %, Finland with 7.8 %, Croatia with 6.8 % and France with 6.7 % (Eurostat, 2014). These changes in solid fuel consumption between 2012 and 2013 are strongly connected with the trends in electricity generation:

Hydroelectric generation increased by 8 % in the EU with strong regional differences: South-eastern Europe experienced high rainfalls and a very favourable year for hydro electricity production. In Portugal net hydro generation grew by 142 % compared to the previous year, in Spain by 77.5 %, Greece by 40.9 %, Romania by 23.7 %, Italy by 21.2 %, Slovenia by 20.6 % and Bulgaria by 19.0 % (Eurostat, 2014). The northern countries faced the opposite conditions with low rainfall and declining net hydro generation, in particular in Finland (-24 %), Sweden (-22 %), Denmark (-22 %), Latvia (-21 %) and Norway (-10 %). In years with low rainfall in the Northern electricity market, Denmark is increasing its electricity generation from thermal plants which resulted in a strong increase in coal consumption in Denmark in 2013 (26.6 %).

In the northern parts of Europe, the winter in 2013 was longer and colder compared to the year before, e.g. in Germany, which was one of the reasons for an emission increase in Germany by 1.2 %.

Electricity production from renewable sources other than hydro increased considerably. Net wind generation grew by about 20 % in the EU (Eurostat, 2013). Wind generation grew in all

Germany published approximated data in a press release and additional explanation on trends in an annex on 10th March 2014. Available on: http://www.umweltbundesamt.de/sites/default/files/medien/478/dokumente/pi-2014-

¹⁰_treibhausgasausstoss_im_jahr_2013_um_12_prozent_erneut_leicht_gestiegen.pdf

⁹ Eurostat data were also analysed, however these data were incomplete with regard to biomass consumption and solar consumption for some EU Member States and were therefore not used for the assessment of trends.

Member States in 2013 except in Hungary with very high growth rates: Romania (91 %), Finland (56 % - although with very small contribution to total generation), Croatia (47 %), United Kingdom (42 %), Sweden (37 %), Poland (37 %) and Bulgaria (32 %). In six Member States (Denmark, Germany, Ireland, Spain, Lithuania, Portugal) net wind generation contributed with more than 10% to total net electricity generation in 2013, with the highest share in Denmark (34 % wind generation in total net electricity generation).

Due to the lack of data on solar generation from Eurostat for 2013 at the time of production of this report, BP data were used to evaluate the impact of solar power and total renewable generation. The consumption of other renewable sources grew by 12.6 % with a continued strong growth by 17 % for solar power (BP, 2014). In three large Member States solar consumption arrived at a considerable share of total energy consumption: In Germany solar consumption increased by 14 % and reached a share of 24% in total consumption, in Italy solar consumption grew by 10 % and attained a share of 18 % in total consumption and in Spain solar consumption expanded by 10 % and achieved a share of 10.5 % in total consumption (BP, 2014).

Thus, the use of renewables continues to play an important role in GHG mitigation efforts by the EU and its Member States. Strong relative growth of renewable energy consumption (without hydro) is reported for many Member States such as Austria (13 %), Belgium (14 %), Bulgaria (33 %), Czech Republic (11 %), Denmark (9 %), France (8 %), Germany (8 %), Greece (9 %), Ireland (12 %), Italy (14 %), Lithuania (22 %), the Netherlands (8 %), Poland (26 %), Portugal (16 %), Romania (76 %), Spain (12 %), Sweden (14 %) and United Kingdom (34 %) (BP, 2014). Only Hungary (-2 %) showed decreasing consumption of renewable energy according to BP data.

Nuclear electricity production across the EU-28 decreased slightly by --1 % in 2013 compared to 2012 according to Eurostat monthly data. The largest increases in nuclear electricity generation occurred in Belgium (6 %) and Sweden (4 %). The largest decreases were in Bulgaria (-10 %), the Netherlands (-27 %) and Spain (-8 %).

Between 2012 and 2013 the emission reductions occurred in the installations covered by the European Emissions Trading Scheme (-4.3 %) for EU-27, whereas emissions from the Non-ETS sector kept at a stable level (0.2 %).

Change in GHG emissions in the period 2012-2013 at Member State level

Figure 2 illustrates the changes in emissions in Europe from 2012 to 2013. GHG emissions decreased in 21 Member States (Spain, Italy, Romania, United Kingdom, Czech Republic, Bulgaria, Poland, Greece Hungary, Sweden, Ireland, Croatia, Portugal Lithuania, Slovenia, Cyprus, Malta, Luxembourg, Finland, Latvia and Slovakia). The largest absolute decrease of emissions occurred in Spain (-25.2 Mt CO₂eq or -7.4 % compared to 2012), Italy (-22.1 Mt CO₂eq or -4.8%

_

 $^{^{\}rm 10}$ Ordered by absolute contribution to the EU reduction

compared to 2012), followed by Romania (-11.0 Mt CO₂eq or -9.3 %) and United Kingdom (-10.4 Mt CO₂eq or -1.8 %). The largest relative fall in emissions compared to the previous year took place in Malta (-13.7 %), followed by Romania (-9.3 %), Spain (-7.4 %), Croatia (-7.2 %) and Bulgaria (-7.1 %). The largest absolute growth in emissions occurred in Germany (11.7 Mt CO₂eq or 1.2 %) and the largest relative increase in Estonia (10.1 %).

The following section explains the emission trends for those Member States that contribute considerably to total EU emissions (Germany, UK, France, Italy and Spain) as well as for those Member States that showed pronounced changes in emissions compared to the previous year.

Member States with decreasing emission trends

Spain experienced a strong reduction of emissions by -7.4 % or -25.2 Mt CO2eq in 2013 compared to 2012. This is due to a large decrease in solid fuel consumption for electricity generation (-31.7 %), but also reduced oil consumption (-6.6 %) and gas consumption (-7.7 %). Total fuel consumption fell by -12.6 % whereas net electricity generation only decreased by -2.2 %. The reduced use of fossil fuels was replaced by hydro generation which showed an increase of 77.5 % resulting from a very favourable hydro year in 2013. Wind generation also grew by 16.9 % to an absolute level equal to nuclear electricity generation. Nuclear generation declined by 7.5 %. In Spain also emissions from mineral products (cement industry) dropped by almost 10 %. The continuing economic crisis is reflected by rather strong decreases in emissions from manufacturing industries and from mineral products through reduced consumption of cement for the construction industry).

Italy is the fourth largest GHG emitter in Europe. In 2013 emissions fell by -22.1 Mt CO2eq or -4.8% compared to 2012. Similar to Spain, fossil fuel consumption showed a significant decline: solid fuel consumption dropped by -10.5%, oil consumption by -5.1% and gas consumption by -6.5%. The strong decrease in net thermal electricity generation by -10.9% was compensated by an increase in hydro generation of 21.2% and of wind generation by 13.5%. Thus, Italy also profited from good rainfall conditions. Additional emission reduction effects are likely from the continued economic crisis with an almost 10% decrease of emissions from manufacturing industries and a decline of emissions from mineral products which is related to less construction activities.

In Romania emissions declined by -11.0 Mt CO2eq or -9.3 % compared to the previous year. In Romania, solid fuel consumption fell substantially by -28.0 %, liquid fuel consumption by -5.0% and gas consumption by -7.5 %. In total net thermal electricity generation declined by -22.5 % which was also compensated by hydro (increase by 24 %) and wind generation (increase by 91 %). Favourable weather conditions seemed to have reduced heating demand.

In Bulgaria the drop in emissions was -4.4 MtCO2eq or -7.1 % compared to 2012. Also in Bulgaria solid fuel consumption showed a strong decline of -14.8 % and oil consumption by -4.5 % while gas consumption increased by 4.3 %. Net electricity generation in general decreased by -6.6 % with a strong reduction in thermal generation by -12.3 % and nuclear generation by -10.4 % while hydro generation grew by 19.0 %, wind generation by 32 % and electricity exports were reduced by -11 %. In Bulgaria also coal production and related fugitive emissions decreased (fugitive emissions dropped by -25 %).

In the United Kingdom, emissions decreased by -10.4 Mt CO2eq or -1.8% in 2013. This is in contrast to the preceding increase of emissions by 3.1 % in 2012. Also in the United Kingdom the decline in emissions is due to reduced consumption of fossil fuels, in particular coal which dropped by -4.0 % and liquid fuels which decreased by -2.3 %. Net thermal electricity generation was -5.0 % lower, which was compensated by higher wind generation (42 %) and higher electricity imports (5 %) and a generally reduced net electricity generation of -1.5 %.

Member States with increasing emission trends

In Germany, the largest European economy and the largest GHG emitter, there was an emissions increase of 11.7 Mt CO₂eq or 1.2 % in 2013. However, Germany continues to hold first place for the largest emissions reduction relative to 1990 levels. The net GHG increase in 2013 was due to higher use of solid fuels for electricity production as well as higher gas and oil for heating in households and the commercial sector due to a colder winter. There was also a significant increase in net electricity exports. The continued strong increase in renewables helped contained otherwise higher GHG emissions in 2013.

Estonia experienced the highest relative emission increase with 10.1 % compared to 2013 and an absolute increase by 1.9 Mt CO₂eq. Coal consumption grew significantly by 7.9 %. This fits with an increase in thermal generation of 10 % and also total net electricity generation rose by 10 %. Wind generation grew by 12.5 %, however has a small share in total generation. In Estonia also higher emissions from industrial processes contributed to the emission increase, in particular cement industry and chemical industry.

In Denmark the growth of emissions by 3.1 % or 1.6 Mt CO₂eq is related to higher coal consumption for power production (increase of 26.6 % in solid fuel consumption and of 15.4 % in net thermal electricity generation) due to lower electricity imports from the Nordic electricity market where Norway, Finland and Sweden experienced low rainfalls and low hydro generation. Wind generation increased by 14 % and reached a share of 33.6 % in net electricity generation which obviously helped to compensate the decline of -28 % in electricity imports.

Member States with relatively stable emissions compared to 2012

In France emissions remained at a relatively constant level and only increased by 0.3 %. Relative to 1990, French emissions have fallen by -67.3 Mt CO₂eq or -12.1%. The small increase is due to increasing coal consumption (6.7 %) and natural gas consumption (3.1 %). The increased natural gas consumption is likely to be related to a colder winter similar to the situation in Germany. However, this increase in emissions was compensated by a decrease in transport emissions which is rather unique in France compared to other Member States. In France, nuclear energy generation remained relatively stable with a small decline of -0.3 % whereas hydro generation increased by 16 %.

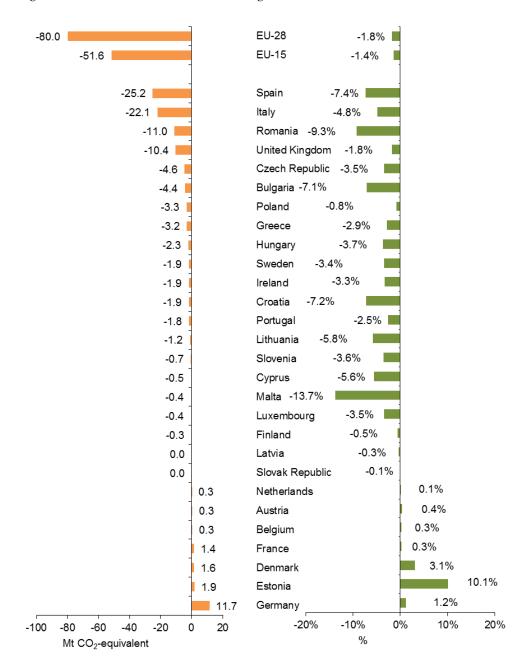


Figure 2 Member States emissions, change 2012-2013

Note: Total GHG emissions without LULUCF, based on the 2014 EU GHG inventory submitted to the UNFCCC as well as proxy estimates for 2013 submitted by Member States using the GWPs from the IPCC SAR.

Source: EEA

11

Figure 3 shows the emission trend for total GHG emissions without LULUCF between the years 1990 and 2013. According to these estimates, total EU-15 emissions in 2013 will be 16.3 % below the 1990 level and 16.6 % below base year level. For EU-28, total GHG emissions in 2013 are estimated to be almost 20.7 % below 1990 emissions.

For two Member States – Denmark and the UK – GHG inventories submitted to the UNFCCC are different to the inventories submitted under the EU Monitoring Mechanism Decision, as their Kyoto inventories include non-EU territories. The comparison in this table refers to the EU GHG inventory consistent with the inventory submitted by these countries under the EU Monitoring Mechanism Decision.

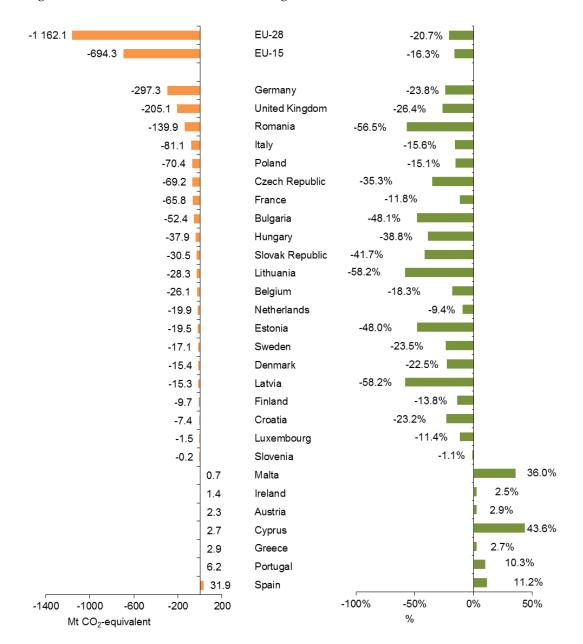


Figure 3 Member States emissions, change 1990-2013

Note: Total GHG emissions without LULUCF, based on the 2014 EU GHG inventory submitted to the UNFCCC as well as proxy estimates for 2013 submitted by Member States using the GWPs from the IPCC SAR. Error bars are not included in this year's graphs as the proxy inventory is now largely based on Member States own estimates. For analysis of last year's EEA proxy estimates for each member state and the subsequent reported emissions see Section 3.2. Source: EEA

Table 1 and Table 2 show the detailed results for the EU-15 and the EU-28. Annex 5.1 includes summary tables for 2013 for each Member State as submitted by the Member States. Annex 5.2 includes summary tables for EU-28, EU-15 and each Member State as calculated by EEA.

Table 1 Summary table of approximated GHG emissions for 2013 for EU-15 (total emissions without LULUCF)

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2013 Submission EU-15

OUSE GAS SOURCE AND	CO ₂ ⁽¹⁾	CH_4	N ₂ O	HFCs (2)	PFCs (2)	SF ₆ (2)	Total
EGORIES			CO ₂ e	quivalent (Gg			
Emissions) (1)	2.938.842	288.597	258.351	73.048	2.949	5.962	3.567.84
	2.774.463	38.813	26.881				2.840.15
l Combustion (Sectoral Approach)	2.756.156	13.010	26.848				2.796.014
. Energy Industries	1.000.960	2.651	8.167				1.010.026
. Manufacturing Industries and Construction	434.681	1.294	4.832				439.98
. Transport	750.959	904	7.246				757.20
. Other Sectors	563.829	8.146	6.330				578.50
. Other	5.628	15	272				10.19
itive Emissions from Fuels	18.302	25.812	29				44.14
. Solid Fuels	603	5.833	0				6.43
. Oil and Natural Gas	17.799	19.979	29				37.80
rial Processes	156.807	567	7.952	73.048	2.949	5.962	247.28
eral Products	83.929	20	0				83.94
emical Industry	32.149	446	7.933				40.52
tal Production	40.076	101	20		314	227	40.77
ner Production	351	0	0				35
duction of Halocarbons and SF6				548	1.515	110	2.17
nsumption of Halocarbons and SF6 (2)				50.213	720	4.972	55.90
ner	302	35	10	144	0	0	49
t and Other Product Use	5.340		1.981				7.32
lture		162.348	210.461				372.809
eric Fermentation		119.946					119.94
nure Management		39.718	20.303				60.02
e Cultivation		2.141					2.14
ricultural Soils(3)		9	190.034				190.043
scribed Burning of Savannas		0	0				(
d Burning of Agricultural Residues		534	124				658
ner		0	0				-
se, Land-Use Change and Forestry(1)	NE	NE	NE				N
est Land	NE	NE	NE				N
pland	NE	NE	NE				N
ssland	NE	NE	NE				NE
tlands	NE	NE	NE				N
lements	NE	NE	NE				N
er Land	NE	NE	NE				N
er	NE	NE	NE				NI
	2.436	86.868	11,170				100.47
id Waste Disposal on Land	0	74.753	1				74.75
ste-water Handling		10.824	9.696				20.520
ste Incineration	2.418	76	168				2.66
ner	19	1.215	1.309				2.54
(as specified in Summary 1.A)							
ms: (4)							
onal Bunkers							
al Operations							
ssions from Biomass							
To	tal CO2 Equ	uivalent Emissio	ns without Lan	d Use, Land-U	lse Change a	nd Forestry	3,567,84
То		uivalent Emissio Equivalent Emis					

Source: Member States' proxy estimates, gap filled with EEA's proxy estimates

Table 2 Summary table of approximated GHG emissions for 2013 for EU-28 (total emissions without LULUCF)

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2013 Submission EU-28

GREENHOUSE GAS SOURCE AND	CO2(1)	CH_4	N ₂ O	HFCs (2)	PFCs (2)	SF ₆ (2)	Total
SINK CATEGORIES		·	CO2	equivalent (Gg		~-0	
Total (Net Emissions) (1)	3.641.352	391.746	333.869	87.844	3.001	6.294	4.464.207
1. Energy	3.418.018	73.343	31.720				3.523.081
A. Fuel Combustion (Sectoral Approach)	3.394.265	19.103	31.686				3.445.054
1. Energy Industries	1.338.608	2.866	9.722				1.349.443
Manufacturing Industries and Construction	516.998	1.527	5.245				522.948
3. Transport	873.407	1.176	9.085				881.762
4. Other Sectors	656.198	13.494	7.329				677.224
5. Other	8.955	39	304				13.576
B. Fugitive Emissions from Fuels	23.749	54.249	30				78.027
Solid Fuels	2.740	17.639	0				20.379
Oil and Natural Gas	21.109	36.610	30				57.748
2. Industrial Processes	213.744	983	11.394	87.844	3.001	6.294	323.261
A. Mineral Products	112.258	23	0				112.281
B. Chemical Industry	43.632	779	11.370				55.781
C. Metal Production	54.907	181	20		339	231	55.718
D. Other Production	388	0	0				388
E. Production of Halocarbons and SF6				548	1.515	110	2.173
F. Consumption of Halocarbons and SF6 (2)				60.888	734	5.152	66.774
G. Other	2.559	35	14	144	0	2	2.755
3. Solvent and Other Product Use	6.725		2.915				9.640
4. Agriculture		195.924	273.767				469.700
A. Enteric Fermentation		146.531					146.531
B. Manure Management		46.442	29.394				75.836
C. Rice Cultivation		2.285					2.285
D. Agricultural Soils(3)		9	244.198				244.207
E. Prescribed Burning of Savannas		0	0				0
F. Field Burning of Agricultural Residues		658	174				832
G. Other		0	0				9
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE
A. Forest Land	NE	NE	NE				NE
B. Cropland	NE	NE	NE				NE
C. Grassland	NE	NE	NE				NE
D. Wetlands	NE	NE	NE				NE
E. Settlements	NE	NE	NE				NE
F. Other Land	NE	NE	NE				NE
G. Other	NE NE	NE.	NE.				NE.
6. Waste	3.060	121.496	14.168				138.727
A. Solid Waste Disposal on Land	0	99.486	13				99.499
B. Waste-water Handling	0	20.618	12.543				33.160
C. Waste Incineration	3.041	78	202				3.321
D. Other	19	1,314	1.413				2.746
7. Other (as specified in Summary 1.A)			0				20
7. Other (as specified in Summary 134)							
Memo Items: (4)							
International Bunkers							
Aviation	-						
Awation Marine							
Multilateral Operations							
CO2 Emissions from Biomass							
CO2 LINISSIONS NON DIONIASS							
	T-1-1000 =	to the or Early St.		111 1	01		4 464
		ivalent Emissio					4.464.207
	Total CO2 I	Equivalent Emis	sions with Lan	id Use, Land-L	lse Change a	nd Forestry	NE

Source: Member States' proxy estimates, gap filled with EEA's proxy estimates

2.2 Sectoral results

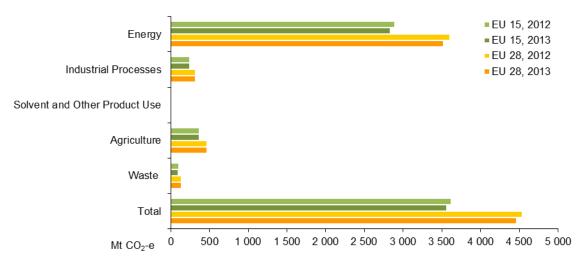

Table 3 and Figure 4 show the changes between 2012 and 2013 at sectoral level for the EU-15 and the EU-28.

Table 3 Emissions by sector, change 2012-2013

	Emissions change between 2012 and 2013					
	EU-	15	EU	J -28		
	Mt CO2eq	%	Mt CO2eq	%		
Energy	-53.0	-1.8%	-80.7	-2.2%		
Industrial Processes	4.1	1.7%	2.6	0.8%		
Solvent and Other Product Use	-0.2	-3.1%	-0.3	-2.6%		
Agriculture	-0.3	-0.1%	0.6	0.1%		
Waste	-2.0	-1.9%	-2.1	-1.5%		
Total	-51.6	-1.4%	-80.0	-1.8%		

Source: EU 2014 submission to UNFCCC for 2012 and proxy estimates for 2013.

Figure 4 Emissions by sector, change 2012-2013

Source: EU 2014 submission to UNFCCC for 2012 and proxy estimates for 2013.

On a sectoral basis, the largest absolute emission reduction occurred in the Energy sector (i.e. all combustion activities). GHG emissions fell by -80.0 Mt CO2eq (-1.8 %) across the EU-28. More detailed explanations for the trends in the energy sector were already provided in the general section above.

The greenhouse gas emissions from Industrial Processes increased slightly compared to the previous year (EU-28 0.8 %), mainly from Chemical Industry and Metal Production. Emissions in the sector Solvent and Other Product Use are already minor but decreased further (EU-28 - 2.6 %). In the agricultural sector, GHG emissions in 2013 were almost constant and increased

only slightly in EU-28 by 0.1%. Waste sector emissions show a decrease of -1.5 % for the EU-28. GHG emissions decreased mainly in the sub-sector Solid Waste Disposal on Landfills.

2.2.1 Energy

Emissions from the energy sector are the most important source of GHG emission in the European Union and contribute to more than 75% of total EU-28 GHG emissions. The results of the proxy estimates in the fuel combustion sector show a decrease of GHG emissions of 78.2 Mt CO₂eq or 2.2 % in EU-28 between 2012 and 2013 is estimated. Table 4 indicates the sub-sectors contribution to this drop in emissions. Emissions from sub-sectors are estimated separately applying different methodologies as explained later. The largest decrease in fuel combustion emissions occurred in 1.A.1 Energy Industries. Emission increases occurred in 1.A.4 Other sectors, i.e. residential and commercial combustion for EU-15. Emissions in 1.A.5 Other increased for EU-15 by 3.9 Mt CO₂eq and for EU-28 by 4.6 Mt CO₂eq. The increase in this sector seems to be the result of a change in Swedish sectoral methodology. However the increases were more than offset the decreases in the other sub-sectors. 1.B Fugitive Emissions from Fuels decreased in both EU-15 and EU-28.

Table 4 Energy sector emissions, change 2012-2013

Change 2012 / 2013	EU-	15	EU-28		
	Mt CO2eq	%	Mt CO2eq	%	
1.A Fuel Combustion (Sectoral Approach)	-52.0	-1.8%	-78.2	-2.2%	
1.A.1. Energy Industries	-45.2	-4.3%	-59.5	-4.2%	
1.A.2. Manufacturing Industries and Construction	-7.7	-1.7%	-10.1	-1.9%	
1.A.3. Transport	-7.5	-1.0%	-11.3	-1.3%	
1.A.4 Other sector	4.3	0.8%	-2.0	-0.3%	
1.A.5 Other	3.9	62.9%	4.6	50.8%	
1.B. Fugitive Emissions from Fuels	-1.0	-2.2%	-2.5	-3.1%	
1.B.1 Solid Fuels	-1.4	-18.1%	-2.8	-12.2%	
1.B.2 Oil and Natural Gas	0.5	1.5%	0.5	0.8%	

Source: EU 2014 submission to UNFCCC for 2012 and proxy estimates for 2013.

-

¹² Sweden reported for sector 1.A.5 emissions of 0.16 Mt CO₂eq in the inventory for 2012. In the Member State proxy, Sweden estimated 4.4 Mt CO₂eq. In the Member State proxy submission, Sweden included the following note: "CRF 1A5 Other: Including the military's domestic transport and machinery in all sectors (CRF 1A3 except 1A3b, 1A5b + parts of 1A2f and 1A4)."

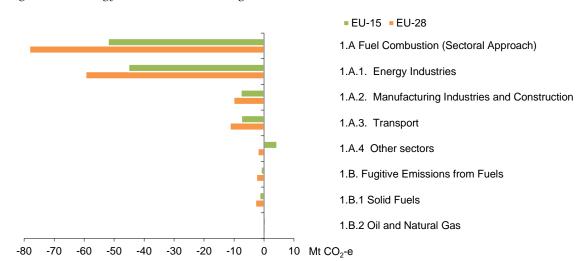


Figure 5 Energy sector emissions, change 2012-2013

2.2.2 Industrial Processes

Industrial processes contribute to about 7% of total EU-28 GHG emissions and are the third most important source of GHG emissions after emissions from energy use and agriculture,. In 2013, GHG emissions from Industrial Processes were increased by 2.6 Mt CO2eq for the EU-28 (+0.8%) compared to 2012. Table 5 and Figure 6 show the sub-sector contribution to this trend in emissions. Emissions mainly decreased in the sector 2.A Mineral Products and increased in the sectors 2.B Chemical Industry and 2.C Metal Production. Emissions in the Sector 2.D Other Production mainly increased because Belgium in its Member States proxy reported new emissions in this sector and did not report emissions here in past inventories. GHG Emissions in the sectors 2.E Production of Halocarbons and SF6, 2.F Consumption of Halocarbons and SF6 and 2.G Other are not present here, because neither all Member States reported proxy GHG emissions nor EEA estimates were calculated on sub sectorial level for these sub sectors.

Table 5 Industrial Processes emissions, change 2012-2013

Change 2012 / 2013	EU	-15	EU-28		
	Mt CO2eq	%	Mt CO2eq	%	
2 Industrial Processes	4.1	1.7%	2.6	0.8%	

Belgium submitted on 15th September 2014 revised proxy data where emission of the emissions in the sector 2.D of the initial proxy inventory submission was reallocated to sector 2.C. As this revision was submitted after the deadline, it was not taken into account in the calculations of this report.

2.A Mineral Products	-0.9	-1.1%	-1.6	-1.4%
2.B Chemical Industry	1.2	3.1%	-0.1	-0.3%
2.C Metal Production	1.7	4.3%	1.8	3.3%
2.D Other Production	0.2	209.2%	0.3	193.8%

B. Chemical Industry

C. Metal Production

D. Other Production

Mt CO₂-e

Figure 6 Industrial Processes emissions, change 2012-2013

Source: EU 2014 submission to UNFCCC for 2012 and proxy estimates for 2013.

2.2.3 Agriculture

Agriculture contributes to about 10% of European emissions (excluding LULUCF). The main greenhouse gases from agricultural activities are N₂O from soils and CH₄ from livestock. Soils and enteric fermentation contribute about 52% and 31% of the of the sector's emissions respectively. Emissions from manure management make up about 16% of agricultural emissions. Table 6 and Figure 7 show that the small increase in Agriculture sector emissions for the EU-28 this year is largely due to higher emissions from agricultural soils. In the brief descriptions of the key drivers accompanying each proxy inventory, a number of Member States observe that his increase is caused by a rise in the use of synthetic fertilizer.

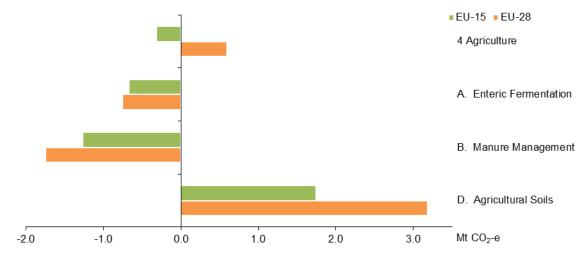

Table 6 and Figure 7 show the sub-sector contributions with CH_4 and N_2O emissions shown as CO_2 equivalents (Mt CO_2 eq).

Table 6 Agriculture sector emissions, change 2012-2013

Change 2012 / 2013	EU-15		EU-28	
	Mt CO2eq	%	Mt CO₂eq	%
4 Agriculture	-0.3	-0.1%	0.6	0.1%
A. Enteric Fermentation	-0.7	-0.6%	-0.8	-0.5%
B. Manure Management	-1.3	-2.1%	-1.8	-2.3%
C. Rice Cultivation	-0.1	-4.8%	-0.1	-3.3%
D. Agricultural Soils	1.7	0.9%	3.2	1.3%
E. Prescribed Burning of Savannas	0.0	0.0%	0.0	0.0%
F. Field Burning of Agricultural Residues	0.0	-0.5%	0.0	-0.4%

For the EU-15 total emissions from agriculture decreased as reductions in emissions from enteric fermentation and manure management outweighed the increase in emissions from soils. For the EU-28 total emissions from agriculture increased as the higher emissions from soils outweighed the reductions in the other sub-sectors.

Figure 7 Agriculture sector emissions, change 2012-2013

Source: EU 2014 submission to UNFCCC for 2012 and proxy estimates for 2013.

Note that although sub-sectors 4.C Rice Cultivation, E. Prescribed Burning of Savannas and F. Field Burning of Agricultural Residues are shown in Table 6, because they contribute to less than 1% of EU Agricultural emissions they are not included in Figure 7 nor discussed below.

Methods and data sources uses

The proxy inventory is now largely based on estimates from member states with gap filling only where necessary. Details on the methodology of emissions estimates used for gap filling of the Agriculture sector are provided in section 5.3.3.

Results

2.2.3.1 4.A Enteric Fermentation

Emissions from Enteric Fermentation and Manure Management continue a declining emission trend in Europe's agriculture sector. Across the EU-28 the greatest emissions reductions were in Italy (-351 Gg CO₂-e, -4 %) and Poland (-351 Gg CO₂-e, -4 %). The United Kingdom (-351 Gg CO₂-e, -2 %), Germany (-233 Gg CO₂-e, -1 %), and Spain (-189 Gg CO₂-e, -2 %) also saw large reductions.

The largest increases were in the Netherlands (285 Gg CO₂-e, 4 %), Greece (203 Gg CO₂-e, 7 %) and Romania (157 Gg CO₂-e, 2 %). Overall the EU-28 had an -760 Gg CO₂-e, -1 % decrease in emissions from Enteric Fermentation. Table 38 in section 5.3.3 presents the CH₄ emissions for the proxy inventory in 2013 for 4A Enteric Fermentation compared to the inventory time series for the EU and all Member States.

2.2.3.2 4.B Manure Management

Emissions from manure management contribute about 16% of EU-28 emissions. Since 2012 emissions have fallen by more than 2% in EU-28. There was a substantial decrease in Italy (-408 Gg CO₂-e, -7%). Poland, Spain and Romania also saw large reductions. Greece and Hungary saw small increases. Table 39 and Table 40 in section 5.3.3 show 4B Manure Management CH₄ and N₂O emissions for the EEA calculated proxy inventory along with selected time series for the EU and Member States as submitted to the UNFCCC.

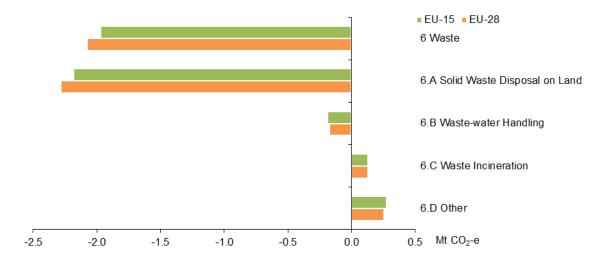
2.2.3.3 4.D Agricultural Soils

The increase in Agriculture sector emissions for the EU-28 this year is largely due to higher emissions from agricultural soils. Emissions from soils contribute about half of EU-28 emissions from agriculture and have increased by 1% since 2012. The greatest increases were for France (895 Gg CO₂-e, 2 %), Portugal (807 Gg CO₂-e, 4 %) and Spain (739 Gg CO₂-e, 3 %). The greatest decreases were for Poland (-576 Gg CO₂-e, -10 %) and Lithuania (-249 Gg CO₂-e, -1 %).

Section 5.3.3 (Table 41) shows 4D Agricultural Soils N₂O emissions for the EEA calculated proxy inventory along with selected time series for the EU and Member States as submitted to the UNFCCC.

2.2.4 Waste

This sector contributes about 3 % of EU-28 emissions. Waste related emissions to continue to decrease reflecting the contribution from solid waste disposal on land and restrictions on land-filling of organic degradable waste from decades ago.


Results for 2013

Emissions from the Waste sector decreased by -2 Mt CO₂eq for the EU-28 compared to 2012. Table 7 and Figure 8 show the sub-sector contributions to this trend in emissions.

Table 7 Waste sector emissions, change 2012-2013

Waste	Change 2013/2012					
	EU-15		EU-	28		
	Mt CO2eq %		Mt CO2eq	%		
6 Waste	-2.0	-1.9%	-2.1	-1.5%		
6.A Solid Waste Disposal on Land	-2.2	-2.8%	-2.3	-2.2%		
6.B Waste-water Handling	-0.2	-0.9%	-0.2	-0.5%		
6.C Waste Incineration	0.1	5.0%	0.1	4.0%		
6.D Other	0.3	12.2%	0.3	10.2%		

Figure 8 Waste sector emissions, change 2012-2013

Source: EU 2014 submission to UNFCCC for 2012 and proxy estimates for 2013.

The proxy inventory is now based on estimates from member states with gap filling only where necessary. Details on the previous Waste sector methodology which was largely based on extrapolation and is now only used for gap filling are provided in section 5.3.4.

2.3 ETS / ESD

Proxy estimates in chapter 2.1 and 2.2 were calculated using global warming potentials (GWP) from the IPCC Second Assessment Report: Climate Change 1995 (SAR). Emissions data in the EU Emissions Trading Scheme (ETS) provided from 2013 on are based on GWPs from the IPCC

Fourth Assessment Report: Climate Change 2007 (AR4). To show emission changes in the ETS sector and the non-ETS sector (which is regulated by the Effort Sharing Decision (ESD)¹⁴), all emissions had to be re-estimated, so that they are consistent with AR4 GWPs. Member States were invited to perform this estimation by themselves and to submit proxy inventories using not only SAR GWPs but also AR4 GWPs. Where Member States submitted total and/or ETS proxy 2013 emissions data using AR4 GWPs, this data was used. When this was not provided, proxy inventories for the year 2013 based on SAR GWPs were converted to AR4 GWPs by EEA using conversion factors. In addition, when ETS data were not submitted, the ETS data were taken from the 'EU Emissions Trading System (ETS) data viewer' (EEA, 2014b).

The conversion of the proxy estimates from SAR to AR4 GWPs used the following method: Emissions of carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O) and sulphur hexafluoride (SF₆) were converted directly using conversion factors listed in Table 8. Hydroflourocarbons (HFCs) and perflourocarbons (PFCs) are not single gases but mixes of several different gases with different GWP. The mixes of these different gases with different GWPs are country specific. Therefore, for each Member State, country specific conversion factors for HFC and PFC were derived using the shares of these different gases on total HFCs respectively PFCs emissions and their individual GWPs in the latest available Member States' official GHG inventories.

Table 8 Global warming potentials from different IPCC Assessment Reports

Greenhouse gas or group of gases		GWP from IPCC SAR	GWP from IPCC AR4	AR4/SAR GWPconversion factor		
Carbon dioxide	CO ₂ 1		arbon dioxide CO ₂ 1 1		1	1.000
Methane	CH ₄	21	25	1.190		
Nitrous oxide	N ₂ O	310	298	0.961		
Hydrofluorocarbons	HFC	Member Stat	es specific value d	ependent of mix of HFC		
Perfluorocarbons	PFC	Member States specific value dependent of mix of PFC				
Sulfur hexafluoride	SF ₆	23 900	23 900 22 800 0.9			

Source: IPCC (1995), IPCC (2007)

_

Decision No 406/2009/EC of the European Parliament and of the Council of 23 April 2009 on the effort of Member States to reduce their greenhouse gas emissions to meet the Community's greenhouse gas emission reduction commitments up to 2020

Table 9 shows the converted total proxy emissions for 2013, ETS emissions and non-ETS emissions together with the respective relative changes in emissions. To calculate emission changes for both ETS emissions and non-ETS emissions, total emissions for the year 2012 of Member States inventories were also converted using AR4/SAR GWP conversion factors. To account for the scope change in the ETS from 2012 to 2013, scope corrected data from EU Emissions Trading System (ETS) data viewer was used. This scope correction for data of the year 2012 addresses changes due to additional sectors and gases to be able to compare amounts across years (EEA, 2014d). Where not submitted by Member States, 2013 non-ETS emissions were calculated by subtracting 2013 ETS emission from proxy estimates of total emissions. Similarly, 2012 non-ETS emissions where calculated by subtracting the scope-corrected 2012 ETS emissions from 2012 total recalculated emissions.

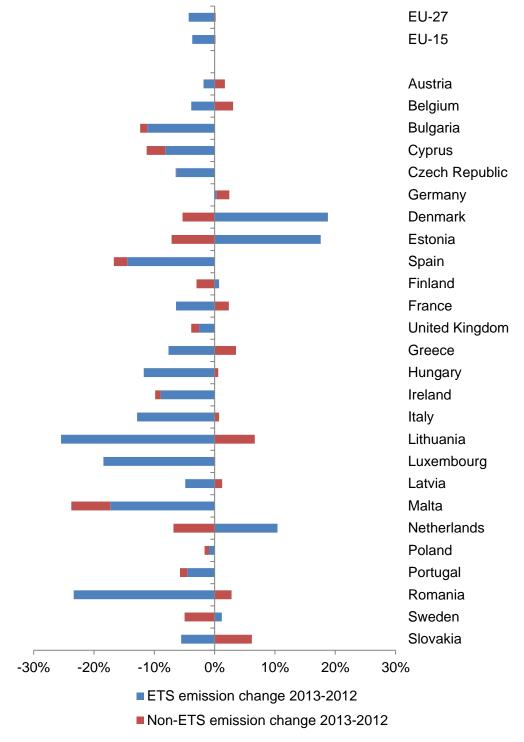
Table 9 ETS and non-ETS 2013 proxy emissions with SAR and AR4 GWPs

	Es	timated 2013	GHG emissio	ns	Chang	je 2013 versu	s 2012
MS	Total	Total	ETS	Non-ETS	Total	ETS	Non-ETS
	SAR GWPs		AR4 GWPs			%	
AT	80 350	81 375	29 851	51 524	0.4%	-1.9%	1.7%
BE	116 852	118 194	45 231	72 963	0.3%	-3.9%	3.1%
BG	56 689	57 874	32 696	25 178	-7.1%	-11.2%	-1.2%
CY	8 743	9 011	4 025	4 986	-5.4%	-8.2%	-3.1%
CZ	126 910	128 795	67 714	61 082	-3.5%	-6.4%	-0.1%
DE	950 790	958 861	477 448	481 414	1.2%	0.3%	2.1%
DK	53 235	54 140	21 602	32 538	3.0%	18.8%	-5.3%
EE	21 131	21 320	15 925	5 395	10.2%	17.6%	-7.1%
ES	315 612	322 032	122 791	199 241	-7.3%	-14.5%	-2.2%
FI	60 644	61 015	31 497	29 519	-1.1%	0.7%	-3.0%
FR	491 532	501 536	110 936	390 600	0.3%	-6.4%	2.3%
UK	570 300	580 429	225 519	354 910	-1.8%	-2.6%	-1.3%
GR	107 797	110 130	58 633	51 497	-2.7%	-7.7%	3.5%
HR	24 524	25 843	9 698	16 145	-4.3%	NA	NA
HU	59 687	61 091	19 125	41 966	-3.6%	-11.8%	0.6%
ΙE	56 614	58 761	15 685	43 076	-3.2%	-9.0%	-0.9%
IT	437 994	444 893	164 399	280 493	-4.8%	-12.9%	0.7%
LT	20 378	20 331	7 464	12 867	-7.9%	-25.5%	6.7%
LU	11 428	11 502	1 847	9 655	-3.4%	-18.4%	0.1%
LV	10 945	11 199	2 625	8 574	-0.3%	-4.9%	1.2%
MT	2 709	2 758	1 697	1 060	-13.4%	-17.3%	-6.5%
NL	191 940	194 717	86 799	107 917	0.1%	10.4%	-6.8%
PL	395 979	403 662	205 734	197 927	-0.8%	-1.0%	-0.7%
PT	67 001	69 433	24 642	44 791	-2.4%	-4.5%	-1.2%
RO	107 748	111 644	42 415	69 230	-9.0%	-23.4%	2.8%
SE	55 959	56 699	20 114	36 585	-2.9%	1.2%	-5.0%
SI	18 236	18 574	7 386	11 188	-3.6%	-2.3%	-4.3%
SK	42 679	43 448	21 829	21 618	-0.1%	-5.6%	6.2%
EU-15	3 568 047	3 623 718	1 436 995	2 186 723	-1.4%	-3.7%	0.1%
EU-27	4 439 881	4 513 424	1 865 630	2 647 794	-1.7%	-4.3%	0.2%
EU-28	4 464 406	4 539 268	1 875 329	2 663 939	-1.8%	NA	NA

Source: Member States proxies, EEA's proxy GHG emissions based on the 2014 EU greenhouse gas inventory to UNFCCC for 1990-2012 and proxy estimates for 2013 and ETS data (2013 verified emissions and the 2012 scope-corrected verified emissions). The split between ETS and non-ETS is based on GWPs from the AR4.

Notes: Recalculated emission data using AR4 GWPs were only used in this section 2.3 of the report on ETS/ESD emissions, as the EU ETS already uses these AR4 GWPs since 2013. All other parts of this report still use SAR GWPs in line with the national inventories submitted in 2014. As Croatia only joined in 2013 the EU ETS, changes in emissions for ETS/non-ETS cannot be given here. For the same reason, sums for EU-27 are shown. Due to data gaps and/or inconsistencies in the sum of reported emissions by sector and/or gas, the totals presented in column "Total SAR GWP" differ slightly from those in Annex 5.1 for AT, SE and UK.

In total, emissions using AR4 GWPs changed by -1.8% for EU-28 and -1.7% for EU-27. Figure 9 presents a differentiation of the emission trend change between ETS emissions and Non-ETS emissions. Between 2012 and 2013, emissions in the ETS sector strongly decreased by 4.3% (EU-27), while emissions in the non-ETS sector increased slightly by 0.2% (EU-27). In absolute terms, the total emission reduction in EU-27 is 79.8 Mt CO₂eq in the 2012-2013 period. In the ETS sector, emissions were reduced by 84.0 Mt CO₂eq and in the non-ETS sector emissions increased by 4.2 Mt CO₂eq.


At Member State level the trend change separated between the ETS and non-ETS sector look different:

ETS emissions only increased in Denmark, Estonia, Finland, Germany, the Netherlands and Sweden. Largest ETS emissions increase in absolute value with about 8.2 Mt CO₂eq occurred in the Netherlands, largest relative increase with 18.8% was in Denmark. Largest ETS emission decrease in absolute value occurred in Italy (-24.3 Mt CO₂eq) and largest relative decrease in Lithuania (-25.5%).

Non-ETS emissions increased in Austria, Belgium, Germany, France, Greece, Hungary, Italy, Lithuania, Luxembourg, Latvia, Romania and Slovakia. Largest non-ETS emissions increase in absolute value with about 9.9 Mt CO₂eq occurred in the Germany, largest relative increase with 6.7% was in Lithuania. Largest non-ETS emission decrease in absolute value occurred in the Netherlands (-7.9 Mt CO₂eq) and largest relative decrease in Estonia (-7.1%).

Germany was the only country, where emissions increased both in the ETS and non-ETS sector. In ten Member States (Bulgaria, Cyprus, Czech Republic, Ireland, Malta, Poland, Portugal, Slovenia, Spain and United Kingdom) emission decreased both in ETS and non-ETS sector. In Denmark, Estonia, Finland, Netherlands and Sweden, emissions in the ETS sector increased while emissions in the non-ETS sector decreased. A contrasting development has shown in eleven Member States (Austria, Belgium, France, Greece, Hungary, Italy, Latvia, Lithuania, Luxembourg, Romania and Slovakia), where ETS emissions decreased and non-ETS emissions increased.

Figure 9 ETS and non-ETS emissions, change 2012-2013

Note: EU-27 as Croatia only joined in EU ETS in 2013

Source: EU 2014 submission to UNFCCC for 2012, proxy estimates for 2013 and verified emissions from EUTL as of August 2014. The split between ETS and non-ETS is based on GWPs from the AR4 and the scope-corrected ETS data for 2012.

3. European GHG emissions in 2013 using EEA proxy data

3.1 Methodologies and data sources

For the estimation of approximated emissions, the following data sources for emissions or activities in the year 2013 were used:

- BP's Statistical Review of World Energy 2014¹⁵;
- verified emissions reported under the EU-ETS and recorded in the EUTL16;
- Eurostat Monthly Oil and Gas Questionnaires and Monthly Coal Questionnaires
- Eurostat monthly data on crude oil production (indicator code 100100, product code 3100);
- Eurostat monthly total consumption data for natural gas (indicator code 100900, product code 4100);
- Eurostat production data for natural gas (indicator code 100100, product code 4100);
- Eurostat monthly gross inland deliveries data for total fuel oil, heating and other gas oil (indicator code 100520, product codes 3270A and 3266);
- Eurostat annual data for the final energy consumption of motor spirit, automotive diesel oil and kerosene/jet fuels;
- Eurostat monthly data for the internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels;
- Monthly production data for crude steel production and blast furnace iron production of the World Steel Association (previously IISI International Iron and Steel Institute)¹⁷; this data source has only data for some of the EU Member States¹⁸;
- Eurostat annual statistics on livestock population for cattle, goats, sheep and swine.
- National preliminary energy balance data or energy statistics:
 - Austria, 2014, Preliminary energy balance 2013,
 (http://www.statistik.at/web_de/statistiken/energie_und_umwelt/energie/energiebilan_zen/), accessed 30 June 2014.

_

BP, 2014, BP Statistical Review of World Energy 2014 (www.bp.com/en/global/corporate/about-bp/energy-economics/statistical-review-of-world-energy/statistical-review-downloads.html) accessed by 04 July 2014.

¹⁶ EEA 2014b: <u>www.eea.europa.eu/data-and-maps/data/data-viewers/emissions-trading-viewer</u>

¹⁷ Available at www.worldsteel.org

¹⁸ Pig iron/Blast furnace iron production: AT, BE, CZ, DE, ES, FR, HU, IT, NL, PL, SK and UK. Crude steel production: AT, BE, BG, CZ, DE, ES, FI, FR, GR, HU, IT, LU, NL, PL, SI, SE, SK and UK.

- Bulgaria, 2014, Monthly statistics for liquid, solid and gaseous fuels, <u>www.nsi.bg/en/content/5019/production-and-deliveries-energy-products</u>, accessed 30 June 2014.
- Croatia, 2014, Short term indicators of energy statistics, first results, different issues, www.dzs.hr/default e.htm, (\Rightarrow\text{ released data} \Rightarrow\text{ by statistical subjects} \Rightarrow\text{ Industry, Energy and Information Society} \Rightarrow\text{ energy} \Rightarrow\text{ Short-Term Indicators of Energy Statistics), accessed 30 June 2014.
- Cyprus, 2014, Monthly statistics Petroleum products sales and stock changes, www.mof.gov.cy/mof/cystat/statistics.nsf/energy_environment_81main_keyfarchive_en/energy_environment_81main_keyfarchive_en?OpenForm&yr=2014380DDB90F3C5_8213004E0A12E623A895&n=2014, accessed 30 June 2014.
- o Denmark, 2014, Monthly energy statistics, <u>www.ens.dk/en/info/facts-figures/energy-statistics-indicators-energy-efficiency/monthly-statistics</u>, accessed 30 June 2014.
- Estonia, 2014, Energy balances, http://pub.stat.ee/px-web.2001/I_Databas/Economy/07Energy/02Energy_consumption_and_production/01
 Annual statistics/01Annual statistics.asp, accessed 30 June 2014.
- Finland 2014, Energy consumption data,
 http://193.166.171.75/database/statfin/ene/ehk/ehk en.asp, accessed 30 June 2014.
- o France, 2014, Monthly energy statistics gas, oil and coal, http://developpement-durable.bsocom.fr/statistiques/ReportFolders/reportFolders.aspx (⇔ Énergie Données mensuelles ⇒ Pégase ⇒ Importations, productions, consommations par énergie, en ktep), accessed 30 June 2014.
- o Germany, 2014, Quarterly energy consumption data, <u>www.ag-energiebilanzen.de/DE/daten-und-fakten/primaerenergieverbrauch/primaerenergieverbrauch.html</u>, accessed 30 June 2014.
- o Hungary, 2014, Monthly energy statistics, <u>www.ksh.hu/engstadat</u> (⇔ energy ⇒ Times series of annual data AND Infra-annual data), accessed 30 June 2014.
- Ireland, 2014, Provisional energy balance, <u>www.seai.ie/Publications/Statistics Publications/Energy Balance</u> 30 June 2014.
- Italy, 2014, Preliminary energy balance, http://dgerm.sviluppoeconomico.gov.it/dgerm/ben.asp, accessed 30 June 2014.
- Luxembourg, 2014, Monthly gross consumption by products, <u>www.statistiques.public.lu/stat/TableViewer/tableView.aspx?ReportId=4087&IF_Language=eng&MainTheme=1&FldrName=4&RFPath=50</u>, 30 June 2014.

- o Lithuania, 2014, Fuel and energy resources, http://osp.stat.gov.lt/ (⇒ Environment and Energy ⇒ Energy ⇒ Monthly energy indicators ⇒ fuel and energy resources), June 2014.
- Netherlands, 2014, Monthly energy consumption,
 http://statline.cbs.nl/StatWeb/dome/?LA=EN (⇒ Themes ⇒ Manufacturing and energy ⇒ energy, key figures ⇒ Energy; consumption and producer prices by energy commodity), June 2014.
- Portugal, 2014, Energy balances,
 www.apren.pt/fotos/newsletter/conteudos/dgeg 2014 balanco energetico sintetico 2
 013 1404920046.pdf, (search for: "BALANÇO ENERGÉTICO"), accessed 30 June 2014.
- o Romania, 2014, Industry statistical bulletin, <u>www.insse.ro/cms/en/content/statistical-bulletins</u>, June 2014.
- Slovenia 2014, Annual balance of liquid, solid and gaseous fuels,
 http://pxweb.stat.si/pxweb/Database/Environment/18_energy/01_18179 balance indicators.asp, June 2014.
- Spain, 2014, Monthly data on production and consumption of coal, petroleum and natural gas,
 www.ine.es/jaxi/tabla.do?path=/t38/bme2/t04/a082/l1/&file=1202002.px&type=pcaxis&L=1 , June 2014.
- Sweden, 2014, Quarterly energy balances
 www.scb.se/Pages/Product 24905.aspx?Produktkod=EN0201&displaypublications
 =true (⇒ Finding statistics ⇒ Statistics by subject area ⇒ Energy ⇒ Quarterly Energy
 Balances ⇒ Publications ⇒ Quarterly energy balances the 4th quarter and for the years
 2012 and 2013
 www.scb.se/Pages/Product 24905.aspx?Produktkod=EN0201&displaypublicatio
 ns=true, June 2014.
- United Kingdom, 2014, Quarterly bulletin of energy statistics published in Mar, Jun, Sept, Dec, March version includes complete data for X-1 www.decc.gov.uk/en/content/cms/statistics/publications/trends/trends.aspx and Energy statistics on a monthly, quarterly and annual basis www.decc.gov.uk/en/content/cms/statistics/energy_stats/source/source.aspx and Total energy trends for coal, oil and gas in months, quarters and years www.gov.uk/government/publications/total-energy-section-1-energy-trends, June 2014.

Based on these data sources, 2013 emission estimates were made for the following source categories:

- Energy
 - o 1.A Fuel Combustion
 - o 1.A.1 Energy Industries
 - o 1.A.2 Manufacturing Industries and Construction
 - o 1.A.3 Transport

- o 1.A.4 Other sectors
- o 1.B Fugitive Emissions
 - o 1.B.1 Solid Fuels
 - o 1.B.2.a Oil and Natural Gas, Oil
 - o 1.B.2.b Oil and Natural Gas, Natural Gas
 - o 1.B.2.c Oil and Natural Gas, Venting and Flaring
- Industrial Processes
 - 2.A Mineral Products
 - 2.C Metal Production
- Agriculture
 - 4.A Enteric Fermentation
 - o 4.B Manure Management
 - 4.D Agricultural Soils

The alternative sources for activity data and emissions listed above were only used if the resulting emissions matched well with real inventories for past years. If large discrepancies occurred for individual Member States, different approaches (trend extrapolation, constant values from previous year) were used.

For the waste sector and all other inventory source categories not listed above, no 2012 activity data was available that could be combined with IEFs from GHG inventories. These categories were extrapolated from 2013 GHG inventories, either by trend extrapolation or by taking the constant values of the year 2012 and by following the gap filing rules in accordance with the implementing provisions under Council Decision 280/2004/EC. Constant values were used when past trends were inconsistent and strongly fluctuating; trend extrapolation was used when historic time series showed good correlations with a linear trend.

Annex 1 provides a detailed overview of methods and data sources used for each source category and Member State.

The timing of these calculations depends on the release of the underlying data sources. The availability of data sources is shown in Table 10. The latest data source that became available in 2014 was the BP statistical review of World Energy which is published annually by 15 June. In July of each year updated verified emissions in the EUTL have been available in recent years. Member States' national energy statistics are released at different point in times and the national websites do not always indicate the publication data and whether the publication is regularly made available at the same date.

Table 10 Time of availability of data used for the proxy inventory

Data source	Availability
EUTL verified emissions	Data as of 27 May 2014 was used for EEA proxy. Data as of .6 August 2014 was used for ETS/non-ETS split.
BP Statistical Review of World Energy	16 June
Eurostat monthly production data for hard coal and lignite	3 month after reporting period
Eurostat monthly production data on crude oil input to refineries	3 month after reporting period
Eurostat monthly production data for crude oil	3 month after reporting period
Eurostat monthly production data for natural gas	3 month after reporting period
World Steel Association monthly production data for crude steel production	two months after reporting
World Steel Association monthly production data for blast furnace iron production	two months after reporting
Eurostat annual statistics on livestock population for live bovine animals, swine, sheep and goats	April-May
CRF inventory submissions	End of May (final submitted changes)
Member States' national energy balances and national energy statistics	different publication dates
Member States' own preliminary inventories	31 July

3.2 Uncertainties, differences and QA/QC in EEA proxy data

National GHG inventories are required to fulfil certain principles as laid out in the UNFCCC reporting guidelines for GHG inventories: inventories must be transparent, consistent, comparable, complete and accurate (TCCCA). The IPCC Good Practice Guidance recommends Parties to perform QA/QC procedures that are important information to enable continuous improvement to inventory estimates. Through the quantification of uncertainty at the source level and for the inventory as a whole, improvements can be prioritised. Thus Parties may change methodologies in order to improve their greenhouse gas estimates at source level (e.g. moving from Tier 2 to Tier 3). Such methodological changes at Member States level cannot be captured in the calculation of the approximated GHG inventory for the EU. On-going quality improvements in Member States' inventories to take effect in next year's official submissions to UNFCCC are therefore a source of uncertainty for the proxy inventory.

In this section the differences between the previous proxy estimates and the subsequent official inventory submissions are assessed. An uncertainty estimate for the present 2013 proxy estimate is also presented, based on the past difference for the year 2012.

For the proxy inventory for the year 2012, there was an underestimation of the emissions decline at EU level compared to the official data submitted to UNFCCCC in 2013. For the EU-15 the approximated 2012 GHG emissions were 0.1 % (1.8 Mt CO₂eq) higher than the real GHG inventory submissions and for the EU-28 1.2 % lower (9.4 Mt CO₂eq). Compared to the previous

year's analysis, the deviations between the approximated GHG inventory and the real inventory submissions declined: For 2011 the approximated GHG inventory had overestimated the EU-15 GHG emissions by 0.9 % and the EU-28 GHG emissions by 1.0%.

The uncertainty for the approximated 2013 GHG emissions presented in this analysis is estimated as a simple metric based on the absolute deviation between last year's proxy estimates for each Member State and the subsequent reported emissions. Since emissions for each source category are estimated using different methodologies for each sector in Member State, as a first step the uncertainty for each Member State was calculated as a weighted average of all sectoral deviations. ¹⁹ In a second step, the uncertainty for the EU was calculated as the weighted mean of the Member States' deviations to total EU-15 and EU-28 emissions. The uncertainties for approximated 2013 GHG emissions are shown in the far right-hand column in Table 11. Next to the uncertainty ranges for the total GHG emissions of EU-15 and EU-28, uncertainty ranges for the sectoral EU-15 and EU-28 2013 GHG emission approximations were calculated following the same methodology. The results on source category level are depicted in Table 12.

It has to be taken into account that any recent national improvements of GHG reporting methodologies could not be considered for the calculation of the approximated GHG inventory, as the 2013 estimates for the 2012 proxy inventory were based on the national methodologies used for 2013 inventory submissions (covering emissions until 2011). This is especially the case for those source categories for which linear trend extrapolation was performed, in particular for the source categories Chemical Industry, fluorinated gases, Solvent and Other Product Use and some subcategories in the sector Agriculture and Waste (see below). Thus, revised methodologies and parameters at Member States level will always result in deviations between the final inventory and the proxy inventory. The main factors explaining the change in emissions in 2012 compared to 2011 are further analysed in the 2013 EU GHG inventory submitted to the UNFCCC and the analysis paper: 'Why did GHG emissions decrease in the EU in 2012?' (EEA 2014c).

57

¹⁹ The deviation assessment was performed at the levels of the sectors '1 Energy', '2 Industrial Processes', '3 Solvent and Other Product Use', '4 Agriculture' and '6 Waste'.

Table 11 Difference between proxy inventory estimated for 2012 and submitted 2012 inventory

MS	UNFCCC 2012 (Submission 2014)	Proxy 2012	Deviation 2012		Recalculations 2013 for 2011	Deviation 2012 cleared of impact of recalculations	uncertainty of 2013 proxy emissions
	Gg CO	₂ eq	Gg CO₂eq	%	%	%	%
AT	80 059	80 362	302	0.4%	-3.4%	-3.0%	0.6%
BE	116 520	117 357	837	0.7%	-3.0%	-2.3%	0.7%
BG	61 046	62 375	1 329	2.2%	-7.7%	-5.5%	3.3%
CY	9 259	8 546	-714	-7.7%	1.1%	-6.6%	6.9%
CZ	131 466	127 662	-3 805	-2.9%	-1.5%	-4.4%	2.9%
DE	939 083	928 910	-10 174	-1.1%	2.5%	1.4%	1.4%
DK	51 637	52 305	667	1.3%	-9.4%	-8.1%	1.7%
EE	19 188	21 000	1 812	9.4%	-8.4%	1.0%	9.9%
EL	110 985	116 455	5 469	4.9%	-3.5%	1.4%	4.9%
ES	340 809	347 201	6 392	1.9%	-2.8%	-0.9%	2.2%
FI	60 966	61 908	942	1.5%	-9.0%	-7.5%	2.2%
FR	490 125	489 152	-973	-0.2%	0.9%	0.7%	1.3%
HR	26 385	25 507	-878	-3.3%	-6.7%	-10.0%	5.5%
HU	62 040	63 675	1 635	2.6%	-6.2%	-3.6%	4.7%
IE	58 531	57 724	-808	-1.4%	1.8%	0.4%	1.5%
IT	460 083	464 350	4 266	0.9%	-5.9%	-4.9%	1.3%
LT	21 622	22 036	414	1.9%	0.0%	2.0%	2.3%
LU	11 839	11 724	-115	-1.0%	-2.1%	-3.1%	1.8%
LV	10 978	11 252	274	2.5%	-4.5%	-2.0%	5.0%
MT	3 140	3 141	1	0.0%	3.9%	4.0%	4.6%
NL	191 669	195 152	3 483	1.8%	-1.4%	0.4%	2.0%
PL	400 689	387 108	-13 581	-3.4%	-0.2%	-3.6%	3.4%
PT	68 527	69 818	1 291	1.9%	-2.1%	-0.2%	2.8%
RO	118 849	120 583	1 734	1.5%	-3.6%	-2.2%	1.9%
SE	57 604	59 065	1 461	2.5%	-6.3%	-3.7%	2.9%
SI	18 911	19 047	136	0.7%	-3.1%	-2.3%	1.0%
SK	42 710	42 506	-204	-0.5%	-5.7%	-6.2%	2.4%
UK	580 807	569 967	-10 840	-1.9%	5.7%	3.9%	2.2%
EU-15	3 619 246	3 621 448	2 202	0.1%	-0.2%	-0.2%	1.7%
EU-28	4 545 530	4 510 379	-35 150	-0.8%	-0.7%	-1.5%	2.1%

Source: EEA's proxy GHG emissions based on the 2013 and 2013 EU greenhouse gas inventories to UNFCCC for 2011 and 2012

Table 12 Uncertainties of the EU approximated GHG inventory for 2013

	EU-15		EU-28	
	Mt CO ₂ eq	%	Mt CO₂eq	%
Energy	1,5	0,1	-3,4	-0,1
Industrial Processes	6,3	2,5	8,8	2,7
Solvent and OPU	0,1	1,5	-0,1	-0,6
Agriculture	-2,3	-0,6	-4,4	-0,9
Waste	-3,7	-3,8	-9,2	-7,0
Total	2,0	0,1	-8,3	-0,2

Source: EEA's proxy GHG emissions

The use of the data sources and methodologies for the proxy estimates published last year and the results mirrored rather well the decreasing trend in official emissions as reported to the UNFCCC this year. The deviations given in Table 11 arise from several factors: the less precise

methodologies and data used for the approximated GHG inventories (compared to official GHG inventories); the lack of updated (t-1) activity data for some key emission sources; and, from Member States' own recalculations of GHG estimates and methodological improvements which cannot be reflected in the approximated data where constant methodologies and emission factors are assumed.

The largest deviations in relative terms occurred for Estonia (Proxy 9 % higher), followed by Cyprus (Proxy 8 % lower), Greece (Proxy 5 % higher), Croatia, Poland, and Czech Republic, (Proxy 3 % lower) resp. Hungary and Sweden (Proxy 3 % higher). In absolute terms the deviations were highest for Poland (underestimate by Proxy of 12 Mt CO₂eq), United Kingdom (underestimate by Proxy of 11 Mt CO₂eq), Germany (underestimate by Proxy of 10 Mt CO₂eq), Spain (underestimate by Proxy of 6 Mt CO₂eq) and Greece (overestimate by Proxy of 5 Mt CO₂eq). By comparing the percentage changes in emission levels 2011/2012 as derived from the 2013 Proxy inventory on the one hand and from the 2013 official GHG inventory submissions to UNFCCC on the other, the deviations are in the same order of magnitude, see Figure 10.

Figure 10 Differences between approximated and submitted 2012 inventories

■ Difference in trends 2011-2012: proxy 2012 vs 2014 (2012) submission to UNFCCC

Source: Member States 2014 submissions to UNFCCC for 2012 and proxy estimates for 2012.

Compared to the approximated GHG emissions that have been calculated last year, differences could be reduced for 15 of 27 Member States²⁰. For eight Member States the deviations were lower than 1 % (Austria, Belgium, France, Italy, Luxembourg, Malta, Slovenia and Slovakia), whereas for four Member States the deviations were higher than 3 % (Croatia, Estonia, Greece, and Poland).

Member States' recalculations of GHG estimates and methodological improvements played an important role for the differences of the 2012 proxy emission estimates compared to 2012 emissions officially reported in 2014. In the following sections country-specific deviations are further explained for some Member States with high deviations in absolute terms (Germany, Poland and United Kingdom) and/or in relative terms (Estonia, Cyprus and Greece) (see also columns on the right hand side in Table 11):

- Germany: 2012 GHG emissions were underestimated by the 2012 proxy inventory by 10.2 Mt CO₂eq (1.1 %). Updated activity data in the energy sector increased emissions by 12.3 Mt CO₂eq which is larger than the underestimation in this sector (10.9 Mt CO₂eq). An overestimation of 1.2 Mt CO₂eq from the agricultural soils partially compensated the underestimation in the energy sector.
- Poland: 2012 GHG emissions were underestimated by the 2012 proxy inventory by 13.6 Mt CO₂eq (3.4%). 50% of the underestimation can be explained by a recalculation of the waste sector. 25% can be attributed to the other energy sector (1.A.4). 20% can be explained from recalculations on agricultural soils.
- United Kingdom: 2012 GHG emissions were underestimated by the 2012 proxy inventory by 10.8 Mt CO₂eq (1.9%). Recalculations explain 95 % of the underestimation, mainly in solid waste disposal on land and in manure management.
- Estonia: 2012 GHG emissions were overestimated by the 2012 proxy inventory by 1.8 Mt CO₂eq (9.4%). 75% of the overestimation can be attributed to the energy sector. In retrospective, a use of the bottom-up approach for estimating CO₂ emission for the 1A Fuel combustion sector would have significantly better met the actual emission development than the approach based on absolute Eurostat data as chosen in 2013. This would have decreased the overestimation by 30%. Recalculation in the energy industries can explain another 20% each of the overestimation. 25% of the overestimation can be attributed to emissions from production of mineral products (2.A). Here, a trend change of ETS emissions from cement plants was used, which did not led to a similar trend change in this subsector.
- Cyprus: 2012 GHG emissions were underestimated by the 2012 proxy inventory by 0.7 Mt CO₂eq (7.7%). 55% of the underestimation can be explained by recalculations in the waste sector. 30% can be explained by recalculations in consumption of halocarbons and SF6 and solvent and other product use.

 $^{^{20}}$ Croatia was considered in the previous report for the first time.

• Greece: 2012 GHG emissions were overestimated by the 2012 proxy inventory by 5.5 Mt CO₂eq (4.9%). 90% of the overestimation can be attributed to the energy sector. In retrospective, a use of the BP approach for estimating CO₂ emission for the 1A Fuel combustion sector would have significantly better met the actual emission development than the approach based on absolute Eurostat data as chosen in 2013. This would have decreased the overestimation by 80%. 10% of the overestimation can be attributed to the chemical industry sector (2.B) where only simple proxy methods like linear trend extrapolation and previous year value were applied.

Figure 11 and Figure 12 present the relative and absolute differences for 2012 at sectoral level for the EU-15 and for the EU-28.

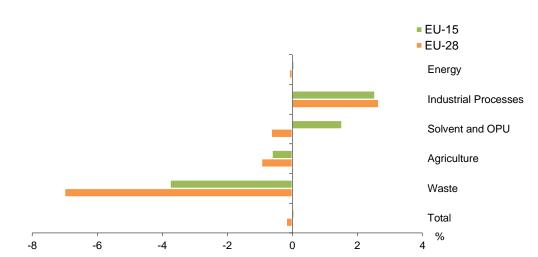


Figure 11 Difference by sector, proxy and submitted 2012 inventories (%)

Source: EU 2014 submission to UNFCCC for 2012 and proxy estimates for 2012.

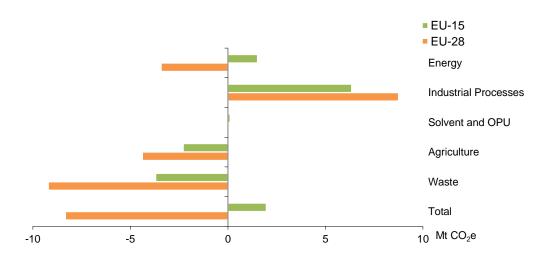


Figure 12 Difference by sector, proxy and submitted 2012 inventories (Mt)

Relative deviations at sectoral level have decreased compared to the EEA's 2012 proxy estimate of 2011 emissions for all sectors except the waste sector. In the 2013 proxy inventory for 2012, the largest relative deviations occurred in the Waste sector and were 3.8% for the EU-15 and 7.0% for the EU-28. These underestimations can almost fully be attributed to recalculations. For Industrial Processes sector, the relative deviations were 2-5% for the EU-15 and 2.7% for the EU-28. Overestimation of HFC emissions explains one third and recalculations one sixth of the overestimation of emissions from Industrial Processes for the EU-15. Recalculations explain more than a third of the overestimations of emissions from Industrial Processes for the EU-28. The most important sector in absolute terms (approximately 80 % of total net emissions without LULUCF) is the Energy sector. Here, an overestimation of 0.1 % for the EU-15 (compared to $0.5\,\%$ in the previous proxy) and an underestimation of 0.1% for the EU-28 (compared to $1.0\,\%$ overestimation in the previous proxy). In the Solvent and Other Product Use sector, overestimations of 1.5% occurred for EU-15 and underestimations of 0.6% for EU-28. In absolute terms, however, that sector is nearly negligible. 2012 agriculture emissions (approx. 10 % of 2012 EU-15 and EU-28 emission levels without LULUCF) were met in the 2013 proxy report with overestimation of a 0.6% for the EU-15 and 0.9% for the EU-28. For both EU-15 and EU-28, recalculation effects in the Agriculture sector are larger than the under-resp. overestimation.

A detailed analysis of the EU-28 deviations at source category level showed that the approximated results matched rather well for 1A Fuel Combustion (0.1% lower), 1A1 Energy Industries (0.8% lower), 1A2 Manufacturing Industries (1.7% higher) as well as 1A3 Transport (1.1% higher). Nevertheless, for some Member States the deviations could not entirely be explained by recalculations.

Within the Industrial Processes sector, significant overestimations for 2C Metal Production (15 %), and 2B Chemical Industry (2%) were only partly offset by a 2 % underestimation for 2D Fluorinated gases emissions (2E & 2F, 2%) and other production (2D &2G, 40%), resulting in a 2% overestimation for that sector. For 2B Chemical Industry and Fluorinated gases emissions

(2E & 2F) no recent data sources are available for the approximated GHG inventory and emissions were extrapolated from past trends. Extrapolation methods cannot reflect sudden changes that can occur in these source categories due to rapidly changing demand patterns, technological improvements and more drastic changes in production levels than in other source categories. Compared to the previous year's report, relative deviations in the 2C Metal Production approximately tripled. For 2A Mineral Products the estimates make use of EUTL data²¹: the underestimation was only 0.1 % for the EU-28 and significant lower to the respective deviations in the previous report (-2.1 %).

In the agricultural sector the difference between the approximated EU-28 GHG inventory and real EU-28 inventory data amounted to -4 Mt CO₂eq which represents a 0.9% underestimation. The absolutely highest deviations occurred in the subsectors 4B Manure Management (6.9 Mt CO₂eq / 8% underestimation) and 4D Agricultural Soils (1.9 Mt CO₂eq / 1% overestimation). Compared to the previous year's report, the deviations for 4 Agriculture were in the same range.

The estimates for the waste sector show a 6.5 % overestimation for the EU-28 which is larger than the previous year's deviation. However, that overestimation was mainly triggered by recalculations which could not be foreseen in the EEA's 2013 proxy inventory for 2012. On subsectoral level, an underestimation of 4.7 Mt CO₂eq was found both in 6A Solid Waste Disposal on Land and 6B Waste-water Handling. In relative terms, the 14% underestimation of 6B Waswater handling was most important.

3.3 Differences in emission estimates between Member States and EEA data

Preliminary data estimated by Member States were compared with the approximated EU inventory calculated by EEA. In general, the preliminary estimates from both sources matched well with differences smaller than \pm 2 %, except for Croatia (difference 4.5%), Greece (5.0%), Lithuania (3.1%), Malta (2.3%) and Slovakia (3.1%).

Table 13 Comparison of EEA and Member States proxies (total without LULUCF)

2013	kt CO2eq	EEA proxy	Member States proxy	Difference (kt and %)		Comment
Austria	Total	79 812	80 354	-542	-0.7%	
	Energy	59 463	59 287	176	0.3%	
	Industrial processes	10 916	11 672	-755	-6.9%	
	Solvent and OPU	335	335	0	0.0%	
	Agriculture	7 536	7 510	26	0.4%	

²¹ EUTL = European Union central Transaction Log, run by the European Commission, which checks and records all transactions taking place within the trading system

64

2013	kt CO2eq	EEA proxy	Member States proxy	Difference (kt and %)		Comment
	Waste	1 562	1 551	11	0.7%	
Belgium	Total	116 251	116 852	-601	-0.5%	
	Energy	94 162	92 340	1 823	1.9%	
	Industrial processes	11 136	13 461	-2 325	-20.9%	
	Solvent and OPU	183	183	0	-0.1%	
	Agriculture	9 296	9 257	39	0.4%	
	Waste	1 475	1 612	-137	-9.3%	
Bulgaria	Total	56 689	NA			
	Energy	42 762	NA			
	Industrial processes	3 975	NA			Member States proxy not received by
	Solvent and OPU	38	NA			31.07.2014. EEA proxy
	Agriculture	6 417	NA			used for all values.
	Waste	3 495	NA			
Croatia	Total	25 689	24 524	1 165	4.5%	
	Energy	17 916	17 247	669	3.7%	
	Industrial processes	3 168	2 580	588	18.6%	
	Solvent and OPU	156	154	1	0.9%	
	Agriculture	3 324	3 388	-64	-1.9%	
	Waste	1 126	1 155	-30	-2.7%	
Cyprus	Total	8 743	NA			
	Energy	5 804	NA			
	Industrial processes	1 075	NA			Member States proxy not received by
	Solvent and OPU	75	NA			31.07.2014. EEA proxy
	Agriculture	795	NA			used for all values.
	Waste	995	NA			
Czech	Total	126 910	NA			
Republic	Energy	102 900	NA			-
	Industrial processes	11 783	NA			Member States proxy not received by
	Solvent and OPU	441	NA			31.07.2014. EEA proxy
	Agriculture	8 020	NA			used for all values.
	Waste	3 767	NA			-
Denmark	Total	52 966	53 235	-268	-0.5%	
	Energy	40 353	40 664	-311	-0.8%	
	Industrial processes	1 776	1 745	32	1.8%	
	Solvent and OPU	156	156	0	0.0%	
	Agriculture	9 592	9 599	-8	-0.1%	
	Waste	1 089	1 071	18	1.7%	
Estonia	Total	21 278	21 131	146	0.7%	Member States proxy is i
	Energy	18 969	18 424	545	2.9%	Summary2 post KP rep. 4AR GWP structure, with
	Industrial processes	652	1 049	-397	-60.8%	SAR GWP, and has been

2013	kt CO2eq	EEA proxy	Member States proxy	Difference (kt and %)		Comment
	Solvent and OPU	19	IE			re-aligned to the Sum-
	Agriculture	1 347	1 356	-9	-0.7%	mary2 current rep. SAR GWP structure. Totals
	Waste	291	303	-12	-4.0%	include 16.49 Gg of Indirect CO2, reported within IP and Agricul- ture.
Spain	Total	311 900	315 612	-3 712	-1.2%	
	Energy	238 353	241 429	-3 076	-1.3%	
	Industrial processes	22 116	22 145	-30	-0.1%	
	Solvent and OPU	1 167	1 154	13	1.1%	
	Agriculture	37 391	37 984	-592	-1.6%	
	Waste	12 873	12 900	-27	-0.2%	
Germany	Total	952 112	950 790	1 322	0.1%	
	Energy	799 800	798 441	1 359	0.2%	
	Industrial processes	68 026	68 312	-286	-0.4%	
	Solvent and OPU	1 740	1 702	38	2.2%	
	Agriculture	69 958	69 300	658	0.9%	
	Waste	12 588	13 035	-447	-3.5%	
Finland	Total	60 463	60 644	-181	-0.3%	
	Energy	47 417	47 549	-132	-0.3%	
	Industrial processes	5 197	5 352	-155	-3.0%	
	Solvent and OPU	63	66	-3	-5.0%	
	Agriculture	5 760	5 696	64	1.1%	
	Waste	2 026	1 981	45	2.2%	
France	Total	492 121	491 532	590	0.1%	
	Energy	351 510	352 083	-572	-0.2%	
	Industrial processes	37 425	35 495	1 930	5.2%	
	Solvent and OPU	1 133	1 116	17	1.5%	
	Agriculture	89 540	90 335	-796	-0.9%	
	Waste	12 513	12 502	11	0.1%	
Greece	Total	102 710	107 797	-5 087	-5.0%	The Member States
	Energy	78 131	82 001	-3 870	-5.0%	proxy provided the Total CO2 Equivalent
	Industrial processes	10 348	10 861	-513	-5.0%	Emissions without
	Solvent and OPU	319	335	-16	-5.0%	LULUCF. Values for each sector, sub-sector
	Agriculture	9 176	9 631	-455	-5.0%	and gas, were allocated
	Waste	4 735	4 970	-235	-5.0%	based on EEA proxy results.
Hungary	Total	59 056	59 687	-631	-1.1%	
	Energy	42 631	43 002	-371	-0.9%	
	Industrial processes	4 142	3 944	199	4.8%	
	Solvent and OPU	350	379	-28	-8.1%	
	Agriculture	8 783	9 235	-453	-5.2%	
	Waste	3 150	3 126	23	0.7%	

2013	kt CO2eq	EEA proxy	Member States proxy	Differenc	e (kt and %)	Comment
Italy	Total	439 869	437 994	1 875	0.4%	
	Energy	361 110	360 469	641	0.2%	
	Industrial processes	27 361	27 414	-53	-0.2%	
	Solvent and OPU	1 410	1 537	-128	-9.1%	
	Agriculture	34 507	33 133	1 375	4.0%	
	Waste	15 481	15 441	41	0.3%	
Ireland	Total	56 614	NA			
	Energy	35 267	NA			N. 1. C
	Industrial processes	2 349	NA			Member States proxy not received by
	Solvent and OPU	73	NA			31.07.2014. EEA proxy
	Agriculture	17 915	NA			used for all values.
	Waste	1 009	NA			
Latvia	Total	10 974	10 945	29	0.3%	
	Energy	7 227	7 102	125	1.7%	
	Industrial processes	665	679	-14	-2.2%	
	Solvent and OPU	49	45	3	6.8%	
	Agriculture	2 443	2 510	-67	-2.7%	
	Waste	591	609	-18	-3.0%	
Lithuania	Total	21 034	20 378	657	3.1%	
	Energy	11 302	11 402	-100	-0.9%	
	Industrial processes	3 712	2 930	782	21.1%	
	Solvent and OPU	82	83	-1	-1.1%	
	Agriculture	5 021	5 040	-19	-0.4%	
	Waste	917	923	-5	-0.6%	
Luxembourg	Total	11 428	NA			Member States proxy
	Energy	10 097	NA			not received by 31.07.2014. EEA proxy
	Industrial processes	586	NA			used for all values.
	Solvent and OPU	11	NA			Member States submit- ted proxy data on
	Agriculture	686	NA			14.08.2014.Summary2
	Waste	47	NA			table included in report, but not in any calcula- tions.
Malta	Total	2 770	2 706	64	2.3%	
	Energy	2 452	2 370	82	3.3%	
	Industrial processes	172	202	-30	-17.4%	
	Solvent and OPU	2	5	-3	-136.9%	
	Agriculture	80	83	-3	-3.7%	
	Waste	65	50	15	22.5%	
Netherlands	Total	191 264	191 940	-675	-0.4%	
	Energy	161 481	162 255	-774	-0.5%	
	Industrial processes	9 819	11 240	-1 421	-14.5%	
	Solvent and OPU	206	120	86	41.8%	

2013	kt CO2eq	EEA proxy	Member States proxy	Difference	(kt and %)	Comment
	Agriculture	16 310	15 106	1 203	7.4%	
	Waste	3 449	3 218	231	6.7%	
Poland	Total	399 685	395 979	3 706	0.9%	
	Energy	320 503	316 479	4 024	1.3%	
	Industrial processes	26 723	26 675	48	0.2%	
	Solvent and OPU	760	760	0	0.0%	
	Agriculture	36 568	36 826	-258	-0.7%	
	Waste	15 131	15 239	-107	-0.7%	
Portugal	Total	67 001	NA			
	Energy	45 611	NA			
	Industrial processes	5 566	NA			Member States proxy not received by
	Solvent and OPU	230	NA			31.07.2014. EEA proxy
	Agriculture	7 173	NA			used for all values.
	Waste	8 421	NA			
Romania	Total	107 748	NA			Member States proxy not received by 31.07.2014. EEA prox- used for all values.
	Energy	71 192	NA			
	Industrial processes	12 252	NA			
	Solvent and OPU	128	NA			
	Agriculture	18 276	NA			
	Waste	5 901	NA			
Sweden	Total	56 121	55 657	465	0.8%	
	Energy	41 498	40 899	599	1.4%	
	Industrial processes	5 191	5 739	-548	-10.6%	
	Solvent and OPU	303	0	303	100.0%	
	Agriculture	7 596	7 555	40	0.5%	
	Waste	1 534	1 464	70	4.6%	
Slovenia	Total	18 197	18 236	-39	-0.2%	
	Energy	14 701	14 847	-147	-1.0%	
	Industrial processes	1 082	1 028	54	5.0%	
	Solvent and OPU	65	37	28	42.9%	
	Agriculture	1 864	1 853	11	0.6%	
	Waste	485	471	14	2.9%	
Slovakia	Total	44 030	42 679	1 351	3.1%	
	Energy	29 991	29 392	599	2.0%	
	Industrial processes	8 579	7 803	775	9.0%	
	Solvent and OPU	173	174	-1	-0.6%	
	Agriculture	3 137	3 093	44	1.4%	
	Waste	2 150	2 216	-66	-3.1%	
United	Total	570 988	570 400	588	0.1%	The top level totals for the
Kingdom	Energy	471 306	471 766	-460	-0.1%	separate gases, sum to 10 Gg less than the Total,

2013	kt CO2eq	EEA proxy	Member States proxy	Difference (kt and %)		Comment
	Industrial processes	25 831	25 349	482	1.9%	due to rounding. CH4 and N2O are only shown
	Solvent and OPU	NENO,	0			at top level in the Member
	Agriculture	52 271	51 929	342	0.7%	State proxy. Values for non-CO2 gases and for
	Waste	21 580	21 256	324	1.5%	each sector based on EEA proxy.
EU-15	Total	3 561 620				
	Energy	2 835 559				
	Industrial processes	243 642				
	Solvent and OPU	7 329				
	Agriculture	374 707				
	Waste	100 383				
EU-28	Total	4 464 424				
	Energy	3 523 908				
	Industrial processes	321 623				
	Solvent and OPU	9 666				
	Agriculture	470 780				
	Waste	138 446				

Source: Member States' preliminary data provided to EEA for the purposes of this report, own calculations

Note: Negative values indicate that the EEA proxy inventory is lower than the Member States' own estimates; positive values indicate that the EEA proxy inventory is higher.

For Croatia, Estonia, Germany, France, Italy, Latvia, Lithuania, Malta, Poland, Slovakia, Sweden and United Kingdom, the Member States own emissions estimates are below the EEA estimates. For Austria, Belgium, Denmark, Finland, Greece, Hungary, Netherlands, Spain and Slovenia the EEA proxy estimates are lower.

Member States' own estimates for Austria, Belgium and Netherlands show an increase of emissions in 2013 compared to 2012. In contrast, EEA estimates show a decrease of emissions for these Member States. Differences in absolute values are only 0.5 Mt CO₂eq for Austria, 0.6 Mt CO₂eq for Belgium and 0.7 Mt CO₂eq for Netherlands. Member States' own estimates for Poland and Slovakia show a decrease of emissions, whereas EEA estimates show an increase of emissions. Differences in absolute values are 3.7 Mt CO₂eq for Poland and 1.3 Mt CO₂eq for Slovakia.

Using available Member States' own proxy emission estimates and gap filling (results from chapter 2) for 2013, the 2012-2013 change in emissions for the EU-28 is -1.8 %, which is the same as the EEA estimates. For the EU-15, the 2012-2013 the GHG emission trend is -1.4 % (based on Member States estimates, where available) or -1.6 % (based on EEA estimates).

For the 1990-2013 emission trends, the trend change results based on the different data sources deviate even less: The 1990-2013 emission trend for EU-28 is -19.4 % (Member States estimates, where available) or -19.1 % (EEA estimates). For the EU-15, the 1990-2013 GHG emission trend is 15.0 % (Member States estimates, where available) or -14.9 % (EEA estimates).

4. References

- BP 2014, BP Statistical Review of World Energy 2014
 - www.bp.com/en/global/corporate/about-bp/energy-economics/statistical-review-of-world-energy/statistical-review-downloads.html July 2014.
- EEA 2014a, Annual European Union greenhouse gas inventory 1990–2012 and inventory report 2014, EEA Technical Report No 8/2013 www.eea.europa.eu//publications/european-union-greenhouse-gas-inventory-2014
- EEA 2014b, 'European Union Emissions Trading Scheme (EU ETS) data viewer'

 <u>www.eea.europa.eu/data-and-maps/data/data-viewers/emissions-trading-viewer</u>

 August
 2014
- EEA 2014c, 'Why did GHG emissions decrease in the EU in 2012?' www.eea.europa.eu/publications/why-did-ghg-emissions-decrease
- EEA 2014d, 'EEA greenhouse gas data viewer'
 www.eea.europa.eu/data-and-maps/data/data-viewers/greenhouse-gases-viewer
- EEA 2014e, 'EU ETS data viewer User manual and background note', Version 6.1, May 2014 http://www.eea.europa.eu/data-and-maps/data/european-union-emissions-trading-scheme-eu-ets-data-from-citl-6/eu-ets-data-viewer-manual/eu-ets-data-viewer-manual/download
- EU 2014, Beyond GDP Measuring progress, true wealth and the well-being of nations www.beyond-gdp.eu.

Eurostat 2014, 'Energy — Database'

http://epp.eurostat.ec.europa.eu/portal/page/portal/energy/data/database accessed in June-August 2014, including:

- Monthly Oil and Gas Consumption
- Monthly data on crude oil production (indicator code 100100, product code 3100);
- Monthly total consumption data for natural gas (indicator code 100900, product code 4100);
- Production data for natural gas (indicator code 100100, product code 4100);
- annual data for the final energy consumption of motor spirit, automotive diesel oil and kerosene/jet fuels;
- Monthly data on production of nuclear energy (indicator code 100100, product code 5100)
- Monthly data for the internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels;
- Monthly production data for crude steel production and blast furnace iron production of the World Steel Association;
- Annual statistics on livestock population for dairy cattle, non-dairy cattle, swine, sheep, goats.
- Annual road freight transport by type
- Haylock, M.R., N. Hofstra, A.M.G. Klein Tank, E.J. Klok, P.D. Jones, M. and New, 2008, 'A European daily high-resolution gridded dataset of surface temperature and precipitation', *J. Geophys. Res (Atmospheres)*, (113) D20119
- IPCC 1995, IPCC Second Assessment Report: Climate Change 1995 (SAR)

IPCC 1996, Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual,

www.ipcc-nggip.iges.or.jp/public/gl/invs1.html

IPCC 2000, Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories,

www.ipcc-nggip.iges.or.jp/public/gp

IPCC 2007, IPCC Fourth Assessment Report: Climate Change 2007 (AR4)

Matthes, F. C., Herold, A., Ziesing, H.J., 2007, 'A 'Proxy-Inventory' for GHG Emissions from the EU-27 Member States' – Feasibility study, ETC/ACC Technical Paper No 2007/3.

UNFCCC 2014, National Inventory Submissions 2014,

http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_submissions/items/8108.php

World Steel Association 2014a, Crude steel production www.worldsteel.org/statistics/crude-steel-production.html accessed in June 2014.

World Steel Association 2014b, Blast furnace iron (BFI) production <u>www.worldsteel.org/statistics/BFI-production.html accessed June 2014</u>

5. Annexes

5.1 Annex I. Detailed results for each Member States as reported by Member States

5.1.1 Austria

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS

2013 Inventory year 2014 proxy Submission

GREENHOUSE GAS SOURCE AND	CO ₂ (1)	CH ₄	N ₂ O	HFCs (2)	PFCs (2)	$SF_6^{(2)}$	Total	ETS	non-ETS
SINK CATEGORIES	1		(CO ₂ equivalent (Gg)				CO2 equiva	alent (Gg)
Total (Net Emissions) (1)	68.025,32	5.206,46	5.221,51	1.547,44	39,39	313,82	80.353,93		
. Energy	58,129,54	482,75	674,47				59.286,76	20.194,10	39.092
A. Fuel Combustion (Sectoral Approach)	57.892,36	238,58	674,47				58.805,41	20.194,10	38.611
Energy Industries	11.406,24	10,49	111,42				11.528,15	9.306,12	2.222
Manufacturing Industries and Construction	15.035,87	13,53	158,06				15.207,46	10.200,47	5.006
3. Transport	22.554,41	12,85	204,52				22.771,78	687,51	22.084
Other Sectors	8.848,45	201,67	199,48				9.249,61		9.249
5. Other	47,40	0,03	0,98				48,41		48
B. Fugitive Emissions from Fuels	237,17	244,17	0,00				481,35		481
Solid Fuels	IE,NA,NO	0,90	IE,NA				0,90		
Oil and Natural Gas	237,17	243,28	IE,NA				480,45		480
. Industrial Processes	9.704,74	18,33	48,09	1.547,44	39,39	313,82	11.671,81	9.656,62	2.015
A. Mineral Products	2.972,03	NA 10.24	NA				2.972,03	2.972,03	0
B. Chemical Industry C. Metal Production	976,09 5,756.63	18,24 0.08	48,09 NA		NO	4.68	1.042,42 5.761,39	947,68 5,736,91	94
C. Metal Production D. Other Production	5./56,63 NA	0,08	NA		NO	4,68	5./61,39	5./36,91	24
E. Production of Halocarbons and SF ₆	NA			NA	NA	NA	0,00 NA		
				1.547.44	39,39	309,14	1.895,97		1.895
F. Consumption of Halocarbons and SF ₆ (2) G. Other	37.	37.	27.	1.547,44 NA	39,39 NA				1.895
	NA 100 co	NA	NA	NA	NA	NA	NA 221.56		22.1
. Solvent and Other Product Use . Agriculture	189,00	2.526.55	145,56				334,56 7.510,01		7.510
A. Enteric Fermentation		3.536,57 3.204.36	3.973,44				3.204.36	-	3.204
B. Manure Management		322,85	919,00				1.241,85		1.241
C. Rice Cultivation		NO	515,00				0,00		1.241
D. Agricultural Soils ⁽³⁾		8,84	3,054,34				3.063,18		3.063
E. Prescribed Burning of Savannas		NO NO	NO				3.003,10		5.005
F. Field Burning of Agricultural Residues		0.52	0,10				0.62		0
G. Other		NA	NA				0,02		0
Land Use, Land-Use Change and Forestry (1)	NE	NE.	NE				NE		
A. Forest Land	NE NE	NE	NE.				NE		
B. Cropland	NE NE	NE NE	NE NE				NE NE		
C. Grassland	NE NE	NE NE	NE.				NE NE		
D. Wetlands	NE NE	NE.	NE.				NE NE		
E. Settlements	NE NE	NE NE	NE NE				NE NE		
F. Other Land	NE NE	NE NE	NE.				NE NE		
G. Other	NE NE	NE NE	NE.				NE NE		
. Waste	2.03	1.168,81	376,12				1,550,79		1.550
A. Solid Waste Disposal on Land	NA,NO	1.08,81	3/0,12				1.550,79		1.091
A. Solid Waste Disposal on Land B. Waste-water Handling	NA,NO	23,32	269,97				293,28		293
C. Waste Incineration	2,03	0,00	0,01				2,04		2 2
D. Other	NA NA	54,45	109.98				164,43		164
. Other (as specified in Summary I.A)	NA	NA	NA	NA	NA	NA	NA		
, o and (an apart)									
Aemo Items: (4)									
nternational Bunkers	2.120.07	0.98	26.50				2.147.55		
Aviation	2.075,65	0,94	21,62				2.098,20		
Marine	44,42	0,04	4,89				49,34		
Aultilateral Operations	NO	NO.	NO				NO		
	NE NE	110	110				NE NE		
O Emissions from Biomass									

Brief description of the key drivers underpinning the increase or decrease in GHG emissions in t-1 (proxy) compared to t-2 (inventory). If this information is publicly

Brief description of the key drivers underpinning the increase or decrease in GHG emissions in t-1 (proxy) compared to t-2 (inventory). If this information is publicly available please include the hyperlink to the relevant website.

The trend of 1.A fuel combustion widely follows the trend in preliminary energy statistics (http://www.statistik.at/web_de/statistiken/energie_und_umwelt/energie/energieblanzen/)

The most significant trends 2012-2013 in fuel consumption by type of fuel are:
Sales of transport diesel and gasoline increased by +3.9% (approx. +880 Gg of CO2)
(https://www.web.at/Content.Node/branchen/ped-Minerateoindustriet/verbrauchsstatistik.html).
Natural gas consumption decreased by +6.4% (approx. -1100 Gg of CO2)
(http://www.e-control.at/de/statistik/gas)

Other main drivers are:
Iron production increased by 7% (approx. +700 Gg of CO2)
(http://www.ordisteel.org/statistics/BF]-production.html)
Fertilizer Use: two-year mean value decreased by 2.2%
(http://www.ma.at/Portal.Node/ama/public/gentics.m=PCP&gentics.pm=gti_full&p.contentid=10008.161837&280_Duengemittelstatistik.N_P_K_Bundeslaender_ab_1995_c
Animals numbers: total cattle increased by 0.1%, whereas milk cows increased by 1.2 % (and milk yield increased by 0.7%); swine number decreased by 2.0%
(http://www.ama.at/Portal.Node/ama/public/gentics.rm=PCP&gentics.pm=gti_full&p.contentid=10008.137781&230_vz_finder.pdf)
(http://www.ama.at/Portal.Node/ama/public/gentics.rm=PCP&gentics.pm=gti_full&p.contentid=10008.137781&230_vz_finder.pdf) rta.pdf)

⁽²⁾ Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.
(5) Parties which previously reported CO₂ from soils in the Agriculture sector should note this in the NIR.

⁽⁴⁾ See footnote 8 to table Summary 1.A.

5.1.2 Belgium

SUMMARY 2 SUMMARY REPORT FOR CO₂ EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory year proxy 2013
Submission
country BELGIUM

50.11 11.16 55.41 15.54 15.54 15.55 15.55 16	729.59 345.25 35.58 37.91 15.38 256.30 0,09 384.34 17.14 1. 1. 3.85 1. 13.29 4.561.36	50,05 50,05 17,96 23,16 23,16 23,16 23,16 23,16 24,63 23,39 0.91 0.00 0.00 0.NN 0.NN 0.22,47 2.1	140,19	20,12 11	7,00 115,477 92,339 91,836 91,836 19,126 24,763 26,750 46 503 4 4 4 4 4,32 2,32 3,20 2,32 0,7,00 13,460 13,20 2,9,12 13,20 13,20 14,20 14,20 14,20 15,20 16,	232 275 275 275 34.321.70 485 34.203.203.203.203.203 934 19.193.51 48.85.90 93 93 93 97.00 93 93 93 93 94 95 95 95 228 0.00 95 96 118.50 34 46 118.50 46 118.50 46 418.50 90 10.226.57 222 4.484.00 4.50 2.292.71 00 320.00 320.00	valent (Gg) 58.018,1 58.018,7 58.018,7 58.018,1
50.11 11.16 55.41 15.54.1 15.54.1 15.54.1 15.54.1 15.54.1 15.54.1 15.55.7 17.39.2	729,59 345,28 345,28 345,28 37,91 15,38 256,30 384,34 4,84 N 17,14 1. 3,385 1. 13,29 962,24 4. 4. 4. 4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	\$0,05 50,05 17,796 13,3,16 0,91 0,00 0,00 0,00 0,00 0,00 0,00 0,00	140,19 2 14,000 2	20,12 11	92.339 91.836 21.248 13.026 24.763 26.750 46.533 4.438 4.484 2.943 3.20 3.20 3.20 NO 212 2.653	775 34.321.70 45 34.203.20 491 91.93.41 644 14.805.90 913 87.00 67 1116.79 28 0.00 30 118.50 844 14.805.90 91 10.226,57 222 4.484.06 45 2.492.84 52 2.492.84 52 2.492.00 00 320.00	57.634, 2.055, 4.220, 24.676, 26.634, 4, 4, 4, 4, 5, 0, 743, 13, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
11,16 55,541 55,57 73,92 90,98 15,28	345.25 37.91 15.38 15.38 15.38 15.38 15.38 15.38 15.38 15.38 15.38 15.38 15.38 15.38 15.38 16.38 17.14 1.3.29 17.14 1.3.29 17.14 1.3.29 18.38 19.38	50.05 17.96 123.16 123.16 124.63 133.39 10.91 10.00 10.NNO 10.NNO 10.247 10.247 10.247 10.247 10.247 10.247 10.247 10.247	IA,NO	:12,03	91.836 21.248 150.026 24.763 26.750 46 503.03 4 4 49 498 3.236 2.943 3.200 NO 212 7,00 2.265	445 34.203.20 944 19.193.51, 646 14.805.90 93 87.00 67 1116.79 28 0.00 30 118.50 84 118.50 99 10.226.57 99 10.226.57 222 4.484.00 00 2.929.71 00 2.929.71 00 320.00	57.634, 2.055, 4.220, 24.676, 26.634, 46, 384, 4, 379, 3.234, 6, 0, 743, 13, 0, 0, 0,
55.41 55.47 73.92 30.98 18.95 18.95 4.06 84.22 30.13 20.00 NA 4.	35.58 37.91 15.38 256.30 0,09 184.34 4.84 17.14 17.14 17.14 13.38 13.29 14.30 15.30 16.21 17.14 16.30 17.14	17.96 13.16 14.63 13.39 0.91 0.00 NNO 0.00 NNO 0.2,47 2.1	IA,NO	:12,03	21.248 19.026 24.763 26.750 46 503 4 7,00 13.460 488 3.236 3.20 NO 212 7,00 2.265	19.94 19.193,51 14.805,90 19.93 87,00 16.7 116,79 228 0,00 330 118,50 344 118,50 999 10,226,57 4.484,00 4.5 2,929,71 000 2,929,71 001 320,00 033 320,00	2.055, 4.220, 24.676, 26.634, 46, 384, 4, 0 379, 743, 133, 0, 0 212,
55.57 73.92 90.98 45.28 18.95 A.NO 18.95 54.40 84.22 30.13 29.71 20.00 NA 4.	37.91 15.38 256,30 0.09 384,34 4.84 17.14 1. 3.85 1. 13.29 962,24 4.	23.16 74.63 33.39 0.91 0.90 0.00 0.NNO 0.2,47 2.1 N 2.47 2.1	IA,NO	:12,03	19,026 24,763 26,750 45 46 503 4 498 13,460 4,484 3,236 2,943 3,20 NO 212 7,00 2,265	.644 14.805,90 .93 87,00 .67 116,79 .28 0,00 .30 118,50 .84 .46 118,50 .99 10.226,57 .22 4.484,06 .45 2.492,80 .00 2.929,71 .00 320,00	4.220, 24.676, 26.634, 46, 384, 4, 379, 3.234, 0, 743, 13, 0, 0, 212,
73.92 90.98 15.28 18.95 18.95 14.06 18.95 14.06 18.95 14.06 18.95 14.06 18.95 14.06 18.95 14.06 18.95 14.06 18.97	15.38 256.30 0.09 384.34 4.84 N 379.51 17.14 1. 3.85 1. 13.29 962.24 4. 4.00.87	74.63 33.39 0.91 0.00 0.00 0.NNO 0.NNO 12,47 2.1 N 2.147 2.1	IA,NO	:12,03	24.763 26.750 46 503 4 498 7,00 13.460 2.943 3.236 2.9433 NO 212 7,00 2.265	993 87,00 677 116,79 228 0,000 330 118,50 844 118,50 99 10,226,57 222 4,484,06 45 2,492,80 00 2,929,71 00 320,00	24.676. 26.634. 46. 384. 4. 379. 3.234. 5. 0. 743. 13. 0. 212.
90.98 15.28 18.95 A.NO 18.95 64.06 84.22 30.13 20.00 NA 4.	256.30 0,09 384.34 4,84 N 379.51 IE.N 17,14 1. 3,35 1. 13,29 962.24 4.	33,39 0,91 0,00 0,00 0,00 0,00 0,00 0,00 0,0	IA,NO	:12,03	26,750 460 503 4 4 498 7,00 13,460 2,943 320 NO 212 7,00 2,265	.67 116,79 2.8 0.00 3.30 118,50 3.84 .46 118,50 4.66 118,50 2.22 4.484,00 4.45 2.492,80 0.00 2.929,71 0.00 320,00	26.634, 46. 384, 4. 379, 3.234, 5. 0, 743, 13, 0, 212,
45.28 18.95 18.95 18.95 18.95 18.95 18.95 18.4.06 18.4.22 10.13 10.00	0.09 384,34 4,84 N 379,51 IE,N3 17,14 1. 3,85 1. 13,29 962,24 4. 4. 400,87	0.91 0.00	IA,NO	:12,03	46 503 4 498 7,00 13.460 4.484 3.236 2.943 320 NO 212 7,00 2.265	28 0,000 30 118,50 844 46 118,50 99 10,226,57 222 4,484,06 45 2,492,80 00 2,929,71 000 320,000	46. 384. 4. 379. 3.234. 5. 0. 743. 13. 13. 12. 2. 12. 2. 12.
18.95 A,NO 18.95 64.06 84.22 30.13 129,71 20,00	384,34	0,00 0,NO 0,NO 10,ANO 10,247 2.1 N 2.1 2.1	IA,NO	:12,03	503 4 488 498 7,00 13,460 4,484 3,236 2,943 320 NO 212 7,00 2,265	30 118,50 84 118,50 99 10,226,57 222 4.484,06 45 2.492,80 00 2.929,71 00 320,00	384 4 379 3.234 0 743 13 0 0 212
A,NO 18,95 64,06 84,22 30,13 29,71 20,00	4,84 P. 4,84 P. 4,87 P. 1 P. 1,1 P. 1	N.NO N.NO 12,47 2.1 12,47 2.1 N 2.1 832,88	IA,NO	:12,03	4 498 7,00 13.460 4.484 3.236 2.943 320 NO 212 7,00 2.265	.84 .46 118,50 .99 10,226,57 .22 4.484,06 .45 2.492,80 .00 2.929,71 .00 320,00	4 379 3.234 6 0 743 13 0 0 212
18,95 64,06 84,22 30,13 29,71 20,00 NA 4.	379,51 IE,8 17,14 1. 3,85 1. 13,29 1. 962,24 4. 561,36 400,87	NO 12,47 2.1 12,47 N 2.47 N 2.1 82,88 94,29	IA,NO	:12,03	7,00 13.460 4.484 3.236 2.943 320 NO 212 7,00 2.265	,46 118,50 ,99 10,226,57 ,22 4.484,06 ,45 2.492,80 ,00 2.929,71 ,00 320,00	379 3.234 5 0 743 13 0 0 212
64,06 84,22 30,13 29,71 20,00 NA 4.	17,14 1. 3,85 1. 13,29 1. 962,24 4. 561,36 400,87	N 2.47 N 2.47 N 2.19 82,88 94,29	IA,NO	:12,03	7,00 13.460 4.484 3.236 2.943 320 NO 212 7,00 2.265	10.226,57 10.226,57 10.22	3.234 0 0 743 13 13 0 0 212
84,22 30,13 29,71 20,00 NA 4.	3,85 1. 13,29 962,24 4. 561,36 400,87	N 2.1 82,88 94,29	IA,NO	:12,03	4.484 3.236 2.943 320 NO 212 7,00 2.265	222 4.484,06 445 2.492,80 000 2.929,71 000 320,000	0 743 13 0 0 0 212
NA 4. 3.	13,29 962,24 4. 561,36 400,87	N 2.1 32,88 94,29		7.11	3.236 2.943 320 NO 212 7,00 2.265	2.492,80 000 2.929,71 000 320,000	743 13 0 0 212
NA 4. 3.	13,29 962,24 4. 561,36 400,87	N 2.1 32,88 94,29		7.11	2.943 320 NO 212 7,00 2.265	.00 2.929,71 .00 320,00	13. 0 0. 212.
NA 4. 3.	962,24 4. 561,36 400,87	2.1 82,88 94,29		7.11	NO 212 7,00 2.265	,00 320,00	212
NA 4. 3.	962,24 4. 561,36 400,87	2.1 82,88 94,29		7.11	NO 212 7,00 2.265	,03	212
4. 3.	962,24 4. 561,36 400,87	2.1 82,88 94,29		7.11	7,00 2.265		
4. 3.	962,24 4. 561,36 400,87	82,88 94,29	140,19	8,10		,29	2.203.
4. 3.	962,24 4. 561,36 400,87	94,29			182		
4. 3.	962,24 4. 561,36 400,87	94,29			102	00	182.
3.	561,36 400,87				9,256		9,256
	400,87	55,70		_	3,561		3,561
					2.166		2.166.
				_		.00	0.
		28.59			3.528		3.528,
	NO	NO			0.020		
	NO	NO					
	NA	NA					
87,76	0,00	06,50			-1.381	,26	
44.12	NO	NO			-3.844	12	
81,78		06,50			1.988		
88.02	NO	NO			-188		
23.00	NO	NO			-23	00	
78,80	NO	NO			578		
06.81	NO	NO			106		
NO	NO	NO			0	.00	
21.62	681.40	19,32			1.612	.35 536.00	1.076
	578,60				578		578.
		09,26			388		388.
21,62	NA	0,06			621	,68	85,
NA	23,93	NA			23	,93	23,
							_
							_
		_					_
					Total COs. Equivalent Emissions without Land Live Lands Use Chance and For	Total CO ₂ Equivalent Emissions without Land Use, Land-Use Change and Forestry 116.852	Total CO; Equivalent Emissions without Land Use, Land-Use Change and Forestry Total CO: Equivalent Emissions with Land Use, Land-Use Change and Forestry 116.852,49 Total CO: Equivalent Emissions with Land Use, Land-Use Change and Forestry 118.471,23

(2) Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.

Brief description of the key drivers underpinning the increase or decrease in GHG emissions in t-1 (proxy) compared to t-2 (inventory). If this information is publicly available please include the hyperlink to the relevant website.

In the Flemish region the sector of industry shows an increase of emissions in 2013 because the energy consumption increases with 3.3% compared to 2012. In the sector of 'electricity's heat' a decrease of emissions takes place because of total decreasing fuel consumption in 2013 (-1.3% compared to 2012). In the 3 regions, the emissions from residential and commercial sectors increased due to a colder year. In Wallonia, regarding ETS, the emissions in the energy industry slightly increased, but this is counterbalanced by emissions reductions in the manufacturing industry.

Road Transportation according reference approach (20/06/14) in tons
Gasoline (excluding offroads)

1.120.902
Diesel
6.300.000
LPG
6.0000
Bioethanol (excluding offroads)
72.862
Biodiesel
320.000

Belgium submitted revised proxy data on 15th September 2014. As this revision was submitted after the deadline of 31st July 2014, proxy data of the initial submission is presented here and was taken into account in the calculations of this report.

Actual emissions should be included in the hadronal totals. In no actual emissions were reported, potential.

(3) Parties which previously reported CO₂ from soils in the Agriculture sector should note this in the NIR.

⁽⁴⁾ See footnote 8 to table Summary 1.A.

5.1.3 Bulgaria

Bulgaria did not submit proxy data by 31 July 2014.

5.1.4 Cyprus

Cyprus did not submit proxy data by 31 July 2014.

5.1.5 Czech Republic

Czech Republic did not submit proxy data by 31 July 2014.

5.1.6 Germany

SUMMARY 2 SUMMARY REPORT FOR CO₂ EQUIVALENT EMISSIONS (Sheet 1 of 1)

25.02.2014 GERMANY

							nostic year 2013		
GREENHOUSE GAS SOURCE AND	CO ₂ (1)	CH_4	N ₂ O	HFCs (2)	PFCs (2)	SF ₆ (2)	Total	ETS	non-ETS
SINK CATEGORIES			C	O2 equivalent (Gg)			CO2 equiva	ent (Gg)
Total (Net Emissions) (1)	830.380	47.525	56.543	9.340	205	3.310	947.303		
1. Energy	780.740	11.730	5.971				798.441	426.680	371.76
A. Fuel Combustion (Sectoral Approach)	779.200	3.120	5.970				788.290	426.599	361.69
Energy Industries	362.800	1.700	3.060				367.560	342.039	25.52
2. Manufacturing Industries and Construction	115.700	210	750				116.660	83.395	33.26
3. Transport	154.700	150	1.500				156.350	812	155.53
Other Sectors	145.000	1.050	650				146.700	120	146.58
5. Other	1.000	10	10				1.020	235	78
B. Fugitive Emissions from Fuels	1.540	8.610	1				10.151	80	10.07
Solid Fuels	10	2.700	NO				2.710		2.7
Oil and Natural Gas	1.530	5.910	1				7.441	80	7.3€
2. Industrial Processes	52.200	7	3.250	9.340	205	3.310	68.312	50.785	17.52
A. Mineral Products	18.700	NO	NO				18.700	IE]
B. Chemical Industry	17.100	2	3.235				20.337	IE	1
C. Metal Production	16.400	5	15	40	75	50	16.585	IE]
D. Other Production	NO						NO	IE	
E. Production of Halocarbons and SF ₆				30	NA,NO	110	140	IE]
F. Consumption of Halocarbons and SF ₆ (2)				9.130	130	3.150	12.410	IE	1
G. Other	NO	NO	NO	140	IE,NA,NO	IE,NO	140	IE	1
3. Solvent and Other Product Use	1.450		252				1.702		
1. Agriculture		25.500	43.800				69.300		
A. Enteric Fermentation		20.600					20.600		
B. Manure Management		4.900	2.800				7.700		
C. Rice Cultivation		NO					0		
D. Agricultural Soils ⁽³⁾		NO	41.000				41.000		
E. Prescribed Burning of Savannas		NO	NO				NO		
F. Field Burning of Agricultural Residues		NO	NO				NO		
G. Other		NA,NO	NA,NO				NA,NO		
5. Land Use, Land-Use Change and Forestry ⁽¹⁾	-4.010	3	520				-3.487		
A. Forest Land	-51.850	3	70				-51.777		
B. Cropland	31.250	NO	450				31.700		
C. Grassland	10.100	NO	NO				10.100		
D. Wetlands	2.280	NE,NO	NE,NO				2.280		
E. Settlements	4.150	NE NE	NE,NE				4.150		
F. Other Land	NO NO	NO	NO				NO		
G. Other	60	NA,NE	NE.				60		
6. Waste	NO NO	10,285	2.750				13.035		
A. Solid Waste Disposal on Land	NO	9.660	2.750				9.660		
B. Waste-water Handling	NO	25	2,400				2.425		
C. Waste Incineration	NO	NO	NO NO				NO NO		
D. Other	NO	600	350				950		
7. Other (as specified in Summary 1.A)	NA NA	NA.	NA.	NA	NA	NA	NA.		
7. Other (as specified in Summary 1.A)	NA	NA	NA	NA	NA	NA	NA		
Memo Items: (4)									
International Bunkers	34.340	20	320				34.680		
Aviation	26,065	3	320 254				26,322		
Aviation Marine	8.275	17	254				8.358		
Multilateral Operations	8.275 NE	NE	NE				8.338 NE		
CO ₂ Emissions from Biomass	109,400	NE	NE				109,400		
CO2 Emissions (10III Diuliass	109.400						109.400		
		T-+-1 CO F :	look Positor'	laba Y d YY	Land Has C'	a and Passar	050 500	488	450.0
				s without Land Use			950.790	477.465	473.3
		Total CO ₂ E	quivalent Emiss	ions with Land Use	, Land-Use Chang	ge and Forestry	947.303		

For CO2 from Land Use, Land-use Chang negative (-) and for emissions positive (+).

(2) Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included. (3) Parties which previously reported CO₂ from soils in the Agriculture sector should note this in the NIR.

Brief description of the key drivers underpinning the increase or decrease in GHG emissions in t-1 (proxy) compared to t-2 (inventory). If this information is publicly available please include the hyperlink to the relevant website.

Inventory data (column B-H) are based on an approximation published in February 2014:

http://www.umweltbundesamt.de/en/press/pressinfor All trends are explained in the Annex to this press release.

ETS data (column J) are based on work to the Emissions Trading Directive 2003/87/EC (Article 21):

<u>http://cdr.eionet.europa.eu/de/eu/emt/envu5rcta/overview</u> For purposes as Non-ETS comparison all industrial processes are indicated as 'IE' and included in the sum of CRF 2.

nventory data are rounded to express the high degree of uncertainty.

⁽⁴⁾ See footnote 8 to table Summary 1.A.

5.1.7 Denmark

SUMMARY 2 SUMMARY REPORT FOR CO, EQUIVALENT EMISSIONS (Sheet 1 of 1)

Proxy inventory 2013 - Old IPCC GL

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH_4	N_2O	HFCs (2)	PFCs (2)	SF ₆ (2)	Total	ETS non-ETS
SINK CATEGORIES		•	C	O ₂ equivalent (Gg)	•			CO2 equivalent (Gg)
Total (Net Emissions) (1)	41.047,79	5,479,82	5.965,82	605,06	7,94	128,46	53.234,89	
1. Energy	39.881,61	429,99	352,37	****	.,	,10	40.663,97	
A. Fuel Combustion (Sectoral Approach)	39.573,12	323,97	351,84				40.248,93	
Energy Industries		,						
Manufacturing Industries and Construction								
3. Transport								
4. Other Sectors								
5. Other								
B. Fugitive Emissions from Fuels	308,49	106,02	0,53				415,04	
Solid Fuels	NA,NO	NA,NO	NA,NO				NA,NO	
Oil and Natural Gas	308,49	106,02	0,53				415,04	
2. Industrial Processes	1.003,04	IE,NA,NO	IE,NA,NO	605,06	7,94	128,46	1.744,51	
A. Mineral Products	967,70	IE,NA	IE,NA				967,70	
B. Chemical Industry	1,41	NA,NO	NA,NO				1,41	
C. Metal Production	NA,NO	NA,NO	NO		NO	NO	NA,NO	
D. Other Production	2,24						2,24	
E. Production of Halocarbons and SF ₆				NA,NO	NA,NO	NO	NA,NO	
F. Consumption of Halocarbons and SF ₆ (2)				605,06	7,94	128,46	741,46	
G. Other	31,70	NA	NA	NA	NA	NA	31,70	
3. Solvent and Other Product Use	144,39		11,93				156,32	
4. Agriculture	211,02	4,203,40	5.395,93				9.599,33	
A. Enteric Fermentation		2.903,79	0.050,50				2.903,79	
B. Manure Management		1.297,17	390,77				1.687,94	
C. Rice Cultivation		NO	,				NO	
D. Agricultural Soils (3)		NA,NE	5.004,23				5.004,23	
E. Prescribed Burning of Savannas		NA	NA				NA	
F. Field Burning of Agricultural Residues		2,43	0,93				3,36	
G. Other		NA	NA				NA	
5. Land Use, Land-Use Change and Forestry ⁽¹⁾								
A. Forest Land								
B. Cropland								
C. Grassland								
D. Wetlands								
E. Settlements								
F. Other Land								
G. Other								
6. Waste	18,75	846,44	205,59				1.070,77	
A. Solid Waste Disposal on Land	NA,NE,NO	676,78	205,59				676,78	
B. Waste-water Handling	INA,INE,INO	75,11	75,00				150,12	
C. Waste Incineration	NO	0.02	0.29				0,30	
D. Other	18,75	94,53	130,30				243.57	
7. Other (as specified in Summary 1.A)	NA	94,33 NA	NA	NA	NA	NA	NA	
7. Other (as specified in Summary 1.A)	INA	IVA	IM	IVA	IVA	IVA	INA	
Memo Items: (4)								
International Bunkers								
Aviation								
Marine Multilateral Operations								
	_				$\overline{}$			
CO ₂ Emissions from Biomass								
		m 100 -					50 00 t	
				ns without Land Use,			53.234,89	
		Total CO ₂ l	Equivalent Emiss	sions with Land Use,	Land-Use Chang	e and Forestry		

⁽¹⁾ For CO₂ from Land Use, Land-use Change and Forestry the net emissions/removals are to be reported. For the purposes of reporting, the signs for removals are always negative (-) and for emissions positive (+).

Brief description of the key drivers underpinning the increase or decrease in GHG emissions in t-1 (proxy) compared to t-2 (inventory). If this

information is publicly available please include the hyperlink to the relevant website.

The short term trend in Danish greenhouse gas emissions is dominated by the trend in the energy sector. This is caused by the open electricity market and especially the import/export of electricity within the Nordic electricity market. Changes in production of renewable energy (mainly hydropower) in the Nordic

countries influences directly the need for fossil power generation in Denmark.

In 2013, Denmark imported less electricity compared to 2012. This caused an increase in coal consumption in the DAnish power plants to compensate for the lower electricity import. At the same time the consumption of natural gas and oil products decreased. The overall result is however, an increase in the CO2 emission. More information on the preliminary energy statistics is available from the Danish Energy Agency (http://www.ens.dk/node/3955). At the time of preparation of this submission, it has not been possible to make a split between ETS and non-ETS emissions.

For industrial processes, the only correction for CO2 is to take into account the 2013 ETS report of the only DAnish cement plant that accounts for the vast

majority of emissions. For f-gases, the emissions of HFCs are expected to continue to decrease due to the measures in place to reduce the use of HFCs. For SF6, the emissions are expected to increase, this is caused by the fact that SF6 was used in double glazed windows and according to the model the lifetime of these windows started to expire last year causing the remaining SF6 to be emitted. Hence, the emissions of SF6 will continue to increase sligthly in the coming years and then decrease again.

Product use has been assumed at the same level as in 2012.

Product use has been assumed at the same level as in 120 the agricultural sector is the sector in Denmark most influenced by the 2006 IPCC GL and therefore this sector has been prioritised in terms of implementing the new GL. This means that the data in this table are simply kept at the 2012 level. The short term fluctuations in the agricultural sector are generally small

sespecially when compared to the energy sector.

For waste the emissions from SWDS are expected to continue the decreasing trend caused by the change decades ago to limit the landfilling of organic degradable waste. This is somewhat counteracted by the increase in emissions from composting. The emissions from WWH remain relatively constant.

⁽²⁾ Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included

⁽³⁾ Parties which previously reported CO₂ from soils in the Agriculture sector should note this in the NIR.

⁽⁴⁾ See footnote 8 to table Summary 1.A.

2013

5.1.8 **Estonia**

SUMMARY 2 SUMMARY REPORT FOR CO_2 EQUIVALENT EMISSIONS

Sheet 1 of 1)									Submission Country	Estonia	
GREENHOUSE GAS SOURCE AND	CO ₂ ⁽¹⁾	CH ₄	N ₂ O	HFCs	PFCs	SF ₆	Unspecified mix of HFCs and PFCs	NF ₃	Total	ETS	non-ETS
INK CATEGORIES				CO ₂	equivalent (kt)					CO2 equiv	alent (Gg)
Cotal (net emissions) ⁽¹⁾	19.016,23	1.027,24	911,16	174,72	NO	2,13	NO	NO	21.131,48		
. Energy	18.138,87	209,31	75,95						18.424,12	15.076,70	3.347,4
A. Fuel combustion (sectoral approach)	18.138,87	119,85	75,95						18.334,66		
Energy industries	14.734,38	12,23	31,45						14.778,05		
Manufacturing industries and construction	673,16	1,75	3,65						678,57		
3. Transport	2.232,97	3,73	19,50						2.256,20		
4. Other sectors	475,74 22,62	102,12 0,03	20,96 0,39						598,82 23,03		
Other B. Fugitive emissions from fuels	22,62 NO	89,45	0,39 NO						23,03 89,45		
Fuguive emissions from fuers Solid fuels	NO	89,43 NO	NO						NO		
Oil and natural gas and other emissions from energy											
production	NO	89,45	NO						89,45		
C. CO ₂ transport and storage	NO								NO		
2. Industrial processes and product use	867,52	NO	4,36	174,72	NO	2,13	NO	NO	1.048,74	848,71	200,4
A. Mineral industry	694,52								694,52		
B. Chemical industry	154,05	NO	NO	NO	NO	NO	NO	NO	154,05		
C. Metal industry	NO	NO	NO	NO	NO	NO	NO	NO	NO		
D. Non-energy products from fuels and solvent use	17,26	NO	NO		***		17-		17,26		
E. Electronic Industry F. Product uses as ODS substitutes				NO 174,72	NO NO	NO NO	NO NO	NO NO	NO 174,72		
F. Product uses as ODS substitutes G. Other product manufacture and use	NO	NO	4,36	1/4,/2 NO	NO NO	2,13	NO NO	NO NO	6,50		
H. Other	1,69	NO	NO NO	NO	NO	NO NO	NO	NO	1,69		
3. Agriculture	9,39	547,27	799,20						1.355,86	0,00	1.355,4
A. Enteric fermentation		476,53	,						476,53		
B. Manure management		70,74	75,42						146,16		
C. Rice cultivation		NO							NO		
D. Agricultural soils		NO	723,78						723,78		
E. Prescribed burning of savannahs		NO	NO						NO		
F. Field burning of agricultural residues	0.02	NO	NO						NO 0.02		
G. Liming H. Urea application	9,02 0,37								9,02 0,37		
I. Other carbon-containing fertilizers	NO NO								NO		
J. Other	NO	NO	NO						NO		
4. Land use, land-use change and forestry ⁽¹⁾	NE	NE	NE						NE		
A. Forest land	NE	NE	NE						NE		
B. Cropland	NE	NE	NE						NE		
C. Grassland	NE	NE	NE						NE		
D. Wetlands	NE	NE	NE						NE		
E. Settlements	NE	NE	NE						NE NE		
F. Other land G. Harvested wood products	NE NE	NE NE	NE NE						NE NE		
H. Other	NE NE	NE NE	NE NE						NE NE		
5. Waste	0,45	270,66	31,65						302,76	0,00	302,7
A. Solid waste disposal	NO	224,70	NO						224,70	.,,,,,	
B. Biological treatment of solid waste		10,78	11,90						22,69		
C. Incineration and open burning of waste	0,45	1,33	0,10						1,88		
D. Waste water treatment and discharge		33,85	19,65						53,50		
E. Other	NO	NO	NO						NO		
6. Other (as specified in summary 1.A)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0,00	0,0
Memo items: ⁽²⁾											
International bunkers	NE	NE	NE						NE		
Aviation Vavigation	NE NE	NE NE	NE NE						NE NE		
Navigation Multilateral operations	NE NE	NE NE	NE NE						NE NE		
CO ₂ emissions from biomass	NE NE	NE	NE						NE NE		
CO, captured	NE NE								NE NE		
Long-term storage of C in waste disposal sites	NE.								NE		
Indirect N ₂ O	.,,,		143,47						, (L		
Indirect CO ₂ (3)	16,49										

⁽¹⁾ For carbon dioxide (CO₂) from land use, land-use change and forestry the net emissions/removals are to be reported. For the purposes of reporting, the signs for removals are always negative (-)

Brief description of the key drivers underpinning the increase or decrease in GHG emissions in t-1 (proxy) compared to t-2 (inventory). If this information is publicly available please include the hyperlink to the relevant website.

e of GHG emissions in the energy sector is related to the fact that the export of electricity (mainly produced from oil shale) increased about 27% in 2013, compared to

Increase of CO2 emissions from chemical industry (CRF 2.B) was caused by increased production of ammonia (ammonia production was temporarily stopped at the beginning of February 2009 and the production was restarted in December 2012).

In the agriculture sector, there were new sub-categories where Estonia performed emission estimations, namely liming and urea application, both of which contributed to increased gross emissions. There was also a considerable growth in the assessment of emissions from enteric fermentation due to new methodology for calculating emissions from livestock taken up from the IPCC 2006 guidelines.

CH4 emissions from waste water treatment and discharge (CRF 5.D) increased mainly due to the new methodology and factors introduced in the IPCC 2006 guidelines.

and for emissions positive (+).

(2) See footnote 7 to table Summary 1.A.

⁽s) In accordance with the UNFCCC Annex I inventory reporting guidelines, for Parties that decide to report indirect CO₂, the national totals shall be provided with and without indirect CO₂.

5.1.9 Spain

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS

Inventory year 2013 Submission 2014-Proxy country SPAIN

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH ₄	N_2O	HFCs (2)	PFCs (2)	$SF_6^{\ (2)}$	Total	ETS	non-ETS
SINK CATEGORIES	-		Ċ	O ₂ equivalent (Gg)				CO2 equiv	valent (Gg)
Total (Net Emissions) (1)	217.660,54	31.865,25	24.847,26	7.446,99	48,34	214,77	282.083,14		
1. Energy	236,566,27	2,579,94	2,282,57				241.428,79		
A. Fuel Combustion (Sectoral Approach)	233.167,23	1.624,18	2.282,27				237.073,68		
Energy Industries	72.084,67	155,15	638,97				72.878,79		
Manufacturing Industries and Construction	42.261,35	440,59	437,72				43.139,67		
3. Transport	79.361,39	81,54	784,15				80.227,08		
Other Sectors	39.459,82	946,90	421,43				40.828,14		
5. Other							0,00		
B. Fugitive Emissions from Fuels	3.399,04	955,76	0,31				4.355,11		
Solid Fuels	23,77	374,81					398,58		
Oil and Natural Gas	3.375,27	580,95	0,31				3.956,53		
2. Industrial Processes	14.189,80	53,41	192,14	7.446,99	48,34	214,77	22.145,44		
A. Mineral Products	10.675,44						10.675,44		
B. Chemical Industry	716,00	39,83	190,80				946,63		
C. Metal Production	2.798,36	13,58	1,34		45,89		2.859,17		
D. Other Production							0,00		
E. Production of Halocarbons and SF ₆				182,74			182,74		
F. Consumption of Halocarbons and SF ₆ (2)				7.264.24	2.45	214.77	7,481,46		
G. Other					-,		0.00		
3. Solvent and Other Product Use	752.20		401.88				1.154,08		
4. Agriculture	132,20	17.476,89	20.506,62				37.983,51		
A. Enteric Fermentation		10.070.32	20.500,02				10.070.32		
B. Manure Management		6.660,71	1.521,00	1			8.181,71		
C. Rice Cultivation		307.59	1.521,00	1			307,59		1
D. Agricultural Soils ⁽³⁾		301,39	18.905,42				18.905,42		
			18.905,42						
E. Prescribed Burning of Savannas F. Field Burning of Agricultural Residues		438,27	80,20				0,00 518,47		
		438,27	80,20						
G. Other							0,00		
5. Land Use, Land-Use Change and Forestry ⁽¹⁾	-33.851,03	135,65	186,75				-33.528,63		
A. Forest Land	-34.040,90	135,56	13,76				-33.891,58		
B. Cropland	-1.993,07		172,99				-1.820,09		
C. Grassland	996,14	0,09	0,01				996,24		
D. Wetlands	42,05						42,05		
E. Settlements	1.139,07						1.139,07		
F. Other Land	5,67						5,67		
G. Other							0,00		
6. Waste	3,30	11.619,36	1.277,30				12.899,95		
A. Solid Waste Disposal on Land		11.003,51	0,84				11.004,34		
B. Waste-water Handling		598,45	1.266,62				1.865,07		
C. Waste Incineration	3,30	0,64	9,75				13,70		
D. Other		16,76	0,09				16,85		
7. Other (as specified in Summary I.A)									
Memo Items: (4)									
International Bunkers									
Aviation									
Marine									
Multilateral Operations									
CO ₂ Emissions from Biomass									
						1.0	245 646		
					Use, Land-Use Cha		315.611,77		
		Total	CO2 Equivalent I	emissions with Land	Use, Land-Use Cha	nge and Forestry	282.083,14		

Co Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.
 Parties which previously reported CO₂ from soils in the Agriculture sector should note this in the NIR.

Brief description of the key drivers underpinning the increase or decrease in GHG emissions in t-1 (proxy) compared to t-2 (inventory). If this information is publicly available please include the hyperlink to the relevant website

In the evolution of the emissions of 2013 compared to 2012 there is a downward trend that encompasses almost all sectors, leading to a decrease of 25,197 Gg of CO2-e that in percentage therms represents a change of -7,4%.

The dominant dirvers in the decline of emissions are those corresponding to stationary combustion, and within them the most relevant decreases are those produced in:
- the energy industries, particularly in the public power plants (category 1.A.1.a), with the largest decline in emissions as a consequence of the drop in electricity

production in coal power plants and in natural gas combined cycle plants, as well as an important contribution of renewables to the energy mix during the year;
- the manufacturing industries and construction (category 1.A.2), as a result of the decrease in fuel consumption combined with the change in the mix of energy sources

decreases in the use of fuels with higher carbon content per unit of energy calorific value, such as coal and petroleum coke);

- residential, commercial and institutional sectors (category 1.A.4), where the drop is determined by the decrease in consumption of gasoil and natural gas.

Besides stationary combustion it is noteworthy the fall in CO2 emissions in industrial processes, essentially caused by the decrease in cement clinker production (category 2.A.4). Additionally, a decrease in aviation transport (category 1.A.3) produces a fall in the associated emissions for that sector.

Regarding categories with an upward change, it should be mentioned the increase in agricultural soils (category 4.D) as a result of the increase in the application of

synthetic fertilizers, wastes and road transport.

See footnote 8 to table Summary 1.A.

5.1.10 Finland

SUMMARY 2 SUMMARY REPORT FOR CO₂ EQUIVALENT EMISSIONS

Inventory year Submission v1 2013 country Finland

GREENHOUSE GAS SOURCE AND	CO ₂ (1)	CH ₄	N_2O	HFCs (2)	PFCs (2)	SF ₆ (2)	Total	ETS	non-ETS
SINK CATEGORIES			· ·	CO ₂ equivalent (Gg)				CO2 equiva	lent (Gg)
Total (Net Emissions) (1)	31.482,44	2.246,01	2.627,69	982,46	4,84	51,46	37.394,90		
1. Energy	46.293,00	357,00	899,00				47.549,00	30162,06	17386,9
A. Fuel Combustion (Sectoral Approach)	46.160,00	319,00	898,00				47.377,00		
Energy Industries	22.120,00	22,00	334,00				22.476,00		
2. Manufacturing Industries and Construction	8.050,00	15,00	134,00				8.199,00		
3. Transport	12.600,00	34,00	172,00				12.806,00		
Other Sectors	2.560,00	246,00	52,00				2.858,00		
5. Other	830,00	2,00	206,00				1.038,00		
B. Fugitive Emissions from Fuels	133,00	38,00	1,00				172,00		
Solid Fuels	NO	NO	NO				0,00		
Oil and Natural Gas	133,00	38,00	1,00				172,00		
2. Industrial Processes	4.084,54	9,38	219,24	982,46	4,84	51,46	5.351,91	1341,10	4.010,8
A. Mineral Products	1.107,93	NO	NO				1.107,93		
B. Chemical Industry	807,22	NA, NO	219,24				1.026,46		
C. Metal Production	2.169,39	9,38	NO		NO	C, NO	2.178,77		
D. Other Production	NO						NO		
E. Production of Halocarbons and SF ₆				NA, NO	NA, NO	NO	NA, NO		
F. Consumption of Halocarbons and SF ₆ (2)				982,46	4,84	51,46	1.038,76		
G. Other	NA	NA	NA	NA	NA	NA	NA		
3. Solvent and Other Product Use	39,81		26,35				66,16	0,00	66,1
4. Agriculture		1.796,64	3.899,29				5.695,93		
A. Enteric Fermentation		1.542,81					1.542,81		
B. Manure Management		253,44	403,51				656,95		
C. Rice Cultivation		NO					NO		
D. Agricultural Soils ⁽³⁾		NE,NO	3.495,67				3.495,67		
E. Prescribed Burning of Savannas		NO	NO				NO		
F. Field Burning of Agricultural Residues		0,39	0,11				0,51		
G. Other		NO	NO				NO		
5. Land Use, Land-Use Change and Forestry ⁽¹⁾	-18.934,91	57,09	1.324,85				-17.552,97		
A. Forest Land	-30.137,14	0,47	1.212,77				-28,923,90		
B. Cropland	6.923,59	NA,NE	12,26				6.935,85		
C. Grassland	331.64	NE,NO	NE.NO				331.64		
D. Wetlands	1.753,15	56,62	99,82				1.909.58		
E. Settlements	906.40	NA.NE	NA.NE				906.40		
F. Other Land	IE,NA,NO	IE,NA	IE,NA				0.00		
G. Other	1.287,46	NE NE	NE,NA				1.287,46		
6. Waste	1.287,40 IE, NO	1.822.54	158.25				1.287,40	0,00	1,980,8
A. Solid Waste Disposal on Land	NO NO	1.652,09	158,25				1.652,09	0,00	1.980,8
B. Waste-water Handling	NO	56.29	59.07				115.35		
C. Waste Incineration	IE	30,29 IE	39,07 IE				0.00		
D. Other	NO.	114.16	99.19				213.35		
7. Other (as specified in Summary I.A)	NA NA	NA	99,19 NA	NA	NA	NA	213,33 NA	NA	N/
7. Other (as specified in Summary 1.A)	NA	NA	NA	NA	NA	NA	NA	NA	- N
Memo Items: (4)									
International Bunkers	2.304,95	1,35	28,10				2.334,40		
Aviation	1.949,24	0,86	25,21				1.975,31		
Marine	355,71	0,49	2,88				359,08		
Multilateral Operations	NO	NO	NO				NO		
CO ₂ Emissions from Biomass	36.121,62						36.121,62		
		m	ol CO. Faminal	Cariosiano misha Y	nd Hos. Land H Ch	son so and Fore	60,643,80	31.503.16	29 140 6
				Emissions without La ent Emissions with La			43.090.83	31.303,16	29.140,0

Total CO₂ Equivalent Emissions with Land Use, Land-Use Change and Forestry 43.090.83

For CO₂ from Land Use, Land-use Change and Forestry the net emissions/removals are to be reported. For the purposes of reporting, the signs for removals are always negative (-) and for FOR CO. [100] Land Ose, Landeuse Change and Foresty the net emissions positive (+).

(2) Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.

(3) Parties which previously reported CO₂ from soils in the Agriculture sector should note this in the NIR.

(4) See footnote 8 to table Summary 1.A.

Brief description of the key drivers underpinning the increase or decrease in GHG emissions in t-1 (proxy) compared to t-2 (inventory). If this information is publicly available please include the hyperlink to the relevant website.

According to Statistics Finland's proxy estimate, the total emissions of greenhouse gases in 2013 corresponded with 60.6 million tonnes of carbon dioxide. The emissions remained almost unchanged from the year before. In the energy sector, the use of hard coal increased but the consumption of peat, oil and natural gas decreased. In 2013, emissions outside the emissions trading scheme were around six per cent below the target set by the EU. The net sink of the Land Use, Land-Use Change and Forestry (LULUCF) sector has decreased by one-third as a result of increased fellings.

Greenhouse gas inventory: (http://liatstokeskus.t/lii/khk/L2013,2014-05-22_tie_001_en.html)
Energy statistics: (Preliminary data: http://liatstokeskus.t/lii/khk/2013/de/hk.2013_04_2014-03-24_tie_001_en.html)
Energy authority, in Finnish only: (http://www.energiavirasto.fi/-/paastokaupan-soveltamisalan-laajeneminen-ja-kivihillen-kulutus-kasvattivat-suomen-paastokauppasektorin-paastoja2013/redirect=http%3A%2F%2Fwww.energiavirasto.fi/s/2Fuutisarkisto%3Fp_p_id%3D101_INSTANCE_c1ITKRwQcXY6%26p_p_lifecycle%3D0%26p_p_state%3Dnormal%6p_p_mode%3Dview%26p_p_coi_id%3Dcolumn-1%26p_p_col_pos%3D1%26p_p_col_count%3D2)

Greenhouse gas inventory, proxy, 2013
Energy statistics, preliminary data 2013
Fnerov authority (Emission trading registry, CO2 emissions of 2013, in Finnish only)

5.1.11 France

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2013 proxy Submission July 2014 FRANCE (KP)

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH ₄	N ₂ O	HFCs (2)	PFCs (2)	SF ₆ (2)	Total	ETS non-ETS
SINK CATEGORIES				O ₂ equivalent (Gg)		- 0		CO2 equivalent (Gg)
Total (Net Emissions) (1)	315.844,77	52,362,07	61.111,13	16.801,49	399,12	670,78	447.189,37	
1. Energy	344.871,40	2.789,95	4.421,17	10,001,15	555,12	070,70	352.082,52	
A. Fuel Combustion (Sectoral Approach)	341.619,65	1.580,76	4.405,80				347.606,21	
Energy Industries	53,163,54	28,25	638,83				53.830,61	
Manufacturing Industries and Construction	62.444,76	146,44	766,71				63.357,92	
3. Transport	128.473,66	151,14	1.571,40				130.196,20	
4. Other Sectors	97.537,69	1.254,92	1.428,86				100.221,47	
5. Other	0,00	0,00	0,00				0,00	
B. Fugitive Emissions from Fuels	3.251,75	1.209,19	15,38				4.476,31	
Solid Fuels	0,00	33,21	0,00				33,21	
Oil and Natural Gas	3.251,75	1.175,98	15,38				4.443,10	
2. Industrial Processes	16.679,75	38,12	906,10	16.801,49	399,12	670,78	35.495,36	
A. Mineral Products	11.507,88	0	0				11.507,88	
B. Chemical Industry	2.094,46	36,74	906,10				3.037,30	
C. Metal Production	3.077,41	1,38	0		115,12	172,41	3.366,31	
D. Other Production	0,00						0,00	
E. Production of Halocarbons and SF ₆				114,76	2,89	0,00	117,64	
F. Consumption of Halocarbons and SF ₆ (2)				16.686,73	281,12	498,38	17.466,23	
G. Other	0,00	0	0	0,00	0,00	0	0,00	
3. Solvent and Other Product Use	979,70		136,44				1.116,14	
4. Agriculture		38,439,42	51.896,06				90.335,48	
A. Enteric Fermentation		28,200,89					28.200,89	
B. Manure Management		10.110,16	4.972,04				15.082,20	
C. Rice Cultivation		107,97					107,97	
D. Agricultural Soils ⁽³⁾		0	46.916,54				46.916,54	
E. Prescribed Burning of Savannas		0	0				0,00	
F. Field Burning of Agricultural Residues		20,39839073	7,468873186				27,87	
G. Other		0	0				0,00	
5. Land Use, Land-Use Change and Forestry ⁽¹⁾	-47.894,75	1.141,01	2.411,31				-44.342,43	
A. Forest Land	-70.834,72	596,59	65,21				-70.172,92	
B. Cropland	23.045,84	130,58	2.325,73				25.502,15	
C. Grassland	-11.910,05	143,13	14,53				-11.752,39	
D. Wetlands	-2.191,10	8,03	0,82				-2.182,25	
E. Settlements	13.876,14	72,67	5,03				13.953,84	
F. Other Land	0,16	0,00	0,00				0,16	
G. Other	118,97	190,008	0,00				308,98	
6. Waste	1.208.67	9,953,57	1,340,05				12.502,29	
A. Solid Waste Disposal on Land	0.00	8.464,23	1.340,05				8.464,23	
B. Waste-water Handling	0,00	1.258,55	776,44				2.034,99	
C. Waste Incineration	1.208,67	23,72	72,43				1.304,82	
D. Other	0,00	207,07	491,18				698,25	
7. Other (as specified in Summary 1.A)	0,00	0,00	0,00	0.00	0,00	0.00	0,00	
Outer (as specifica in Sammary 121)	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
Memo Items: (4)								
Memo Items: International Bunkers	24.120,22	4,31	218,17				24.342,71	
Aviation	16.152,68	1,63	163,19				16.317,50	
Aviation Marine	7.967,55	2,68	54,98				8.025.21	
Multilateral Operations	1,13	2,08 NE	34,98 NE				1,13	
CO ₂ Emissions from Biomass	56.625,61	NE	NE.				56.625,61	
CO2 Emissions from Diomass	30.023,01						30.023,01	
		Total CO. E-	uivalant Emis-i	s without Land Use,	Land Has Chara	and Forest	491.531,80	
		Total CO ₂	Equivalent Emiss	ions with Land Use,	Land-Use Change	e and Forestry	447.189,37	

⁽¹⁾ For CO₂ from Land Use, Land-use Change and Forestry the net emissions/removals are to be reported. For the purposes of reporting, the signs for removals are always negative (-) and for emissions positive (+).

Brief description of the key drivers underpinning the increase or decrease in GHG emissions in t-1 (proxy) compared to t-2 (inventory). If this information is publicly available please include the hyperlink to the relevant website.

The proxy 2013 total GHG emissions are close to the 2012 GHG inventory: slight increase of 0,3% i.e. + 1,4 Mt CO2e.

The two main drivers of this slight increase of total GHG emissions are a slight increase of GHG in Energy sectors (+ 0,650 Mt CO2e in CRF1) and an increase of N2O from agricultural soils (+1 Mt CO2e in CRF4).

Increase of N2O from agricultural soils (+1 Mr COZe in CAT4). The increase of N2O from agricultural soils is due to an increase of the deliveries of synthetic fertilizer (already available information) used for 2013. The slight increase of GHG in Energy sectors (+ 0,650 Mt CO2e) is in fact the result of 2 opposit trends:

- A slight decrease of GHG in Manufacturing Industry Combustion (not yet out of the economic crisis) and a decrease of GHG from road transport due to total fuel consumption decrease in 2013 (available information) and planned biomass % increase in 2013 (assumption).

- An increase of fuel consumptions in 2013 for other energy sectors (available information): energy industries, residential/commercial/institutional, etc., n relation with the fact that 2013 has been a colder year than 2012 (climate cold index: 2012 -> 0.97, 2013-> 1.06).

⁽²⁾ Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.

Parties which previously reported CO₂ from soils in the Agriculture sector should note this in the NIR.

⁽⁴⁾ See footnote 8 to table Summary 1.A.

5.1.12 Greece

Proxy Inventory of Greece for Year	2013			Method followed for emissions estimation
	National Total	ETS	non-ETS	
REENHOUSE GAS SOURCE AND	Total	Total	Total	
INK CATEGORIES	CO ₂ equivalent (Gg)	CO ₂ equivalent (Gg)	CO ₂ equivalent (Gg)	
otal Emissions without LULUCF	107.796,97	58.632,00	49.164,97	
Energy		Incl in ETS total	30.825,50	
A. Fuel Combustion (Sectoral Approach)		Incl in ETS total	29.700,50	
Energy Industries		Incl in ETS total	350,50	
Public electricity and heat production		Incl in ETS total	300,00	Based on the ratio of nonETS GHG emissions per ETS emissions reported for 2012 ETS reports.
Petroleum refining		Incl in ETS total	50,00	Based on the ratio of nonETS GHG emissions per ETS emissions reported for 2012 ETS reports.
Manufacture of Solid Fuels and Other Energy Industries		Incl in ETS total	0,50	Based on the ratio of nonETS GHG emissions per ETS emissions reported for 2012 ETS reports.
Manufacturing Industries and Construction		Incl in ETS total	1.000,00	Based on the ratio of 2012 of non ETS emissions of the categories 1A2+2A+2B+2C per the respective ETS emissions and expert judgement
3. Transport			19.150,00	
Civil Aviation			1.000,00	Estimation of emissions based on extrapolation of historic emissions and expert judgement.
Road Transportation			16.000,00	Estimation of emissions based on extrapolation of historic emissions and expert judgement.
Railways			100,00	Estimation of emissions based on extrapolation of historic emissions and expert judgement.
Navigation			2.000,00	Estimation of emissions based on extrapolation of historic emissions and expert judgement.
other			50,00	
4. Other Sectors			9.200,00	
Commercial/Institutional			1.200,00 6.500.00	Estimation of emissions based on extrapolation of historic emissions and expert judgement.
Residential				Estimation of emissions based on extrapolation of historic emissions and expert judgement.
Agriculture/Forestry/Fisheries		NO	1.500,00	Estimation of emissions based on extrapolation of historic emissions and expert judgement.
5. Other		NO	NO	Estimation of emissions based on ETS emissions from lignite consumption in power plants and expert judgement.
B. Fugitive Emissions from Fuels			1.125,00	Estimation of emissions based on E+S emissions from lightle consumption in power plants and expert judgement.
Industrial Processes A. Mineral Products		Incl in ETS total Incl in ETS total	4.100,00 Included in 1A2	
A. Mineral Products B. Chemical Industry		Incl in ETS total	Included in 1A2	
C. Metal Production		Incl in ETS total	Included in 1A2	
D. Other Production		NA NA	NA	
E. Production of Halocarbons and SF ₆		NA.NO	NA.NO	
F. Consumption of Halocarbons and SF ₆ (2)		MA,NO	4.100.00	Estimation of emissions based on extrapolation of historic emissions (years 2008-2012, on the basis that the mixtures used of the recent years are the same for 2013).
G. Other		NA,NO	4.100,00 NA.NO	Estimation of emissions based on extrapolation of historic emissions (years 2000-2012, on the basis that the mixtures used of the federal years are the same for 2013).
Solvent and Other Product Use		NA,NU	325,00	Extrapolation
			,	<u>'</u>
Agriculture			9.138,00	Agriculture:
A. Enteric Fermentation			3.118,42	For the prediction of the emissions from the agriculture sector for 2013:
B. Manure Management			993,28	 The nitrogen fertilizers consumption was provided by Pan-Hellenic Association of Professional Fertilizers Producers & Dealers
C. Rice Cultivation			117,60	The animal population and the agricultural production was predicted based on the trend of historical data
D. Agricultural Soils ⁽³⁾			4.864,20	3. Emissions factors and required information for the prediction of emissions, e.g. the shares of manure management systems per animal species
E. Prescribed Burning of Savannas			NO	and the Nitrogen excretion for animals are those utilized in the last Unfocc submission.
F. Field Burning of Agricultural Residues			44.50	
G. Other			NO	
Waste			4.776,47	Waste:
A. Solid Waste Disposal on Land			3.258,29	Work. For the prediction of the emissions from the waste sector for 2013:
1				
B. Waste-water Handling			1.479,95	 The amounts of municipal waste, industrial waste and sludge disposed in the managed and unmanaged solid waste disposal sites were predicted
C. Waste Incineration			3,91	based on the historical data and the Gross domestic product of Greece and the Gross added value by industrial sector as they were provided by
D. Other			34,31571398	the Hellenic statistical authority of Greece
	National Total	ETS	non-ETS	The population of Greece for 2013 was provided by the Hellenic statistical authority of Greece
otal Emissions without LULUCF	107,796,97	58632	49.164.97	Industrial production and the amount of waste incinerated were predicted based on the trend of historical data
Mai Elilissions without DOLOGE	107.790,97	30032	47.104,77	4. Emissions factors and required information for the prediction of emissions, e.g. the degradable organic fraction of waste, the distribution between

5.1.13 Hungary

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS

Submission 2014 v2.1 HUNGARY

GREENHOUSE GAS SOURCE AND	CO ₂ (1)	CH ₄	N ₂ O	HFCs (2)	PFCs (2)	SF ₆ (2)	Total	ETS	non-ETS
SINK CATEGORIES				CO ₂ equivalent (Gg	g)			CO2 equiva	alent (Gg)
Total (Net Emissions) (1)	43.299,86	7.982,24	7.257,68	1.071,19	1,35	74,49	59.686,81	19.124,84	40.561,97
1. Energy	40.409,56	2.368,28	224,53				43.002,37	16.509,34	26.493,03
A. Fuel Combustion (Sectoral Approach)	40.237,23	344,95	224,35				40.806,53	16.484,57	24.321,96
Energy Industries	14.335,22	16,19	55,72				14.407,13	13012,35	1394,78
2. Manufacturing Industries and Construction	3.490,33	6,98	7,45				3.504,75	3398,18	106,57
3. Transport	10.470,65	23,76	103,82				10.598,23	0,00	10598,23
4. Other Sectors	11.941,03	298,01	57,37				12.296,42	74,04	12222,38
5. Other	NO	NO	NO				0,00	NO	NO
B. Fugitive Emissions from Fuels	172,34	2.023,33	0,18				2.195,85	24,78	2.171,07
Solid Fuels	IE, NA, NO	11,31	NA, NO				11,31	0,00	11,31
Oil and Natural Gas	172,34	2.012,02	0,18				2.184,54	24,78	2159,76
2. Industrial Processes	2.721,13	37,09	38,47	1.071,19	1,35	74,49	3.943,72	2.615,50	1.328,23
A. Mineral Products	1.076,54	NA,NO	NA,NO				1.076,54	1075,80	0,74
B. Chemical Industry	404,29	37,07	38,47	NO	NO	NO	479,83	442,76	37,07
C. Metal Production	117,35	0,02	NA	NA,NO	NA,NO	NA,NO	117,37	117,35	0,02
D. Other Production	NO						0,00	0,00	0,00
E. Production of Halocarbons and SF ₆				NA,NO	NA	NA,NO	0,00	0,00	0,00
F. Consumption of Halocarbons and SF ₆ (2)				1.071,19	1,35	74,49	1.147,03	0,00	1147,03
G. Other	1.122,95	NO	NO	NA,NO	NA,NO	NO	1.122,95	979,59	143,37
3. Solvent and Other Product Use	76,15		302,73				378,87	0,00	378,87
4. Agriculture		2.826,68	6.408,77				9.235,45	0,00	9.235,45
A. Enteric Fermentation		1.545,69					1.545,69	0,00	1.545,69
B. Manure Management		1.268,56	855,76				2.124,31	0,00	2.124,31
C. Rice Cultivation		12,43					12,43	0,00	12,43
D. Agricultural Soils ⁽³⁾		NA,NO	5.553,01				5.553,01	0,00	5.553,01
E. Prescribed Burning of Savannas		NO	NO				0,00	0,00	0,00
F. Field Burning of Agricultural Residues		NA,NO	NA,NO				0,00	0,00	0,00
G. Other		NO	NO				0,00	0,00	0,00
5. Land Use, Land-Use Change and Forestry ⁽¹⁾	NE	NE	NE				NE		
A. Forest Land									
B. Cropland									
C. Grassland									
D. Wetlands									
E. Settlements									
F. Other Land									
G. Other									
6. Waste	93,01	2.750,19	283,19				3.126,39	0,00	3.126,39
A. Solid Waste Disposal on Land	NA,NO	2.441,12					2.441,12		2.441,12
B. Waste-water Handling		292,55	263,29				555,84		555,84
C. Waste Incineration	93,01	1,16	2,89				97,06		97,06
D. Other	NA	15,36	17,01				32,37		32,37
7. Other (as specified in Summary I.A)	NA	NA	NA	NA	NA	NA	NA	NA	NA
							-		
Memo Items: (4)									
International Bunkers									
Aviation	502,43	0,07	4,40				506,91		
Marine									
Multilateral Operations									
CO, Emissions from Biomass									

Total CO2 Equivalent Emissions with Land Use, Land-Use Change and Forestry

Electricity production decreased by 12%;

Most importantly, 40% less natural gas was used for power generation;

The biggest change in fossil fuel use occured in connection with natural gas: gross inland consumption fell by 9%;

Production of pig iron and steel have decreased by 49% in 2013;

One cement factory was closed and overall production of mineral industry have also fallen;

Preliminary data indicate also a drop of ammonia production;

N-fertilizer use and Non-Dairy Cattle livestock increased by 10.5% and 9%, respectively. (Swine and Dairy-Cattle slightly decreased);

Harvested productions of main crops were generally higher in 2013 than in 2012.

For CO₂ from Land Use, Land-use Change and Forestry the net emissions/removals are to be reported. For the purposes of reporting, the signs for removals are always negative (-) and for emissions positive (+).

Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.

Parties which previously reported CO₂ from soils in the Agriculture sector should note this in the NIR.

⁽⁴⁾ See footnote 8 to table Summary 1.A.

5.1.14 Croatia

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

2013 2014 v1.0 Submission CROATIA country

GREENHOUSE GAS SOURCE AND	CO2 ⁽¹⁾	CH ₄	N_2O	HFCs (2)	PFCs (2)	SF ₆ (2)	Total	ETS	non-ETS
SINK CATEGORIES			Ò	CO ₂ equivalent (Gg				CO2 equiva	alent (Gg)
Total (Net Emissions) (1)	17.826,07	3.313,15	2.880,73	494,29	0,02	9,86	24.524,12		
1. Energy	15.906,70	1.248,97	91,34				17.247,01	6.999,49	10.247,52
A. Fuel Combustion (Sectoral Approach)	15.417,60	148,24	91,12				15.656,97	6.999,49	8.657,47
Energy Industries	4.754,80	3,74	13,62				4.772,16	4.673,20	98,96
Manufacturing Industries and Construct	2.510,38	5,32	7,47				2.523,17	2.312,42	210,75
3. Transport	5.498,18	10,21	41,76				5.550,15	13,88	5.536,27
Other Sectors	2.654,24	128,98	28,27				2.811,49	NO	2.811,49
5. Other	NO	NO	NO				NO	NO	NC
B. Fugitive Emissions from Fuels	489,10	1.100,73	0,22				1.590,04	NO	1.590,04
Solid Fuels	NO	NO	NO				NO	NO	NC
Oil and Natural Gas	489,10	1.100,73	0,22				1.590,04	NO	1.590,04
2. Industrial Processes	1.825,02	0,44	249,95	494,29	0.02	9,86	2,579,57	2,066,86	512,71
A. Mineral Products	1.307,86	NO	NO	.,.,	-,	- 300	1.307,86	1.299,76	8,10
B. Chemical Industry	505,81	0.44	249.95				756,20	755,76	0,44
C. Metal Production	11,34	NO NO	NO NO		NO	NO	11,34	11,34	NC NC
D. Other Production	NE NE	140	140		NO	110	NE NE	NO NO	NE
E. Production of Halocarbons and SF ₆	NL			NO	NO	NO	NO	NO	NO
				494.29	0.02	9,86	504,17	NO	504,17
F. Consumption of Halocarbons and SF ₆ (2)									
G. Other	NO	NO	NO	NO	NO	NO	NO	NO	NO
3. Solvent and Other Product Use	94,28		59,95				154,23	NO	154,23
4. Agriculture		1.020,17	2.367,70				3.387,87	NO	3.387,87
A. Enteric Fermentation		825,03					825,03	NO	825,03
B. Manure Management		195,13	244,75				439,89	NO	439,89
C. Rice Cultivation		NO					NO	NO	NO
D. Agricultural Soils ⁽³⁾		NO	2.122,95				2.122,95	NO	2.122,95
E. Prescribed Burning of Savannas		NO	NO				NO	NO	NO
F. Field Burning of Agricultural Residues		NO	NO				NO	NO	NO
G. Other		NO	NO				NO	NO	NO
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE		
A. Forest Land	NE NE	NE NE	NE.				NE		
	NE NE								
B. Cropland		NE	NE				NE		
C. Grassland	NE	NE	NE				NE		
D. Wetlands	NE	NE	NE				NE		
E. Settlements	NE	NE	NE				NE		
F. Other Land	NE	NE	NE				NE		
G. Other	NE	NE	NE				NE		
6. Waste	0,08	1.043,57	111,79				1.155,44	NO	1.155,44
A. Solid Waste Disposal on Land	NO	822,54					822,54	NO	822,54
B. Waste-water Handling		221,04	111,79				332,82	NO	332,82
C. Waste Incineration	0,08	NO	NO				0,08	NO	0,08
D. Other	NO	NO	NO				NO	NO	NO
7. Other (as specified in Summary 1.A)	NO	NO	NO	NO	NO	NO	NO	NO	NO
Memo Items; (4)									
International Bunkers	NE	NE	NE				NE		
Aviation	NE NE	NE NE	NE NE				NE NE		
Marine	NE	NE	NE				NE		
Multilateral Operations	NE	NE	NE				NE		
CO ₂ Emissions from Biomass	NE						NE		
		To	otal CO ₂ Equivalent l	Emissions without La	and Use, Land-Use C	hange and Forestry	24.524,12	9.066,36	15.457,77
			Total CO ₂ Equivale	ent Emissions with La	and Use, Land-Use C	hange and Forestry	NE		

For CO₂ from Land Use, Land-use Change and Forestry the net emissions/removals are to be reported. For the purposes of reporting, the signs for removals are always negative (-) and for emissions positive (+).

Brief description of the key drivers underpinning the increase or decrease in GHG emissions in t-1 (proxy) compared to t-2 (inventory). If this information is publicly available please include the hyperlink to the relevant website.

website.

1. Energy
1.1 - 98% of total CO2 emissions is from ETS, for other 2% CO2 emission extrapolation method (years 2010-2012) is used. CH4 and N20 emissions are based on reduction factor which was calculated using Verified reports for 2012 and 2013 1A2 - 18 assumed that 92% of total CO2 emissions in from ETS, for other 8% CO2 emissions extrapolation method (years 2010-2012) is used. CH4 and N20 emissions are based on reduction factor which was calculated using Verified reports for 2012 and 2013 1A2 - 18 assumed that 92% of total CO2 emissions from 2010-2012 1B2 - all GHG are extrapolated based on emissions from 2010-2012

1B2 - all GHG are extrapolated based on emissions from 0.010-2012

2B - Nextrant gas assumation as feedstock in ammoning production is included.

2B - The methodology used to determine N20 emission is based on the measurement. Catalytic decomposition is implemented as a measure for N20 emission from initire acid production.

2B - CH4 emission is assessed according to data for 2012 due to the lack of the information on significant reducting of the production of other chemicals during 2012 compared to the previous period.

2C - Data for CO2 emissions from ino and steel production are included.

2D, 2E, 2G - The same as in the previous years.

2F - Extrapolation are based on emissions trend from 2010-2012.

3. Solvent and Other Product Use

3 - Setumpolation are based on emissions trend from 2010-2012.

4. Agriculture

4. Agriculture

4. En Fermentation, 4B. Man Management, 4D. Agr.soils - Extrapolation of calculated emissions data trend for the last 3 years (2010-2012)

5. Waste

A. Entr-perimenation, 46, Sant-samagement, 447, agr-sons - Exampolation to calculated emissions data trend for the last 3 years (2010)

A. - Extrapolation are based on emissions trend from 2010-2012.

B. - Extrapolation are based on emissions trend from 2010-2012.

C. - CO2 emission is assessed according to data for 2012 due to the significant fluctuations of CO2 emissions in the previous period.

⁽²⁾ Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.

⁽³⁾ Parties which previously reported CO₂ from soils in the Agriculture sector should note this in the NIR.

⁽⁴⁾ See footnote 8 to table Summary 1.A.

5.1.15 Ireland

Ireland did not submit proxy data by 31 July 2014.

5.1.16 Italy

SUMMARY 2 SUMMARY REPORT FOR ${\rm CO_2}$ EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory year Submission country

GREENHOUSE GAS SOURCE AND	CO ₂ (1)	CH ₄	N ₂ O	HFCs (2)	PFCs (2)	$SF_6^{\ (2)}$	Total	ETS	non-ETS
SINK CATEGORIES			CO ₂ e	quivalent (Gg)				CO2 equiva	alent (Gg)
Total (Net Emissions) (1)	350.166,32	33.904,10	27.342,31	9.713,82	1.431,10	315,28	422.872,93		
1. Energy	349.058,52	7.034,93	4,375,36				360.468,81	149,949,01	210.519,7
A. Fuel Combustion (Sectoral Approach)	346.835,93	1.947,88	4.364,43				353.148,25	148.487,60	204.660,6
Energy Industries	113.901,17	104,82	529,61				114.535,60	112.791,82	1.743,7
Manufacturing Industries and Construction	48.301,52	143,96	982,34				49.427,82	34.897,06	14.530,7
3. Transport	104.056,58	186,73	698,38				104.941,69	0,00	104.941,6
Other Sectors	80.238,15	1.511,95	2.133,35				83.883,45	798,72	83.084,
5. Other	338,51	0,42	20,75				359,69	0,00	359,0
B. Fugitive Emissions from Fuels	2.222,59	5.087,04	10,92				7.320,56	1.461,41	5.859,
Solid Fuels	0,04	70,27	0,00				70,31	0,00	70,3
Oil and Natural Gas	2.222,55	5.016,77	10,92				7.250,24	1.461,41	5.788,8
2. Industrial Processes	15.676,92	49,31	227,81	9.713,82	1.431,10	315,28	27.414,24	14.495,27	12.918,9
A. Mineral Products	13.039,63	0,00	0,00				13.039,63	11.903,77	1.135,8
B. Chemical Industry	1.525,19	5,43	227,81				1.758,42	1.668,97	89,4
C. Metal Production	1.112,10	43,88	0,00		33,21	0,00	1.189,20	922,53	266,6
D. Other Production	NA						0,00	0,00	0,0
E. Production of Halocarbons and SF ₆				NA,NO	1.300,00	0,00	1.300,00	0,00	1.300,0
F. Consumption of Halocarbons and SF ₆ ⁽²⁾				9.709,92	97,90	315,28	10.123,09	0,00	10.123,0
G. Other	NA	0,00	0,00	3,90	NO	0,00	3,90	0,00	3,9
3. Solvent and Other Product Use	1.017,73		519,56				1.537,29	0,00	1.537,2
4. Agriculture		13.087,09	20.045,68				33.132,77	0,00	33.132,7
A. Enteric Fermentation		10.281,68					10.281,68	0,00	10.281,6
B. Manure Management		1.371,64	3.665,82				5.037,46	0,00	5.037,4
C. Rice Cultivation		1.420,53					1.420,53	0,00	1.420,5
D. Agricultural Soils ⁽³⁾		0,00	16.375,69				16.375,69	0,00	16.375,6
E. Prescribed Burning of Savannas		0,00	0,00				0,00	0,00	0,0
F. Field Burning of Agricultural Residues		13,24	4,16				17,40	0,00	17,4
G. Other		0,00	0,00				0,00	0,00	0,0
5. Land Use, Land-Use Change and Forestry ⁽¹⁾	-15.749,97	484,62	144,33				-15.121,02		
A. Forest Land	-28.234,74	218,12	1,01				-28.015,60		
B. Cropland	4.372,80	1,86	20,53				4.395,20		
C. Grassland	-841,82	264,64	122,78				-454,40		
D. Wetlands	NE,NO	NO	NO				NE,NO		
E. Settlements	8.953,78	0.00	0.00				8.953,78		
F. Other Land	NO	NO	NO				NO		
G. Other	NA	NA	NA				NA		
6. Waste	163,12	13.248.15	2.029.58				15.440,85	0.00	15.440,8
A. Solid Waste Disposal on Land	0.00	10,459,63	21023,00				10,459,63	0,00	10,459,6
B. Waste-water Handling	5,00	2.733,63	2.006,63				4.740,26	0,00	4.740,2
C. Waste Incineration	163,12	48,86	22,95				234,93	0,00	234,9
D. Other	0.00	6.03	0.00				6,03	0.00	6,0
7. Other (as specified in Summary 1.A)	0.00	0.00	0,00	0,00	0,00	0,00	0,00	0,00	0.0
	,,	,,	,,	/!	,,	/	/	, ,,,,,,	
Memo Items: (4)									
International Bunkers	13.619.51	11,51	101,70				13,732,73		
Aviation Aviation	8.996,62	2,35	65,65				9.064,62		
Marine	4.622.89	9.16	36,06	$\overline{}$			4.668.11		
Multilateral Operations	4.022,89 NA	0.00	0.00				0.00		
CO ₂ Emissions from Biomass	34.789.92	0,00	0,00	$\overline{}$					
CO ₂ Emissions from Diomass	34.789,92						34.789,92		
		T - 100 F - 1	. n	d . 7 177	T LIT CI	LE.	127.002.05	164.444.30	252 510
		Total CO2 Equival	ent Emissions wi	tnout Land Use,	Land-Use Chang	e and Forestry	437.993,95	164.444,28	273.549,

For CO₂ from Land Use, Land-use Change and Forestry the net emissions/removals are to be reported. For the purposes of reporting, the signs for removals are

Brief description of the key drivers underpinning the increase or decrease in GHG emissions in t-1 (proxy) compared to t-2 (inventory). If this information is publicly available please include the hyperlink to the relevant website.

In 2013 emissions reduced with respect to 2012 (-4.8%), especially CO2 in the energy sector, as a consequence both of the economical crisis and the increase of energy production from renewable sources. The draft national energy balance shows a reduction of 3.0% of total final energy consumptions and an increase of more than 17% of renewable sources used for energy production as well as an increase of 15.8% of final energy consumption of renewable sources especially for civil uses. In the industrial processes sector a strong reduction is observed in clinker and iron and steel production (-12%) and their relevant emissions.

Emissions are only calculated using the SAR GWP coefficients and not using the 4AR GWP because the 2015 submission of the inventory would also involve methodological changes in the IPCC 2006 guidelines and not only the new conversion coefficients.

always negative (-) and for emissions positive (+).

(2) Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.

(3) Parties which previously reported CO₂ from soils in the Agriculture sector should note this in the NIR.

⁽⁴⁾ See footnote 8 to table Summary 1.A.

5.1.17 Lithuania

SUMMARY 2 SUMMARY REPORT FOR CO₂ EQUIVALENT EMISSIONS

Inventory 2013 Submission 2014 LITHUANIA

GREENHOUSE GAS SOURCE AND	CO ₂ (1)	CH ₄	N_2O	HFCs (2)	PFCs (2)	SF ₆ (2)	Total	ETS	non-ETS
SINK CATEGORIES			(CO ₂ equivalent (Gg)		l l		CO2 equiva	lent (Gg)
Total (Net Emissions) (1)	13.183,02	3.030,15	3.889,56	268,43	0,00	6,63	20.377,80		
1. Energy	10,795,50	497,17	108,99				11.401.65	4814,31	6587.3
A. Fuel Combustion (Sectoral Approach)	10.788.67	228,30	108,97				11.125.94	4814.31	6311.0
Energy Industries	3.803.71	12.42	25,86				3.841,99	3794.30	47,6
Manufacturing Industries and Construction	1.253,17	4,78	7,81				1.265,76	1020,00	245,
3. Transport	4.700,37	36,76	42,19				4.779,33	0,00	4779,3
4. Other Sectors	1.014,16	174,34	32,96				1.221,45	0.00	1221.4
5. Other	17.27	0.00	0.15				17.42	0.00	17.4
B. Fugitive Emissions from Fuels	6,82	268,87	0,02				275,71	0,00	275,7
Solid Fuels	NO	NO	NO				NO	0,00	0,0
Oil and Natural Gas	6,82	268,87	0,02				275,71	0.00	275,7
2. Industrial Processes	2.305,95	0.00	349,45	268,43	0,00	6,63	2,930,46	2649,76	280,7
A. Mineral Products	515,62	NO	NO				515,62	507,70	7,9
B. Chemical Industry	1.777,93	NO	349,45				2.127,38	2142,06	-14,6
C. Metal Production	2,40	NA	NA		NA	NA	2,40	0,00	2,4
D. Other Production	10,00						10,00	0,00	10,0
E. Production of Halocarbons and SF ₆				NO	NO	NO	NO	0,00	0,0
F. Consumption of Halocarbons and SF ₆ (2)				268.43	NO	6,63	275,06	0.00	275,0
G. Other	NO	NO	NO	NO NO	NO	NO	NO NO	0.00	0.0
3. Solvent and Other Product Use	80,32	NO	2,70	NO	NO	NO	83,02	0.00	83,0
4. Agriculture	30,32	1.684.41	3,355,61				5,040,02	0,00	5040,0
A. Enteric Fermentation		1.190,57	3,355,01	1			1.190,57	0.00	1190,5
B. Manure Management		493,85	268,74	1			762,59	0,00	762,5
C. Rice Cultivation		NO	200,74	1			NO NO	0.00	0.0
D. Agricultural Soils ⁽³⁾		NE	3.086.87				3.086.87	0.00	3086.8
E. Prescribed Burning of Savannas		NO	3.080,87 NO		_		3.060,87 NO	0.00	0,0
F. Field Burning of Agricultural Residues		NO	NO		_		NO	0.00	0,0
G. Other		NO	NO				NO	0.00	0,0
		NO	NO				NO	0,00	0,0
5. Land Use, Land-Use Change and Forestry ⁽¹⁾									
A. Forest Land									
B. Cropland									
C. Grassland									
D. Wetlands									
E. Settlements									
F. Other Land									
G. Other									
6. Waste	1,26	848,57	72,80				922,63	0,00	922,6
A. Solid Waste Disposal on Land	NA	747,40					747,40	0,00	747,4
B. Waste-water Handling		101,17	72,75				173,92	0,00	173,9
C. Waste Incineration	1,26	NA	0,05				1,31	0,00	1,3
D. Other	NA	NA	NA				NA	0,00	0,0
7. Other (as specified in Summary 1.A)	NA	NA	NA				NA	0,00	0,0
Memo Items: (4)									
International Bunkers	489,75	0.41	3,62				493.78		
Aviation Aviation	489,75	0,41	3,62 1,81				493,78 212.93		
Marine	278,66	0,38	1,81				280,85		
Multilateral Operations	NO	NO	NO				NO		
CO2 Emissions from Biomass	4.751,55						4.751,55		
		Total	al CO. Emiyalant	Emissions without Lar	nd Use I and Use Ch	ange and Forestry	20.377.80	7464,07	12913.
					nd Use, Land-Use Ch		20.577,00	/404,0/	12/13,

Total CO₂ Equivalent Emissions without Land Use, Land-Use Change and Forestry 20.377,80 7164,07 12913,73

Total CO₂ Equivalent Emissions with Cand Use, Land-Use Change and Forestry 717 7164,07 12913,73

Total CO₂ Equivalent Emissions with Land Use, Land-Use Change and Forestry 718

Total CO₂ Equivalent Emissions with Land Use, Land-Use Change and Forestry 718

Total CO₂ Equivalent Emissions with Land Use, Land-Use Change and Forestry 718

Total CO₂ Equivalent Emissions with Land Use, Land-Use Change and Forestry 718

Total CO₂ Equivalent Emissions with Land Use, Land-Use Change and Forestry 718

Total CO₂ Equivalent Emissions with Land Use, Land-Use Change and Forestry 718

Total CO₂ Equivalent Emissions with Land Use, Land-Use Change and Forestry 718

Total CO₂ Equivalent Emissions with Land Use, Land-Use Change and Forestry 718

Total CO₂ Equivalent Emissions With Land-Use, Land-Use Change and Forestry 718

Total CO₂ Equivalent Emissions Visual Use, Land-Use Change and Forestry 718

Total CO₂ Equivalent Emissions Visual Use, Land-Use Change and Forestry 718

Total CO₂ Equivalent Emissions Visual Use, Land-Use Change and Forestry 718

Total CO₂ Equivalent Emissions Visual Use, Land-Use Change and Forestry 718

Total CO₂ Equivalent Emissions Visual Use, Land-Use Change and Forestry 718

Total CO₂ Equivalent Emissions Visual Use, Land-Use Change and Forestry 718

Total CO₂ Equivalent Emissions Visual Use, Land-Use Change and Forestry 718

Total CO₂ Equivalent Emissions Visual Use, Land-Use Change and Forestry 718

Total CO₂ Equivalent Emissions Visual Use, Land-Use Change and Forestry 718

Total CO₂ Equivalent Emissions Visual Use, Land-Use Change and Forestry 718

Total CO₂ Equivalent Emissions Visual Use, Land-Use Change and Forestry 718

Total CO₂ Equivalent Emissions Visual Use, Land-Use Change and Forestry 718

Total CO₂ Equivalent Emissions Visual Use, Land-Use Change and Forestry 718

Total CO₂ Equivalent Emissions Visual Use, Land-Use Change and Forestry

	e increase or decrease in GHG emissions in t-1 (proxy) compared to t-2 (inventory). If this information is publicly
available please include the hyperlink to the relevar	
1.A.1. Energy Industries	Emissions decreased due to significant decrease in residual fuel oil and natural gas consumption.
1.A.2. Manufacturing Industries and Construction	Emissions decreased due to decrease in residual fuel oil and natural gas consumption.
1.A.3. Transport	Emissions increased due to increased use of diesel oil in road transport.
1.A.4. Other Sectors	Emissions decreased due to decrease in natural gas and Sub-bituminous coal consumption.
1.A.5. Other	Emissions increased due to increased use of jet kerosene in military aviation.
1.B.2 Fugitive Emissions from Oil and Natural Gas	Emissions increased due to increase in natural gas transportation pipelines length.
2.B. Chemical Industry	Emissions decreased due to decrease in amonia and nitric acid production.
2.F. Consumption of halocarbons and SF6	Emissions increased due to increase of F-gases use.
Agriculture	Overall emissions from Enteric Fermentation had a very slight increase in t-1 comparing with t-2 due to increase of
	some of the livestock population (non-dairy cattle, sheep, goats). CH4 emissions from Manure Management
	decreased as population of swine dropped by 6,5%. N2O emissions from manure management had a slight rise du
	to increase of some of the livestock population. The main drivers in slight decrease of N2O emissions from
	Agricultural soils were decrease of crops harvested and decrease in population of dairy cows and horses.
Solid waste disposal on land	Emissions decreased due to lower values of acitivy data.

5.1.18 Luxembourg

SUMMARY 2 SUMMARY REPORT FOR CO ₂ EQ Sheet 1 of 1)							Inventory 2013 ssion 2014 v1.4			
J. 101 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							LUXEMBOURG			
AR2										
REENHOUSE GAS SOURCE AND	CO ₂ (1)	CH ₄	N ₂ O	HFCs (2)	PFCs (2)	SF ₆ (2)	Total	ETS	non-ETS	ESD
INK CATEGORIES				O₂ equivalent (Gg				со	2 equivalent (Gg)
otal (Net Emissions) (1)	NE	423,52	NE	78,22	IE	IE	NE			
otal excl. LULUCF	10.215,77	423,52	475,55	78,22	IE	IE	11.193,05			
. Energy	9.699,62	51,43	109,16				9.860,21	1336,33	8523,88	8523
A. Fuel Combustion (Sectoral Approach)	9.699,57	17,45	109,16				9.826,17	1336,33	8489,84	848
Energy Industries	614,72	1,31	2,47				618,50	464,49	154,00	15
Manufacturing Industries and Construction	1.174,10	1,93	19,75				1.195,78	871,84 NA	323,95 6390.61	639
Transport Other Sectors	6.307,22 1.603,53	5,75 8,46	77,64 9,30				6.390,61 1.621,29	NA NA	1621.29	162:
5. Other	1.003,53 NO	NO	9,30 NO				1.621,29 NO	NA NO	1621,29 NO	162.
B. Fugitive Emissions from Fuels	0,05	33,98	NA,NO				34,04	NA NA	34,04	34
Solid Fuels	NO	NO NO	NA,NO NO				NO	NO	NO	34
2. Oil and Natural Gas	0,05	33,98	NA,NO				34,04	NA NA	34,04	34
. Industrial Processes	506,04	NA,NO	NA,NO	78,22	IE	IE	584,25	510,79	73,47	75
A. Mineral Products	410,39	NO.	NO.	, 0,22	10		410,39	409,19	1,20	
B. Chemical Industry	NO NO	NO	NO	NA	NA	NA	NA,NO	NO	NA,NO	NA
C. Metal Production	95,64	NA,NO	NA	NA	NA,NO	NA,NO	95,64	101,59	-5,95	-5
D. Other Production	NO						NO	NO	NO	
E. Production of Halocarbons and SF ₆				NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA
F. Consumption of Halocarbons and SF ₆ (2)				78,22	IE	IE	78,22	NA	78,22	78
G. Other	NA	NA	NA	NA	NA	NA	NA	NA	NA	
. Solvent and Other Product Use	10,11		4,22				14,34	NA	14,34	14
. Agriculture		335,56	347,34				682,91	NA	682,91	682
A. Enteric Fermentation		245,36					245,36	NA	245,36	245
B. Manure Management		90,20	32,82				123,02	NA	123,02	123
C. Rice Cultivation		NA,NO					NA,NO	NO	NA,NO	NA,
D. Agricultural Soils ⁽³⁾		NA,NE	314,53				314,53	NA	314,53	314
E. Prescribed Burning of Savannas		NA	NA				NA	NA	NA	
F. Field Burning of Agricultural Residues		NO	NO				NO	NO	NO	
G. Other		NA	NA				NA	NA	NA	
. Land Use, Land-Use Change and Forestry ⁽¹⁾	NE	NE,NO	NE				NE			
A. Forest Land	NE NE	NO NO	NO				NE NE			
B. Cropland C. Grassland	NE NE	NO NO	NE NO				NE NE			
D. Wetlands	NE NE	NO	NO				NE NE			
E. Settlements	NE NE	NE NE	NE NE				NE NE			
F. Other Land	NE NE	NO	NO				NE			
G. Other	NE	NE	NE				NE			
. Waste	IE,NA,NO	36,52	14,82				51,34	NA	51,34	51
A. Solid Waste Disposal on Land	NA,NO	26,55	,-				26,55	NA	26,55	26
B. Waste-water Handling		3,01	7,59				10,61	NA	10,61	10
C. Waste Incineration	IE	IE	IE				IE	IE	IE	
D. Other	NO	6,96	7,23				14,19	NA	14,19	14
. Other (as specified in Summary 1.A)	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Nemo Items: ⁽⁴⁾										
nternational Bunkers	NE	NE	NE				NE			
viation	NE	NE	NE				NE			
Marine	NE	NE	NE				NE			
Aultilateral Operations	NO	NO	NO				NO			
O ₂ Emissions from Biomass	NE						NE			
		Total CO₂ Equi	valent Emissions	without Land Use	e, Land-Use Char	nge and Forestry	11.193,05	1847,12	9345,93	934

always negative (-) and for emissions positive (+).

(2) Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.

(3) Parties which previously reported CO₂ from soils in the Agriculture sector should note this in the NIR.

Luxembourg submitted proxy data on 14 August 2014. As this submission was after the deadline of 31 July 2014, proxy data of Luxembourg is presented here for transparency reasons, but was not taken into account in any calculations.

5.1.19 Latvia

SUMMARY 2 SUMMARY REPORT FOR CO₂ EQUIVALENT EMISSIONS

Inventory year: 2013 Submission: 2014 v.1 Country: Latvia

GREENHOUSE GAS SOURCE AND	CO ₂ (1)	CH ₄	N ₂ O	HFCs (2)	PFCs (2)	SF ₆ (2)	Total	ETS	non-ETS
SINK CATEGORIES			(CO ₂ equivalent (Gg)				CO2 equiv	alent (Gg)
Total (Net Emissions) (1)	7.310,89	1.659,14	1.871,47	89,68	NO	13,69	10.944,87		
I. Energy	6.689,67	281,56	130,78				7.102,01	2.049,32	5.052,
A. Fuel Combustion (Sectoral Approach)	6.689,67	221,77	130,78				7.042,21	2049,32	4992,
Energy Industries	2.006,79	8,27	16,13				2.031,19	1604,81	426.
2. Manufacturing Industries and Construction	719,58	10,32	19,52				749,42	387,28	362.
3. Transport	2.767,57	4,17	52,09				2.823,83	NA	2823
Other Sectors	1.195,72	199,00	43,03				1.437,76	57,23	1380
5. Other	IE	IE	IE				IE	IE	
B. Fugitive Emissions from Fuels	0,00	59,79	NA, NO				59,80	NA	59
Solid Fuels	NO	NO	NO				NO	NA	
Oil and Natural Gas	0,00	59,79	NA, NO		110		59,80	NA	59
2. Industrial Processes	575,60	0,00	IE,NA,NE,NO	89,68	NO	13,69	678,97	575,61	103
A. Mineral Products	573,73	IE,NA,NE,NO NO	IE,NA,NE,NO				573,73	573,73	
B. Chemical Industry C. Metal Production	NO 1.87	0.00	NO NO	NO	NO	NO	NO 1.88	NO 1.88	
C. Metal Production D. Other Production	1,87 NA	0,00	NO	NO	NO	NO	1,88 NA	1,88 NA	
E. Production of Halocarbons and SF ₆	NA			NO	NO	NO	NO NO	NO NO	
F. Consumption of Halocarbons and SF _c (2)				89.68	NO	13.69	103.37	NO	103
G. Other	NO	NO	NO	89,08 NO	NO	13,69 NO	103,37 NO	NO	
	45.21	NO	0,005	NO	NO	NO	45,22	NE. NO	45
S. Solvent and Other Product Use	45,21	818,65	1,691,00				45,22 2,509,65	NE, NO NO	2,509
A. Enteric Fermentation		718.00	1.691,00				718.00	NO	718
B. Manure Management		101.00	127.00				228.00	NO	228
C. Rice Cultivation		NO	127,00				228,00 NO	NO	220
D. Agricultural Soils ⁽³⁾		NA NA	1.564.00				1.564,00	NO	1564
E. Prescribed Burning of Savannas		NA NA	NA				NA	NA NA	1504
F. Field Burning of Agricultural Residues		NO	NO				NO	NO	
G. Other		NO	NO				NO	NO	
Land Use, Land-Use Change and Forestry ⁽¹⁾	NE	NE	NE				NE	7.0	
A. Forest Land	NE.	NE	NE.				NE		
B. Cropland	NE NE	NE NE	NE NE				NE NE		
C. Grassland	NE NE	NE	NE NE				NE NE		
D. Wetlands	NE NE	NE	NE.				NE NE		
E. Settlements	NE NE	NE	NE.				NE NE		
F. Other Land	NE NE	NE	NE.				NE NE		
G. Other	NE NE	NE	NE NE				NE NE		
. Waste	0,41	558,93	49,69				609,02	NA	609
A. Solid Waste Disposal on Land	0,41 NA	461.41	77,07				461.41	NA NA	461
B. Waste-water Handling	IVA	96.31	48.34				144.64	NA NA	144
C. Waste Incineration	0.41	NE	0.02				0.42	NA	0
D. Other	NA NA	1,21	1,34				2,54	NA	2
7. Other (as specified in Summary I.A)	NO	NO	NO	NO	NO	NO	NO	NO	N
Memo Items: (4)									
International Bunkers	1.137,52	1,06	39,63				1.178,21		
Aviation	375,99	0,07	3,89				379,95		
Marine	761,53	0,98	35,74				798,25		
Multilateral Operations	NO	NO	NO				NO		
CO ₂ Emissions from Biomass	6.012,39						6.012,39		
	,						, , ,		
		To	tal CO ₂ Equivalent	Emissions without La	nd Use. Land-Use C	nange and Forestry	10.944,87	2624.93	8319
		- 10			nd Use, Land-Use Cl		10.544,87 NE	2024,73	0.51;

Total CO₂ Equivalent Emissions with Land Use, Land-Use Change and Forestry NE

"For CO₃ from Land Use, Land-use Change and Forestry the net emissions/removals are to be reported. For the purposes of reporting, the signs for removals are always negative (-) and for emissions positive (+).

(a) Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.

(b) Parties which previously reported CO₂ from soils in the Agriculture sector should note this in the NIR.

(c) See footnote 8 to table Summary 1.A.

Brief description of the key drivers underpinning the increase or decrease in GHG emissions in t-1 (proxy) compared to t-2 (inventory). If this information is publicly available please include the hyperlink to the relevant website.

Energy. As activity data for approximated emission estimations the Preliminary energy balance (Central Statistical Bureau of Latvia (CSB) after request) was used as well as Annual ETS GHG emission report(www.vvd.gov.lv/filedownload/tabula=Document&id=13852&filename=Emisijuzinojums_CEMEX_2013,pdf). GHG emissions in corresponding Energy sectors - 1A1, 1A2, 1A4, 1A5 - in 2013 are 3.43% less than in 2012. That can be explained with less use of residual fuel oil, coal, coke as well as natural gas. However, CO2 emissions from biomass have increased by 2.95% generally due to increased use of wood. In the 2013 approximate inventory, all emissions from autoproducers have been included in 1A1 sector due to unavailability to disaggregate data, however, on the 2015 submission these will be allocated to corresponding sectors. Calculated proxy GHG emissions for Transport sector constituted 2823 Gg in 2013. Emission calculation had performed using the preliminary information about fuel consumption in transport sector in 2013. The first calculations indicated that GHG emissions in transport sector have increased by approximately 1% point in 2013 compare with year 2012. In different subsectors various changes have taken place in 2013. The main driver for emission changes was emission increasing in road transport by 1.7% points. At the same time GHG emissions in railway has decreased by approximately 10% points. The mentioned subsectors are the main impacted the total emissions in transport. The main feature for road transport in 2013 was gasoline consumption decreasing by approximately 9% points and liquid petrol gas (LPG) consumption increasing by approximately 27% points.

Industrial processes. For approximated emission estimations the Annual ETS GHG report

(www.vvd.gov.lv/filedownload?tabula=Document&id=13852&filename=Emisijuzinojums_CEMEX_2013.pdf) as well as available updated national statistics from CSB were used as activity data. Emissions from IP sector in 2013 are decreased about aproximate 1% mainly due to fact that there are overall small decreases in each subsector in Mineral products industry. As activity data for Mineral products are taken from enterprices annual Greenhouse gas inventory report that are reported for ETS, here are noted trend to be decrease of used raw materials for all indutry. In aproximate inventory there are used last year data for subsector 2.C.1 Iron& steel production due to enterprice hasn't yet gathered information we use to ask seperately for annual NIR preparation.

F gases were estimated using available activity data from updated national statistics from CSB: 1)number of inhabitants in Latvia

(http://data.csb.gov.lv/Table.aspx?layout=tableViewLayout1&px_tableid=IS0020.px&px_path=Sociala_lkgad%C4%93jie%20statistikas%20dati_ledz%C4%ABvot%C4%81jledz%C4%ABvot%C4%81ji%20skaits%20un%20t%C4%81%20izmai%C5%86as&px_language=lv&px_db=Sociala&rxid=992a0682-2c7d-4148-b242-7b48ff9fe0c2), 2)

amount of households
(http://data.csb.gov.lv/Table.aspx?layout=tableViewLayout1&px_tableid=lS0210.px&px_path=Sociala_lkgad%C4%93jie%20statistikas%20dati_ledz%C4%ABvot%C4%81j_ledz%C4%ABvot%C4%81ji%20skaits%20un%20t%C4%81%20izmai%C5%86as&px_language=lv&px_db=Sociala&rxid=992a0682-2c7d-4148-b242-7b48ff9fe0c2)

3)

(http://data.csb.gov.lv/Table.aspx?layout=tableViewLayout1&px_tableid=TR0120.px&px_path=transp__lkgad%C4%93jie%20statistikas%20dati__Transports&px_languag &px_db=transp&rxid=cdcb978c-22b0-416a-aacc-aa650d3e2ce0) Totally emissions from F gases have increased by a little more than 6.00 CO2 equivalents (Gg) (6.7%) comparing to the 2012 due to increased number of households and increased number of registered road vehicles (rises HFC emissions in 2.F.1 Refrigeration and air conditioning equipment) as well as increased amount of imported shoes (rise HFC emissions in 2.F.9.0 ther by 22%).

conditioning equipment) as well as increased amount of imported shoes (rise HFC emissions in 2.F.9. Other by 22%).

Solvent and other product use. No activity data per 2013 from Register of Chemical Substances and Chemical Mixtures were available regarding this sector during the preparation of approximate emission estimates. Therefore the emissions in 2013 were extrapolated taking into account emission rates from previous 3 years (average). Emissions in 2013 decreased by almost 7% comparing with 2012.

Agriculture. Activity data for emission estimations were taken from CSB databases on Agriculture

(http://data.csb.gov.lv/Menu.aspx?selection=lauks__lkgad%C4%93jie%20statistikas%20dati__01Lauks__visp&tablelist=true&px_language=lv&px__db=lauks&rxid=cdcb978c-22b0-416a-aacc-aa650d3e2ce0 - public available information is provided in table below). The main reason of increasing trends of methane emissions from enteric fermentation and manure management is increasing animal number trends (attached table) of all livestock categories except goats and horses. Also milk yield is estimated to be 4.7% higher comparing with previous year. However in average harvest of crops was lower than in 2012, there are possible to observe rapid growth of synthetics N fertilizers use in Latvia. This is the main reason of increasing nitrous oxide emissions.

]	Main differences in activit	y data		
			2013 versus 2012,	2013 versus
	2012	2013	units	2012, %
Dairy Cattle (ths. animals)	164.6	165.0	0.40	0.2%
Non-dairy Cattle	228.5	241.5	13.00	5.4%
Sheep	83.6	84.8	1.20	1.4%
Goats	13.3	12.6	-0.70	-5.6%
Horses	10.9	10.7	-0.20	-1.9%
Swine	355.2	367.5	12.30	3.3%
Poultry	4910.9	4985.8	74.90	1.5%
Milk yield (kg per cow per year)	5 250.00	5 508.00	258.00	4.7%
Wheat (ths.t)	1539.8	1435.0	-104.80	-7.3%
Barley	248.6	232.6	-16.00	-6.9%
Triticale	48.8	36.6	-12.20	-33.3%
Maize for silage and forage**	553.7	610.6	56.90	9.3%
Oats	137	134.2	-2.80	-2.1%
Rye	124.2	75.6	-48.60	-64.3%
Crops for green feed and silage**	167.7	98.2	-69.50	-70.8%
Rape	303.5	296.6	-6.90	-2.3%
Mixed cereals and pulses	18.1	23.9	5.80	24.3%
Buckwheat*	8	10.8	2.80	25.9%
Potatoes	538.9	495.9	-43.00	-8.7%
Feedbeet	17.4	8	-9.40	-117.5%
Vegetable	161.4	140.4	-21.00	-15.0%
Peas and beans	11.1	16.9	5.80	34.3%
Synthetic fertilizers (kg N per year)	65200000	69700000	4 500 000	6.5%

Waste. For approximated emission estimations activity data from database "Waste-3" was used

(https://www.meteo.lv/autorizacija/?josso_back_to=http://parissrv.lvgmc.lv/signon#viewType=home_view). Emissions increase by 2.9% compared to 2012 in SWD sector due to increase of disposed amounts of solid wastes. According to First order decay method - methane emitting for long time period after landfill was closed. Emissions from composting decreases by 18.5% compared to 2012 due to decrease of composted waste amounts. Composting from households are not included in calculations due to lack of data. Emissions from waste incineration increases by 30% due to increase of incinerated amount of hospital wastes compared to year 2012. Emissions from waste water subsector have decreased by 2% comparing with 2012 due to decrease of population number. Regarding CH4 from industrial wastewaters there were no activity data per year 2013, therefore the number of 2012 was reported.

5.1.20 Malta

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS

GREENHOUSE GAS SOURCE AND	CO ₂ (1)	CH ₄	N ₂ O	HFCs (2)	PFCs (2)	SF ₆ (2)	Total	ETS	non-ETS
INK CATEGORIES	-		C	O ₂ equivalent (Gg)				CO2 equiva	lent (Gg)
Total (Net Emissions) (1)	2,356,06	89.15	52,16	201,06	0.00	0.47	2,698,90		
. Energy	2,362,48	1,93	5,68				2,370,09	1,697,37	672
A. Fuel Combustion (Sectoral Approach)	2.362.48	1.93	5,68				2,370,09	1,697,37	672
Energy Industries	1.697.37	1,62	3,86				1.702.85	1.697,37	5
Manufacturing Industries and Construction	IE	IE	IE				0,00	0,00	
3. Transport	IE IE	IE	IE				0.00	0.00	0
4. Other Sectors	IE IE	IE	IE				0.00	0.00	(
5. Other	665,11	0.31	1.81				667,24	0.00	667
B. Fugitive Emissions from Fuels	0,00	0,00	0,00				0,00	0.00	007
Solid Fuels	NO NO	NO	NO				0,00	0,00	
Oil and Natural Gas	NO	NO	NO				0.00	0.00	
. Industrial Processes	0,24	0,00	0,00	201.06	0.00	0.47	201,77	0,00	201
A. Mineral Products	0,24	0,00 NO	NO	201,06	0,00	0,47	0.22	0,00	201
B. Chemical Industry	0,22	NA.NO	NO				0,22	0,00	0
C. Metal Production	NA.NO	NA,NO NA.NO	NA NA		NA,NO	NA.NO	0,03	0,00	
C. Metal Production D. Other Production	NA,NO NA	NA,NO	NA		NA,NO	NA,NO	0,00	0,00	
E. Production of Halocarbons and SF ₆	NA			NO	NO	NO	0,00	0,00	0
								- ,	
F. Consumption of Halocarbons and SF ₆ (2)				201,06	0,00	0,47	201,53	0,00	201
G. Other	NO	NO	NO	NO	NO	NO	0,00	0,00	0
. Solvent and Other Product Use	3,32		1,19				4,51	0,00	4
. Agriculture		51,38	31,20				82,58	0,00	82
A. Enteric Fermentation		28,85					28,85	0,00	28
B. Manure Management		22,53	5,86				28,39	0,00	28
C. Rice Cultivation		NO					0,00	0,00	0
D. Agricultural Soils ⁽³⁾		NO	25,34				25,34	0,00	25
E. Prescribed Burning of Savannas		NO	NO				0	0.00	0
F. Field Burning of Agricultural Residues		NO	NO				0.00	0.00	0
G. Other		NO	NO				0	0.00	0
. Land Use, Land-Use Change and Forestry ⁽¹⁾	-7,22	NE, NO	NE,NO				-7,22	0,00	
A. Forest Land	-5.21	NE, NO	NE.NO				-5,21		
B. Cropland	-2,01	NE, NO	NE,NO				-2,01		
C. Grassland	NE,NO	NO	NO				0,00		
D. Wetlands	NO	NO	NO				0,00		
E. Settlements	NE,NO	NO	NO				0,00		
F. Other Land	NO	NO	NO				0,00		
G. Other	NO	NO	NO				0,00		
. Waste	0,56	35,83	14,10				50,49	0,00	50
A. Solid Waste Disposal on Land	N/A	35,83	-				35,83	0,00	35
B. Waste-water Handling		0,00	13,91				13,91	0,00	13
C. Waste Incineration	0,56	0,00	0,19				0,75	0,00	0
D. Other	NO	NO	NO				0,00	0,00	0
. Other (as specified in Summary 1.A)							0,00	0,00	0
Iemo Items: (4)									
nternational Bunkers	4.296,39	3,54	10,46				4.310,39		
Aviation	IE	IE	IE				0.00		
Marine	IE	IE	IE				0,00		
Aultilateral Operations	NE NE	NE NE	NE.				0,00		
CO, Emissions from Biomass		NE	NE						
CO ₂ Emissions (FOIII BIOMASS	NE						0,00		
			- 1	missions without Lan			2.706,12	1697,37	1008
		1	otal CO2 Equivaler	nt Emissions with Lan	d Use, Land-Use Cha	ange and Forestry	2.698,90		

Brief description of the key drivers underpinning the increase or decrease in GHG emissions in t-1 (proxy) compared to t-2 (inventory). If this information is publicly available please include the hyperlink to the relevant website. 1A1 Energy industries - the entry in operation of efficient power generation (200MW plant in Deimara power station) in late 2012 lead to a significant reduction in fuel consumptin and relative emissions (-20%) in the sector in 2013.

⁽²⁾ Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.
(5) Parties which previously reported CO₂ from soils in the Agriculture sector should note this in the NIR.

⁽⁴⁾ See footnote 8 to table Summary 1.A.

2013

5.1.21 Netherlands

SUMMARY 2 SUMMARY REPORT FOR CO₂ EQUIVALENT EMISSIONS

(Sheet 1 of 1)					1	Provisional	Submission		
							Country	NLD	
GREENHOUSE GAS SOURCE AND	CO ₂ (1)	CH ₄	N ₂ O	HFCs (2)	PFCs (2)	SF ₆ (2)	Total	ETS	non-ETS
SINK CATEGORIES			-	CO ₂ equivalent (Gg)				CO2 equiv	valent (Gg)
Total (Net Emissions) (1)	169.557,61	15.162,75	7.734,25	2.367,44	192,83	187,03	195.201,91		
1. Energy	159.294,78	2.333,44	627,26				162.255,48		
A. Fuel Combustion (Sectoral Approach)	157.876,51	1.531,40	627,26				160.035,17		
Energy Industries	59.532,17	86,70	270,06				59.888,93		
Manufacturing Industries and Construction	25.101,83	54,26	30,83				25.186,93		
3. Transport	32.633,25	47,58	268,90				32.949,73		
Other Sectors	40.268,62	1.342,18	51,37				41.662,17		
5. Other	340,64	0,69	6,09				347,41		
B. Fugitive Emissions from Fuels 1. Solid Fuels	1.418,27 360,41	802,04 20.64	IE,NA,NO NA,NO				2.220,32 381.05		
Oil and Natural Gas							1.839,26		
2. Oil and Natural Gas 2. Industrial Processes	1.057,86 6.978.05	781,40 242.43	IE,NA,NO 1,272,20	2 267 44	192.83	107.03	11.239,26		
A. Mineral Processes	1.881,17	242,43 NO	1.272,20 NO	2.367,44	192,83	187,03	11.239,98		-
B. Chemical Industry	3.553,19	242,43	1.272,20				5.067,82		
C. Metal Production	1.244,32	IE,NA,NO	NO		44.30	NO	1.288,62		
D. Other Production	28.74	IL,MA,NO	NO		44,30	NO	28.74		
E. Production of Halocarbons and SF ₆	20,74			220.71	NA.NO	NO	220.71		
F. Consumption of Halocarbons and SF ₆ (2)				2.146,73	148,53	187.03	2.482,29		
G. Other	270.63	35.33	9.84	NA.NO	NA.NO	NO	315.80		
3. Solvent and Other Product Use	119,71	33,33	0,28	MA,NO	NA,NO	110	119,99		
4. Agriculture	119,/1	9.534,42	5,572,02				15.106,44		
A. Enteric Fermentation		6.839.27	5.572,02				6.839.27		
B. Manure Management		2.695,15	434,96				3.130,11		
C. Rice Cultivation		NO	,,,,				0,00		
D. Agricultural Soils ⁽³⁾		NA	5.137,06				5.137,06		
E. Prescribed Burning of Savannas		NO	NO				0		
F. Field Burning of Agricultural Residues		NO	NO				0.00		
G. Other		NA	NA				0		
5. Land Use, Land-Use Change and Forestry ⁽¹⁾	3.165,07	7,92	89,06				3,262,06		
A. Forest Land	-2.881,76	0,76	0.08				-2.880.92		
B. Cropland	1.191,47	IE,NO	78,14				1.269,61		
C. Grassland	3.802.87	7,16	10.85				3.820.88		
D. Wetlands	48.16	IE,NO	IE.NO				48.16		
E. Settlements	815,42	NE,NO	NE,NO				815,42		
F. Other Land	115.58	NE,NO	NE.NO				115.58		
G. Other	73,32	IE,NE,NO	IE,NE,NO				73,32		
6. Waste	IE.NA.NO	3.044.53	173,43				3.217,96		
A. Solid Waste Disposal on Land	NA,NO	2.835,24	175,45				2.835.24		
B. Waste-water Handling	101,110	134,74	72,06				206,80		
C. Waste Incineration	IE	IE	0.00				0.00		
D. Other	NA	74,55	101.37				175,92		
7. Other (as specified in Summary I.A)	NA	NA	NA	NA	NA	NA	NA		
Memo Items: (4)									
International Bunkers	50.557,36	29,71	123,92				50.711,00		
Aviation	10.346,29	10,33	26,91				10.383,53		
Marine	40.211,08	19,38	97,01				40.327,46		
Multilateral Operations	IE	IE	IE				IE		
CO ₂ Emissions from Biomass	12.939,25						12.939,25		

(2) Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.
(5) Parties which previously reported CO₂ from soils in the Agriculture sector should note this in the NIR.

Brief description of the key drivers underpinning the increase or decrease in GHG emissions in t-1 (proxy) compared to t-2 (inventory). If this information is publicly available please include the hyperlink to the relevant website. less fuel sold
CO2 increase due to cold early 2013 (increase in natural gas consumption)
CH4 decrease due to less natural gass use in CHP in horticulture
Increased process emission from hydrogen plant at refinery
Increased animal numbers (Cattle)
Increased animal numbers (Cattle)
Continuation of steady decrease over the years 1B2 Oil and gas 3A enteric fermentation 3B manure management 5A solide waste disposal TS figures according to extended scope of third trading period

⁽⁴⁾ See footnote 8 to table Summary 1.A.

5.1.22 Poland

SUMMARY 2 SUMMARY REPORT FOR CO_2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2013 Submission 2014 v.0 Proxy POLAND

GREENHOUSE GAS SOURCE AND	CO ₂ ⁽¹⁾	CH ₄	N ₂ O	HFCs (2)	PFCs (2)	SF ₆ (2)	Total	ETS	non-ETS
SINK CATEGORIES		•	C	O ₂ equivalent (Gg)				CO2 equiv	valent (Gg)
Total (Net Emissions) (1)	282.734,15	42.784,36	30.843,82	7.700,22	19,48	42,06	364.124,09		
. Energy	299.013,49	15.395,26	2.070,56				316.479,31		
A. Fuel Combustion (Sectoral Approach)	295.149,80	3.097,11	2.070,31				300.317,23		
Energy Industries	167.733,45	106,17	851,18				168.690,79		
Manufacturing Industries and Construction	30.485,21	93,95	170,98				30.750,15		
3. Transport	44.443,94	100,56	557,92				45.102,42		
4. Other Sectors	52.487,20	2.796,43	490,23				55.773,86		
5. Other	IE, NO	IE, NO	IE, NO				IE, NO		
B. Fugitive Emissions from Fuels	3.863,69	12.298,15	0,24				16.162,08		
1. Solid Fuels	1.869,57	7.553,35	NA				9.422,92		
2. Oil and Natural Gas	1.994,12	4.744,80	0,24	7 700 22	10.10	42.06	6.739,16		
. Industrial Processes	17.478,64 9.714.93	280,90 NA	1.153,96	7.700,22	19,48	42,06	26.675,26 9.714.93		├
A. Mineral Products B. Chemical Industry	9.714,93 4.249.81	255,88	NA 1.153,96	NA,NO	NA,NO	NA.NO	9.714,93 5.659,65		
C. Metal Production	2.372,11	25,02	1.153,96 NA, NO	NA,NO NA,NO	7.31	4.35	2.408,78		\vdash
D. Other Production	9.37	23,02	NA, NO	IVA,NO	7,31	+,33	9,37		
E. Production of Halocarbons and SF ₆	7,31			NA,NO	NA,NO	NA,NO	0,00		
F. Consumption of Halocarbons and SF ₆ (2)				7.700,22	12,17	37,72	7.750,11		
G. Other	1.132,41	NO	NO	NA,NO	NA,NO	NO NO	1.132,41		
Solvent and Other Product Use	635,67	NO	124.00	NA,NO	MA,NO	NO	759,67		
. Agriculture	033,07	11,000,30	25,825,64				36.825,94		
A. Enteric Fermentation		8.625,67	201020104				8.625,67		
B. Manure Management		2.356.11	4,696,52				7.052.63		
C. Rice Cultivation		NA,NO	, .,,				NA		
D. Agricultural Soils ⁽³⁾		NA	21.118,12				21.118,12		
E. Prescribed Burning of Savannas		NA	NA				NA		
F. Field Burning of Agricultural Residues		18,52	11,01				29,53		
G. Other		NA	NA				NA		
. Land Use, Land-Use Change and Forestry ⁽¹⁾	-34.672,39	2.272,42	545,33				-31.854,64		
A. Forest Land	-39.573,27	31,31	330,07				-39.211,89		
B. Cropland	1.307,56	NO	209,09				1.516,65		
C. Grassland	377,82	1,37	0,31				379,51		
D. Wetlands	3.102,17	2.239,73	5,86				5.347,76		
E. Settlements	113,34	NA,NO	NA,NO				113,34		
F. Other Land	NA,NO	NA,NO	NA,NO				NA,NO		
G. Other	NA	NA	NA				NA		
. Waste	278,74	13.835,48	1.124,33				15.238,55		
A. Solid Waste Disposal on Land	NA,NO	8560,37					8.560,37		
B. Waste-water Handling		5275,12	1.108,31				6.383,42		
C. Waste Incineration	278,74	NA	16,02				294,76		
D. Other							0,00		
. Other (as specified in Summary I.A)									
Memo Items: (4)									
nternational Bunkers	2.174,82	1,06	20,71				2.196,59		
Aviation	1.759,21	0,25	17,31				1.776,77		
Marine	415,61	0,81	3,40				419,81		
Aultilateral Operations									
CO ₂ Emissions from Biomass	35.066,24								
		Total	CO ₂ Equivalent En	nissions without Lan-	d Use, Land-Use Ch	ange and Forestry	395.978,72		
		To	stal CO. Equivalent	Emissions with Lan	d Use, Land-Use Ch	ange and Forestry	364.124.09		

For CO₂ from Land Use, Land-use Change and Forestry the net emissions/removals are to be reported. For the purposes of reporting, the signs for removals are always negative (-)

Brief description of the key drivers underpinning the increase or decrease in GHG emissions in t-1 (proxy) compared to t-2 (inventory). If this information is publicly available please include the hyperlink to the relevant website.

Energy:
The main reason of decrease of GHG emission from fuel combustion in stationary sources is drop in coal consumption by above 2%
Transport:
Slight decrease in emissions triggered by drop in fuels use: diesel oil by 2.5% and gasoline by 3.5%
Industrial processes:
Decrease of GHG emission is mainly the result of drop in production amounts of clinker (about 6%) and lime (about 7%)
Agriculture:

Agriculture:

Main changes in emissions relate to the slight decrease in population of dairy callle by about 5% and sheep by 6% At the same time increase in nitrogen mineral fertilisers use was observed by more than 9%

nts, Waste and LULUCF data are those Submitted for 2012 (May 2014)

and for emissions positive (+).

(2) Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.

(3) Parties which previously reported CO₂ from soils in the Agriculture sector should note this in the NIR.

⁽⁴⁾ See footnote 8 to table Summary 1.A.

5.1.23 Portugal

Portugal did not submit proxy data by 31 July 2014.

5.1.24 Romania

Romania did not submit proxy data by 31 July 2014.

5.1.25 Sweden

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory year 2.013 Submission 2015 prel country Sweden

GREENHOUSE GAS SOURCE AND	CO ₂ (I)	CH ₄	N ₂ O	HFCs (2)	PFCs (2)	SF ₆ (2)	Total	ETS	non-ETS
SINK CATEGORIES				CO, equivalent (Gg)		l	CO2 equiv	alent (Gø)
Total (Net Emissions) (1)				1	ĺ			0.02.04	mem (og)
I. Energy							40.898,97		
A. Fuel Combustion (Sectoral Approach)							40.898,97		
Puer Combustion (Sectoral Approach) Energy Industries							9.773,05		
Manufacturing Industries and Construction							6.756,12		
Transport							17.395,16		
4. Other Sectors							1.432,77		
5. Other							4.441,76		
B. Fugitive Emissions from Fuels							1.100,11		
Solid Fuels									
Oil and Natural Gas									
2. Industrial Processes							5.738,57		
A. Mineral Products									
B. Chemical Industry									
C. Metal Production									
D. Other Production									
E. Production of Halocarbons and SF ₆									
F. Consumption of Halocarbons and SF ₆ ⁽²⁾									l
G. Other									l
3. Solvent and Other Product Use									1
4. Agriculture							7.555,17		
A. Enteric Fermentation									
B. Manure Management									.
C. Rice Cultivation									——
D. Agricultural Soils ⁽³⁾									├
E. Prescribed Burning of Savannas									
F. Field Burning of Agricultural Residues									—
G. Other									-
5. Land Use, Land-Use Change and Forestry ⁽¹⁾									
A. Forest Land									
B. Cropland									
C. Grassland									
D. Wetlands									
E. Settlements									
F. Other Land									
G. Other									
6. Waste							1.463,93		
A. Solid Waste Disposal on Land									├
B. Waste-water Handling									—
C. Waste Incineration D. Other								-	
D. Other 7. Other (as specified in Summary I.A)								-	
1. Otner (as specifiea in Summary 1.A)									
Memo Items: (4)							2015		
International Bunkers							7.817,55		
Aviation									
Marine									
Multilateral Operations									
CO ₂ Emissions from Biomass									
		T		Emissions without L					L
			Total CO2 Equival	ent Emissions with L	and Use, Land-Use	Change and Forestry			

⁽¹⁾ For CO₂ from Land Use, Land-use Change and Forestry the net emissions/removals are to be reported. For the purposes of reporting, the signs for removals are always negative (-) and for emissions positive (+).
(2) Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.
(3) Parties which previously reported CO₂ from soils in the Agriculture sector should note this in the NIR.
(4) See footnote 8 to table Summary 1.A.

Brief description of the key drivers underpinning the increase or decrease in GHG emissions in t-1 (proxy) compared to t-2 (inventory). If this information is publicly available please include the hyperlink to the relevant website.

CRF 1 Energy (total): Including emission from CRF 3 Solvent and Other Product Use.

CRF 142: Only emission from stationary combustion. Oil road machinery are included in other domestic transport.

CRF 163: Including CRF 3 Solvent and Other Product Use.

Key drivers for emission trend

Key drivers for emission trend

Preliminary results of the overall Greenhouse gases emissions in Sweden for 2013 have been estimated to about 56 million tons of CO2-eq. Compared with 2012, the emissions have decreased by about 3%, which correspond to approximately 2 million tons of CO2-

Emissions from energy industries have decreased by 5 % between 2012 and 2013. These emissions are strongly linked to variations in temperature and precipitation. In 2013, it was generally a little warmer than normal in Sweden and specifically wetter in the northern parts. This led to a decreased demand for heating and increased hydro electrical production, which in turn contributed to a reduction in emissions from the energy industries.

Road transport accounts for one-third of national emissions. The emission has decreased by about 3 % compared to 2012, due to the increase in numbers of fuel-efficient cars being used and also a promotion of the use of biofuels. This decrease in emissions is in spite of a little increase of the traffic on the state road networks in 2013.

The decreased volume of production is believed to be the main reason for the decreased emission from Industrial processes sector.

The steady decline of animal population and decreased application of synthetic fertilizers are behind the decreased emission from the Agriculture sector.

5.1.26 Slovenia

SUMMARY 2 SUMMARY REPORT FOR CO_2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory year 2013 Submission 2014 country Slovenia

non-ETS

GREENHOUSE GAS SOURCE AND	CO ₂ (1)	CH ₄	N ₂ O	HFCs (2)	PFCs (2)	SF ₆ (2)	Total
INK CATEGORIES			I C	CO ₂ equivalent (Gg)			
Cotal (Net Emissions) (1)	15101,535	1822,498	1066,298	218,742	9,994	17,062	18236,13
. Energy	14314,005	382,313	150,896				14847,21
A. Fuel Combustion (Sectoral Approach)	14240,880	142,491	150,896				14534,26
Energy Industries	5762,031	2,784	26,786				5791,60
Manufacturing Industries and Construction	1700,593	4,748	16,166				1721,50
3. Transport	5364,416	6,911	56,199				5427,52
4. Other Sectors	1410,489	128,046	51,716				1590,25
5. Other	3,351	0,001	0,029				3,38
B. Fugitive Emissions from Fuels	73,125	239,822	NA,NO				312,94
Solid Fuels	73,123	218,198	NA,NO				291,32
Oil and Natural Gas	0,002	21,624	NO				21,62
. Industrial Processes	782,125	NA,NO	NA,NO	218,742	9,994	17,062	1027,92
A. Mineral Products	602,820	NA	NA				602,82
B. Chemical Industry	1,021	NA,NO	NA,NO				1,02
C. Metal Production	178,284	NA,NO	NO		9,994	NO	188,27
D. Other Production	NA						N.
E. Production of Halocarbons and SF ₆				NA,NO	NA	NA	NA,N
F. Consumption of Halocarbons and SF ₆ (2)				218,742	NA,NO	17,062	235,80
G. Other	NA	NA	NA	NA	NA	NA	N.
. Solvent and Other Product Use	NA,NE		37,200				37,20
Agriculture		1035,083	817,725				1852,80
A. Enteric Fermentation		643,564					643,56
B. Manure Management		391,518	134,413				525,93
C. Rice Cultivation		NO					N
D. Agricultural Soils ⁽³⁾		NA,NO	683,313				683,31
E. Prescribed Burning of Savannas		NO	NO				N
F. Field Burning of Agricultural Residues		NA,NO	NA,NO				NA,N
G. Other		NO	NO				N
. Land Use, Land-Use Change and Forestry ⁽¹⁾							
A. Forest Land							
B. Cropland							
C. Grassland							
D. Wetlands							
E. Settlements							
F. Other Land							
G. Other							
. Waste	5,406	405,103	60,477				470,98
A. Solid Waste Disposal on Land	NA,NO	341,642	,				341,64
B. Waste-water Handling		63,461	60,446				123,90
C. Waste Incineration	5,406	NA	0,031				5,43
D. Other	NA	NA	NA				N.
. Other (as specified in Summary 1.A)	NA	NA	NA	NA	NA	NA	N.
Aemo Items: (4)							
nternational Bunkers	264,446	0,237	24,621				289,30
Aviation	66,395	0,020	0.576				66,99
Agrine	198,051	0,020	24,045				222,31
Autileteral Operations	198,051 0.168	0,217	24,045 0.001				222,31 0.17
	0,168	0,000	0,001				0,17

Total CO₂ Equivalent Emissions without Land Use, Land-Use Change and Fore
Total CO₂ Equivalent Emissions without Land Use, Land-Use Change and Fore
For CO₂ from Land Use, Land-use Change and Forestry the net emissions/removals are to be reported. For the purposes of reporting, the signs for removals are always
emissions positive (+).

(a) Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.

(b) Parties which previously reported CO₂ from soils in the Agriculture sector should note this in the NIR.

(c) See footnote 8 to table Summary 1.A.

1. Energy	Data used
A. Fuel Combustion	Preliminary data from energy balance from national statistics for liquid and gaseous fuel
	ETS data for solid fuel, 2012 data for other fuel except for waste tyres
Energy Industries	For coal combustion the actual data from ETS have been used
2. Manufacturing Industries and Construction	For coal combustion the actual data from ETS have been used
3. Transport	Preliminary statistical data about gasoline and diesel for 2013 have been used
4. Other Sectors	Preliminary statistical data about gas oil and natural gas consumption for 2013
5. Other	The same data as in 2012
B. Fugitive Emissions from Fuels	Statistical data and extrapolation
Solid Fuels	Coal production data for 2013
Oil and Natural Gas	Extrapolation
. Industrial Processes	Mostly covered with ETS data for 2013
A. Mineral Products	Data from ETS for the whole category (including small emitters)
B. Chemical Industry	Only carbide use - data from statistics
C. Metal Production	Data from ETS
F. Consumption of Halocarbons and SF ₆	Extrapolation
. Solvent and Other Product Use	Statistical data for 2013
. Agriculture	Data on animal population and crop production are the final statistical data for 2013
A. Enteric Fermentation	milk yield: preliminary estimate for 2013, EF and other parameters from 2012 inventory
B. Manure Management	EF and other parameters from 2012 inventory
D. Agricultural Soils	EF and other parameters from 2012 inventory
. Waste	No data for 2012
A. Solid Waste Disposal on Land	FOD model has been used - the same AD as in 2012
B. Waste-water Handling	The same data as in 2012
C. Waste incineration	The same data as in 2012

5.1.27 Slovakia

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

country

GREENHOUSE GAS SOURCE AND	CO ₂ (1)	CH ₄	N ₂ O	HFCs (2)	PFCs (2)	SF ₆ (2)	Total	ETS	non-ETS
SINK CATEGORIES	,		ĺ	CO ₂ equivalent (Gg)				CO2 equiva	lent (Gg)
Total (Net Emissions) (1)									
1. Energy	28.134,08	1.079,45	178,66				29.392,20	14.903,88	14.488,3
A. Fuel Combustion (Sectoral Approach)	28.133,81	54,46	178,66				28.366,93	14.903,88	13.463,0
Energy Industries	9.268,14	9,05	44,92				9.322,11	8.284,56	1.037,5
2. Manufacturing Industries and Construction	7.360,86	8,18	17,38				7.386,41	6.228,96	1.157,4
3. Transport	6.675,55	12,41	79,50				6.767,46	0,00	6.767,4
Other Sectors	3.880,77	23,01	36,22				3.940,01	29,94	3.910,0
5. Other	948,49	1,81	0,64				950,94	360,41	590,5
B. Fugitive Emissions from Fuels	0,27	1.024,99	0,00				1.025,26	0,00	1.025,2
Solid Fuels	NA, NO	322,92	NA, NO				322,92	0,00	322,9
Oil and Natural Gas	0,27	702,07	0,00				702,34	0,00	702,3
2. Industrial Processes	7.180,82	2,02	134,97	456,51	8,42	20,71	7.803,45	7.217,06	586,3
A. Mineral Products	2.393,50	NA	NA				2.393,50	2.286,69	106,8
B. Chemical Industry	686,56	1,18	134,97				822,71	821,19	1,5
C. Metal Production	4.100,76	0,84	NA		8,42	NA, NO	4.110,02	4.109,18	0,8
D. Other Production	NO						NO	NO	N(
E. Production of Halocarbons and SF ₆				NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,N
F. Consumption of Halocarbons and SF ₆ (2)				456,51	NA,NO	20,71	477,22	0,00	477,2
G. Other	NA	NA	NA	NA	NA	NA	NA	NA	N/
3. Solvent and Other Product Use	82,00		92.00			-	174.00	0,00	174,0
4. Agriculture	2,00	1.034,14	2.059,13				3.093,27	0,00	3.093,2
A. Enteric Fermentation		882,56	2				882.56	0.00	882.5
B. Manure Management		151,58	323.03				474.61	0.00	474,6
C. Rice Cultivation		NO					NO	0.00	NO
D. Agricultural Soils ⁽³⁾		NO	1.736,10				1.736,10	0,00	1.736,1
E. Prescribed Burning of Savannas		NO	NO				NO	0.00	N(
F. Field Burning of Agricultural Residues		NO	NO				NO	0.00	NO NO
G. Other		NO	NO				NO	0.00	NO NO
	-8.128.36	13.44	12.10				-8.102.83	0,00	110
5. Land Use, Land-Use Change and Forestry (1)			, ,						
A. Forest Land	-7.223,46	13,44	2,73				-7.207,30		
B. Cropland	-874,34	NO	9,37				-864,97		
C. Grassland	-232,50	NO	NO				-232,50		
D. Wetlands	NO	NO	NO				NO		
E. Settlements	96,11	NO	NO				96,11		
F. Other Land	105,83	NO	NO				105,83		
G. Other	NO	NO	NO				NO		
6. Waste	7,00	2.055,90	153,00				2.215,90	0,00	2.215,9
A. Solid Waste Disposal on Land	NO	1.680,00					1.680,00	0,00	1.680,0
B. Waste-water Handling		300,30	72,00				372,30	0,00	372,3
C. Waste Incineration	7,00	NO	2,00				9,00	0,00	9,0
D. Other	NO	75,60	79,00				154,60	0,00	154,6
7. Other (as specified in Summary 1.A)	NA	NA	NA	NA	NA	NA	NA	NA	N/
Memo Items: (4)									
Memo Items: International Bunkers	98.45	0.04	2.15				100.64		
Aviation	98,45 89,16	0,04	2,15				90.11		
Aviation Marine	9,29	0,03	1,24				90,11 10,54		
Multilateral Operations	NO	NO	NO				NO		
CO ₂ Emissions from Biomass	4.144,91						4.144,91		
					and Use, Land-Use Ch and Use, Land-Use Ch		42.678,81 34.575,98	22.120,94	20.557,8
 For CO₂ from Land Use, Land-use Change and Forestry temissions positive (+). Actual emissions should be included in the national totals Parties which previously reported CO₂ from soils in the A See footnote 8 to table Summary 1.A. 	. If no actual emissio	ovals are to be reported, p	orted. For the pur	poses of reporting,	the signs for remov				

	ne increase or decrease in GHG emissions in t-1 (proxy) compared to t-2 (inventory). If this information is publicly
available please include the hyperlink to the releva 1.A.1 Energy Industries	Due to a moderate winter season in 2013, fuel consumption decreased in this category for major sources included in ETS (for example Slovak PPs -7.55%, PPC POWER -4%, SLOVINTEGRA ENERGY -8.5%, E.ON Elektrarne - 79.2%, Mondi -44%). Total reduction of CO ₂ emissions in this category is expected approximately on the level of 445 Gg in 2013.
1.A.2 Manufacturing Industries and Construction	Due to a reduction in iron and steel production, emissions of CO ₂ decreased in this category by approximately 860 Gg in 2013.
1.A.3 Transport	Due to an increase in diesel oil consumption and number of vehicle-kilometres (passenger cars and HDVs), total emissions of CO_2 eq. will increase in this category in 2013 (in accordance with the previous trend).
1.A.4 Other Sectors	No fluctuations are expected in this category in 2013. Major source of GHG emissions is residential heating, where consumption of fuels is almost stable in last years.
A Mineral Production Solvent and other product use	Due to a reduction in mineral production, it is expected further decrease in this category in 2013. No changes are expected in this sector in 2013.
Agriculture	No changes are expected in this sector in 2013.
5. LULUCF	No changes are expected in this sector in 2013.
6. Waste	No changes are expected in this sector in 2013.
ETS and non-ETS share:	The absolute figure of the ETS GHG emissions (in Gg of CO ₂ eq.) provided in this proxy inventory not corresponded to the absolute verified GHG emissions in 2013. The reasons are:
	 Using GWP from the SAR of the IPCC for N₂O and CH₄ emissions in proxy inventory (instead of GWP used in ETS); Using calculated GHG emissions for those sources, which reported GHG emissions based on measurements in their ETS reports. This approach was chosen due to keep consistency in fuel balance of the Slovakia.
Comment:	Proxy 2013 inventory of the Slovak Republic was prepared from the real data based on the ETS reports recalculated by the GWP from the SAR of the IPCC and the extrapolation of non-ETS data (trends) using several sectoral drivers described above.

5.1.28 United Kingdom

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS

Inventory year 2013 (provisional)
Submission 2014 provisional inventory s country UNITED KINGDOM OF GREA

GREENHOUSE GAS SOURCE AND	CO ₂ (1)	CH ₄	N ₂ O	HFCs (2)	PFCs (2)	SF ₆ (2)	Total	ETS	non-ETS
INK CATEGORIES		•	C	O ₂ equivalent (Gg)	•		CO2 equiv	alent (Gg)	
otal (Net Emissions) (1)	470.700,00	49.300,00	35.400,00	14.200,00	200,00	500,00	570.400,00		
. Energy	460.100,00	IE	IE					209.945,88	250.154
A. Fuel Combustion (Sectoral Approach)	456.400,00	IE	IE					209.342,28	247.057
Energy Industries	173.900,00	IE	IE					163.116,62	10.783
Manufacturing Industries and Construction	66.700,00	IE	IE					41.890,44	24.809
3. Transport	113.300,00	IE	IE					2.632,58	110.667
Other Sectors	99,700,00	IE	IE					1.702.64	97.997
5. Other	2.700,00	IE	IE					0	2.700
B. Fugitive Emissions from Fuels	3.700,00	IE	IE					603,60	3.096
Solid Fuels	200.00	IE	IE					95.74	104
Oil and Natural Gas	3,600,00	IE	IE					507,86	3.092
. Industrial Processes	10.300,00	IE	IE, NE	IE	IE	IE		7239,40	3.060
A. Mineral Products	6.500,00	IE	NE					IE	-
B. Chemical Industry	2.700,00	IE	IE					IE	
C. Metal Production	1.100,00	IE	IE	IE	IE	IE		IE	
D. Other Production	0.00	11.5	II.	11.5	II.	11.		0	
E. Production of Halocarbons and SF ₆	0,00			IE	ΙΕ	NA, NO		0	
					IE IE			0	
F. Consumption of Halocarbons and SF ₆ (2)				IE		IE		0	
G. Other	NA	NA	NA	NA	NA	NA		0	-
. Solvent and Other Product Use	NE		NE, NO					0	
. Agriculture		IE	IE					0	
A. Enteric Fermentation		IE						0	
B. Manure Management		IE	IE					0	
C. Rice Cultivation		NA, NO						0	
D. Agricultural Soils ⁽³⁾		IE,NA,NE,NO	IE					0	
E. Prescribed Burning of Savannas		NA	NA					0	
F. Field Burning of Agricultural Residues		NA,NO	NA,NO					0	-
G. Other		NA	IE					0	
. Land Use, Land-Use Change and Forestry(1)									
A. Forest Land									
B. Cropland									
C. Grassland									
D. Wetlands									
E. Settlements									
F. Other Land									
G. Other									
. Waste	300,00	IE	IE					0	300
A. Solid Waste Disposal on Land	NA, NE, NO	IE						0	
B. Waste-water Handling		IE	IE					0	
C. Waste Incineration	300,00	IE	IE					0	300
D. Other	NA	NA	NA					0	
. Other (as specified in Summary 1.A)	NA	NA	NA	NA	NA	NA		0	
Iemo Items: (4)									
nternational Bunkers									
Aviation									
Marine	_								
Aultilateral Operations	_								
CO ₂ Emissions from Biomass									
		Т		Emissions without La			570.400,00		
			Total CO. Equivale	ent Emissions with La	and Hea Land Hea C	banga and Foractry			

emissions positive (+).

Brief description of the key drivers underpinning the increase or decrease in GHG emissions in t-1 (proxy) compared to t-2 (inventory). If this information is publicly available please include the hyperlink to the relevant website.

 $Estimated \ CO_2 \ emissions \ for \ 2013 \ have \ been \ calculated \ using \ the \ quarterly \ energy \ consumption \ statistics \ for \ the \ UK.$

A note describing the calculations is presented here and the drivers for the changes between t-1 and t-2: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/295968/20140327_2013_UK_Greenhouse_Gas_Emissions_Provisional_Figures.pdf The calculations described in the above document are carried out using data including the Crown Dependencies but excluding the Overseas Territories

The data presented above have been adjusted to remove the Crown Dependencies and add in Gibraltar, consistent with submissions to the EU. Emissions for the Crown Dependencies and Gibraltar have been assumed the same as 2012

Emissions are presented in Gg to 4 significant figures, consistent with the UK's statistical release.

Note that totals are rounded from full precision data, and therefore do not match the sum of the rounded data presented here

LULUCF emissions are excluded in accordance with Article 17 of the Implementing Regulation 749/214

Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.
 Parties which previously reported CO₂ from soils in the Agriculture sector should note this in the NIR.

⁽⁴⁾ See footnote 8 to table Summary 1.A.

5.2 Annex II. Detailed results for each Member States as calculated by EEA

5.2.1 Austria

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2013 Submission 2014 v1.0 AUSTRIA

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2 e	quivalent (Gg)		
Total (Net Emissions) (1)	67.485	5.206	5.250	1.531	40	300	79.812
1. Energy	58.320	471	672				59.463
A. Fuel Combustion (Sectoral Approach)	58.085	238	672				58.994
Energy Industries	9.171	10	116				9.297
Manufacturing Industries and Construction	15.472	14	159				15.645
3. Transport	22.264	13	213				22.490
Other Sectors	11.130	200	183				11.514
5. Other	47	0	1				48
B. Fugitive Emissions from Fuels	235	233	0				468
Solid Fuels	IE,NA,NO	1	IE				1
Oil and Natural Gas	235	232	IE				468
2. Industrial Processes	8.974	18	53	1.531	40	300	10.916
A. Mineral Products	3.055	NA	NE				3.055
B. Chemical Industry	591	18	53				662
C. Metal Production	5.329	0	NA		IE	IE	5.329
D. Other Production	NA	0	0				(
E. Production of Halocarbons and SF6				IE	IE	IE	IE
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE
G. Other	NA	NA	NA	IE	IE	IE	IE,NA
3. Solvent and Other Product Use	189		146				335
4. Agriculture		3.533	4.004				7.536
A. Enteric Fermentation		3.200					3.200
B. Manure Management		323	922				1.245
C. Rice Cultivation		NO					NO
D. Agricultural Soils(3)		9	3.082				3.091
E. Prescribed Burning of Savannas		NE	NE				NE
F. Field Burning of Agricultural Residues		1	0				1
G. Other		NE	NE				NE
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				N
A. Forest Land	NE	NE	NE				NE
B. Cropland	NE	NE	NE				NE
C. Grassland	NE	NE	NE				NE
D. Wetlands	NE	NE	NE				NE
E. Settlements	NE	NE	NE				NE
F. Other Land	NE	NE	NE				NE
G. Other	NE	NE	NE				NE
6. Waste	2	1.184	376				1.562
A. Solid Waste Disposal on Land	NA,NO	1.107	0.0				1.107
B. Waste-water Handling	1 4.10	23	266				289
C. Waste Incineration	2	0	0				200
D. Other	NA NA	54	110				164
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	N
The date (are opening in cumulary 12 y			.,				
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE
Aviation	NE NE	NE NE	NE NE				NE NE
Marine	NE NE	NE NE	NE NE				NE NE
Multilateral Operations	NE NE	NE.	NE				NI
CO2 Emissions from Biomass	NE NE	NL	INE				NI NI
OOZ LIIIISSIOIIS II UIII DIUIIIASS	INE						N
	T-4-1 000 F	halast Fortest	a a codata con del	allia altri er	la a Ob · · ·	and Factors	70.61
	Total CO2 Equ	valent Emissio	ns without Lan	a Use, Land-L	ise Change a	and Forestry	79.81

5.2.2 Belgium

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2013 Submission 2014 v1.0 BELGIUM

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2 e	equivalent (Gg)		
Total (Net Emissions) (1)	100.110	6.425	7.146	2.223	220	127	116.25
1. Energy	92.658	757	748				94.16
A. Fuel Combustion (Sectoral Approach)	92.563	344	748				93.65
Energy Industries	21.622	36	147				21.80
Manufacturing Industries and Construction	19.835	59	211				20.10
3. Transport	23.350	15	260				23.62
Other Sectors	27.711	234	129				28.07
5. Other	45	0	1				4
B. Fugitive Emissions from Fuels	95	412	0				50
Solid Fuels	NA,NO	6	IE				
Oil and Natural Gas	95	407	IE				50.
2. Industrial Processes	6.971	19	1.576	2.223	220	127	11.13
A. Mineral Products	4.550	NA,NO	NE				4.55
B. Chemical Industry	2.087	4	1.576				3.66
C. Metal Production	333	15	NO		IE	IE	34
D. Other Production	IE	0	0				
E. Production of Halocarbons and SF6				IE	IE	IE	II II
F. Consumption of Halocarbons and SF6 (2)				IE	ΙE	IE	II
G. Other	NA,NO	NA,NO	NA,NO	IE	IE	IE	IE,NA,NC
3. Solvent and Other Product Use	NA		183				18:
4. Agriculture		4.968	4.328				9.29
A. Enteric Fermentation		3.580					3.58
B. Manure Management		1.388	769				2.15
C. Rice Cultivation		NO					NC
D. Agricultural Soils(3)		NA	3.559				3.55
E. Prescribed Burning of Savannas		NE	NE				N
F. Field Burning of Agricultural Residues		NO	NO				NC
G. Other		NE	NE				NI
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				N
A. Forest Land	NE	NE	NE				NI
B. Cropland	NE	NE	NE				NI
C. Grassland	NE	NE	NE				NI
D. Wetlands	NE	NE	NE				NI
E. Settlements	NE	NE	NE				NI
F. Other Land	NE	NE	NE				NI
G. Other	NE	NE	NE				N
6. Waste	482	681	312				1.47
A. Solid Waste Disposal on Land	NANO	579	0.2				57
B. Waste-water Handling	,	79	312				39
C. Waste Incineration	482	NA	0				48
D. Other	NA	24	NA				2
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	N
• •		•			•		
Memo Items: (4)							
International Bunkers	NE	NE	NE				N
Aviation	NE NE	NE.	NE.				N
Marine	NE NE	NE.	NE.				N
Multilateral Operations	NE NE	NE.	NE.				N
CO2 Emissions from Biomass	NE						N
	Total CO2 Four	ivalent Emissio	ns without Lan	dlise Land-I	Ise Change	and Forestry	116.25
		Equivalent Emis					NI

5.2.3 Bulgaria

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2013 Submission 2014 v1.0 BULGARIA

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2 e	equivalent (Gg)		
Total (Net Emissions) (1)	44.318	6.870	5.007	481	0	12	56.689
1. Energy	40.924	1.593	245				42.762
A. Fuel Combustion (Sectoral Approach)	40.909	282	245				41.437
Energy Industries	27.907	7	106				28.019
Manufacturing Industries and Construction	3.388	10	17				3.415
3. Transport	7.736	12	79				7.827
Other Sectors	1.879	254	44				2.176
5. Other	IE,NO	IE,NO	IE,NO				IE,NO
B. Fugitive Emissions from Fuels	14	1.311	0				1.325
Solid Fuels	NA,NO	701	IE				701
Oil and Natural Gas	14	609	IE				624
2. Industrial Processes	3.352	0	131	481	0	12	3.975
A. Mineral Products	2.921	NO	NE				2.921
B. Chemical Industry	392	0	131				523
C. Metal Production	38	NA,NO	NA		IE	IE	38
D. Other Production	NO	0	0				0
E. Production of Halocarbons and SF6				IE	IE	IE	IE
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE
G. Other	NO	NO	NO	IE	IE	IE	IE,NO
3. Solvent and Other Product Use	22		16				38
4. Agriculture		1.980	4.437				6.417
A. Enteric Fermentation		1.318					1.318
B. Manure Management		526	500				1.026
C. Rice Cultivation		113					113
D. Agricultural Soils(3)		NA,NO	3.926				3.926
E. Prescribed Burning of Savannas		NE	NE				NE
F. Field Burning of Agricultural Residues		23	11				34
G. Other		NE	NE				NE
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE
A. Forest Land	NE	NE	NE				NE
B. Cropland	NE	NE	NE				NE
C. Grassland	NE	NE	NE				NE
D. Wetlands	NE	NE	NE				NE
E. Settlements	NE	NE	NE				NE
F. Other Land	NE	NE	NE				NE
G. Other	NE	NE	NE				NE
6. Waste	21	3.297	178				3.495
A. Solid Waste Disposal on Land	NO	2.735	0				2.735
B. Waste-water Handling		555	162				717
C. Waste Incineration	21	NO	8				29
D. Other	NO	7	8				14
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE
						,	
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE
Aviation	NE NE	NE	NE				NE NE
Marine	NE NE	NE.	NE NE				NE NE
Multilateral Operations	NE NE	NE.	NE.				NE
CO2 Emissions from Biomass	NE						NE
	Total CO2 For	uivalent Emissio	ns without Lan	d Use Tand-I	Ise Change	and Forestry	56.689
		Equivalent Emis					NE,

5.2.4 Cyprus

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2013 Submission 2014 v1.0 CYPRUS

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2 e	equivalent (Gg)		
Total (Net Emissions) (1)	6.574	1.271	616	282	NA,NE,NO,	0	8.743
1. Energy	5.772	17	16				5.804
A. Fuel Combustion (Sectoral Approach)	5.772	17	16				5.804
Energy Industries	2.830	2	7				2.839
Manufacturing Industries and Construction	527	1	2				529
3. Transport	1.908	8	5				1.921
Other Sectors	490	6	2				498
5. Other	17	0	0				17
B. Fugitive Emissions from Fuels	0	0	0				(
Solid Fuels	NA,NO	NA,NO	ΙE				IE,NA,NO
Oil and Natural Gas	0	0	ΙE				(
2. Industrial Processes	792	0	0	282	NA,NE,NO	0	1.075
A. Mineral Products	792	NA,NE	NE				792
B. Chemical Industry	0	0	0				(
C. Metal Production	NA,NO	NA,NO	NA		IE	IE	IE,NA,NO
D. Other Production	NE	0	0				(
E. Production of Halocarbons and SF6				IE	ΙE	IE	IE
F. Consumption of Halocarbons and SF6 (2)				IE	ΙE	IE	IE
G. Other	NA	NA	NA	IE	IE.	IE	IE,NA
3. Solvent and Other Product Use	10		65				75
4. Agriculture		285	510				795
A. Enteric Fermentation		178	0.0				178
B. Manure Management		106	153				258
C. Rice Cultivation		NANO	100				NANO
D. Agricultural Soils(3)		NANE	357				357
E. Prescribed Burning of Savannas		NE	NE				NE
F. Field Burning of Agricultural Residues		1	0				INL
G. Other		NE	NE				NE
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE
A. Forest Land	NE	NE	NE				NE
B. Cropland	NE	NE	NE				NE
C. Grassland	NE	NE	NE				NE
D. Wetlands	NE	NE	NE				NE
E. Settlements	NE	NE	NE				NE
F. Other Land	NE	NE	NE				NE
G. Other	NE	NE	NE				NE
6. Waste	NA,NO,	970	25				99
A. Solid Waste Disposal on Land	NA,NO	936	0				936
B. Waste-water Handling		34	25				59
C. Waste Incineration	NA	NA,NO	NA,NO				NA,NO
D. Other	NA	NA	NA				NA
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	N
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE
Aviation	NE	NE	NE				NE
Marine	NE	NE	NE				NE
Multilateral Operations	NE	NE	NE				N
CO2 Emissions from Biomass	NE						NI
	Total CO2 Four	ivalent Emission	ns without Lan	dUse Land-L	Ise Change	and Forestry	8.74
		quivalent Emis					NE

5.2.5 Czech Republic

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2013 Submission 2014 v1.0 CZECH REPUBLIC

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2 e	equivalent (Gg)		
Total (Net Emissions) (1)	107.434	9.469	7.610	2.298	7	92	126.910
1. Energy	98.141	3.664	1.094				102.900
A. Fuel Combustion (Sectoral Approach)	97.935	573	1.094				99.602
Energy Industries	56.479	23	277				56.779
Manufacturing Industries and Construction	16.786	50	89				16.925
3. Transport	16.115	19	655				16.789
Other Sectors	7.460	480	50				7.990
5. Other	1.095	2	23				1.119
B. Fugitive Emissions from Fuels	207	3.091	0				3.298
Solid Fuels	195	2.454	IE				2.649
Oil and Natural Gas	12	637	IE				649
2. Industrial Processes	8.878	81	427	2.298	7	92	11.783
A. Mineral Products	3.309	3	NE				3.312
B. Chemical Industry	573	25	427				1.025
C. Metal Production	4.995	54	NA		IE	IE	5.049
D. Other Production	NA	0	0				(
E. Production of Halocarbons and SF6				IE	IE	IE	IE
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE
G. Other	NA	NA	NA	IE	IE	IE	IE,NA
3. Solvent and Other Product Use	208		233				441
4. Agriculture		2.443	5.577				8.020
A. Enteric Fermentation		1.987					1.987
B. Manure Management		457	633				1.090
C. Rice Cultivation		NO					NO
D. Agricultural Soils(3)		NA,NE	4.943				4.943
E. Prescribed Burning of Savannas		NE	NE				NE
F. Field Burning of Agricultural Residues		NO	NO				NO
G. Other		NE	NE				NE
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE
A. Forest Land	NE	NE	NE				NE
B. Cropland	NE	NE	NE				NE
C. Grassland	NE	NE	NE				NE
D. Wetlands	NE	NE	NE				NE
E. Settlements	NE	NE	NE				NE
F. Other Land	NE	NE	NE				NE
G. Other	NE	NE	NE				NE
6. Waste	207	3.280	280				3.767
A. Solid Waste Disposal on Land	NANO	2.770	0				2.770
B. Waste-water Handling		510	276				786
C. Waste Incineration	207	0	4				211
D. Other	NA	NA	NA				NA
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE
Aviation	NE NE	NE	NE				NE
Marine	NE NE	NE.	NE NE				NE NE
Multilateral Operations	NE NE	NE.	NE.				N
CO2 Emissions from Biomass	NE NE	.,	112				NI NI
	Total CO2 Eq.	uivalent Emissio	ns without Lan	dlise Land-i	Ise Change	and Forestry	126.910
		Equivalent Emis					126.910 NE

5.2.6 Germany

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2013 Submission 2014 v1.0 GERMANY

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2 e	equivalent (Gg)		
Total (Net Emissions) (1)	836.028	47.522	55.706	9.346	120	3.390	952.112
1. Energy	782.080	11.724	5.996				799.800
A. Fuel Combustion (Sectoral Approach)	780.588	2.986	5.996				789.569
Energy Industries	363.676	1.669	3.055				368.400
Manufacturing Industries and Construction	114.804	203	778				115.784
3. Transport	162.063	157	1.556				163.776
Other Sectors	139.069	953	600				140.622
5. Other	975	4	7				986
B. Fugitive Emissions from Fuels	1.493	8.738	0				10.230
Solid Fuels	3	2.935	IE				2.938
Oil and Natural Gas	1.490	5.803	IE				7.293
2. Industrial Processes	52.512	5	2.653	9.346	120	3.390	68.026
A. Mineral Products	19.667	NA	NE				19.667
B. Chemical Industry	16.827	1	2.639				19.466
C. Metal Production	16.018	5	15		ΙE	IE	16.037
D. Other Production	NO	0	0				C
E. Production of Halocarbons and SF6				IE	IE	IE	IE
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE
G. Other	NO	NO	NO	IE	ΙΕ	IE	IE,NO
3. Solvent and Other Product Use	1.436		304				1.740
4. Agriculture		25.945	44.013				69.958
A. Enteric Fermentation		20.991					20.991
B. Manure Management		4.954	2.743				7.696
C. Rice Cultivation		NO					NO.
D. Agricultural Soils(3)		NA,NO	41.270				41.270
E. Prescribed Burning of Savannas		NE	NE				NE
F. Field Burning of Agricultural Residues		NO	NO				NO.
G. Other		NE	NE				NE
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE
A. Forest Land	NE	NE	NE				NE
B. Cropland	NE	NE	NE				NE
C. Grassland	NE	NE	NE				NE
D. Wetlands	NE	NE	NE				NE
E. Settlements	NE	NE	NE.				NE
F. Other Land	NE NE	NE NE	NE.				NE NE
G. Other	NE	NE	NE				NE
6. Waste	NO.	9.849	2.740				12.588
A. Solid Waste Disposal on Land	NO,	9.230	2.740				9.230
B. Waste-water Handling	INU	9.230	2.370				2.390
C. Waste Incineration	NO	NO NO	2.370 NO				2.390 NO.
D. Other	NO	599	369				968
7. Other (as specified in Summary 1.A)	NE NE	NE.	NE	NE	NE	NE	NE
7. Other (as specified in Summary 1.A)	INL	NE	INL	INL	INL	INL	IAL
Mama Itama (4)							
Memo Items: (4)	NE	N.E.					,
International Bunkers	NE	NE	NE				NE
Aviation	NE	NE	NE NE				NE NE
Marine Multilatural Congressions	NE	NE	NE NE				NE
Multilateral Operations	NE	NE	NE				NE NE
CO2 Emissions from Biomass	NE						NE
							952.112
		ivalent Emission					

5.2.7 Denmark

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2013 Submission 2014 v1.0 DENMARK

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2 e	equivalent (Gg)		
Total (Net Emissions) (1)	40.722	5.474	5.995	645	9	122	52.966
1. Energy	39.562	438	354				40.353
A. Fuel Combustion (Sectoral Approach)	39.285	328	354				39.967
Energy Industries	19.444	190	97				19.732
Manufacturing Industries and Construction	5.236	12	46				5.294
3. Transport	11.912	12	127				12.051
Other Sectors	2.577	114	82				2.773
5. Other	116	0	1				117
B. Fugitive Emissions from Fuels	277	110	0				386
Solid Fuels	NA,NO	NA,NO	IE				IE,NA,NO,
Oil and Natural Gas	277	110	IE				386
2. Industrial Processes	1.001	0	0	645	9	122	1.776
A. Mineral Products	965	IE,NA	NE				965
B. Chemical Industry	1	0	0				1
C. Metal Production	NA,NO	NA,NO	NO		ΙE	IE	IE,NA,NO,
D. Other Production	2	0	0				2
E. Production of Halocarbons and SF6				IE	IE	IE	IE
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	ΙE
G. Other	32	NA	NA	IE	ΙΕ	IE	32
3. Solvent and Other Product Use	144		12				156
4. Agriculture		4.170	5.422				9.592
A. Enteric Fermentation		2.872					2.872
B. Manure Management		1.295	373				1.668
C. Rice Cultivation		NO					NO,
D. Agricultural Soils(3)		NA,NE	5.048				5.048
E. Prescribed Burning of Savannas		NE	NE				NE
F. Field Burning of Agricultural Residues		2	1				3
G. Other		NE	NE				NE
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE
A. Forest Land	NE	NE	NE				NE
B. Cropland	NE	NE	NE				NE
C. Grassland	NE	NE	NE				NE
D. Wetlands	NE	NE	NE.				NE
E. Settlements	NE	NE.	NE				NE.
F. Other Land	NE NE	NE.	NE.				NE.
G. Other	NE NE	NE	NE				NE.
6. Waste	15	866	208				1.089
A. Solid Waste Disposal on Land	NA,NE,NO	698	0				698
B. Waste-water Handling	INA,INL,INO	74	73				147
C. Waste Incineration	NO	0	0				0
D. Other	15	94	135				244
7. Other (as specified in Summary 1.A)	NE	NE.	NE	NE	NE	NE	NE.
7. Other (as specified in Summary 1.A)	142	INE	IIL	INL	INL	INC	INL
Mome Items: (4)							
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE
Aviation	NE	NE	NE NE				NE
Marine	NE	NE	NE				NE
Multilateral Operations	NE	NE	NE				NE NE
CO2 Emissions from Biomass	NE						NE
		iivalent Emissio					52.966
	Total CO2 I	Equivalent Emis	sions with Lan	d Use, Land-L	Jse Change a	and Forestry	NE,

5.2.8 Estonia

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2013 Submission 2014 v1.0 ESTONIA

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2 e	equivalent (Gg)		
Total (Net Emissions) (1)	19.124	950	1.024	178	NA,NE,NO,	2	21.278
1. Energy	18.638	218	113				18.969
A. Fuel Combustion (Sectoral Approach)	18.638	141	113				18.891
Energy Industries	15.140	13	36				15.189
Manufacturing Industries and Construction	728	2	4				734
3. Transport	2.258	4	19				2.281
Other Sectors	490	122	54				665
5. Other	23	0	0				23
B. Fugitive Emissions from Fuels	0	77	0				77
Solid Fuels	NO	NO	IE				IE,NO,
Oil and Natural Gas	0	77	IE				77
2. Industrial Processes	472	0	0	178	NA,NO	2	652
A. Mineral Products	447	NO	NE				447
B. Chemical Industry	25	0	0				25
C. Metal Production	NA,NO	NA,NO	NA		ΙE	IE	IE,NA,NO,
D. Other Production	NO	0	0				0
E. Production of Halocarbons and SF6				IE	IE	IE	IE
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	ΙE
G. Other	NO	NO	NO	IE	ΙE	IE	IE,NO,
3. Solvent and Other Product Use	14		4				19
4. Agriculture		486	861				1.347
A. Enteric Fermentation		439					439
B. Manure Management		47	106				153
C. Rice Cultivation		NO					NO,
D. Agricultural Soils(3)		NO	755				755
E. Prescribed Burning of Savannas		NE	NE				NE
F. Field Burning of Agricultural Residues		NO	NO				NO,
G. Other		NE	NE				NE
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE
A. Forest Land	NE	NE	NE				NE
B. Cropland	NE	NE	NE				NE
C. Grassland	NE NE	NE	NE.				NE
D. Wetlands	NE NE	NE.	NE.				NE.
E. Settlements	NE NE	NE.	NE				NE.
F. Other Land	NE NE	NE NE	NE.				NE NE
G. Other	NE NE	NE NE	NE.				NE
6. Waste	0	246	45				291
A. Solid Waste Disposal on Land	NO	246	43				291
B. Waste-water Handling	NO	6	34				40
C. Waste Incineration	0	NO	1				40
D. Other	NO	9	10				20
7. Other (as specified in Summary 1.A)	NE NE	NE.	NE	NE	NE	NE	NE.
7. Other (as specified in Summary 1.A)	INE	INC	INE	INE	INE	INC	INC
Mana (tama) (4)							
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE
Aviation	NE	NE	NE				NE
Marine	NE	NE	NE				NE
Multilateral Operations	NE	NE	NE				NE.
CO2 Emissions from Biomass	NE						NE
	Total CO2 Equ	iivalent Emissio	ns without Lan	d Use, Land-L	Jse Change a	and Forestry	21.278
	Total CO2 I	Equivalent Emis	sions with Lan	d Use, Land-L	Jse Change a	and Forestry	NE,

5.2.9 Spain

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2013 Submission 2014 v1.0 SPAIN

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2 e	quivalent (Gg)		
Total (Net Emissions) (1)	248.474	31.672	23.935	7.574	25	220	311.900
1. Energy	233.680	2.591	2.081				238.353
A. Fuel Combustion (Sectoral Approach)	230.996	1.487	2.081				234.564
Energy Industries	75.354	170	616				76.140
Manufacturing Industries and Construction	43.328	395	444				44.166
3. Transport	76.934	85	790				77.809
Other Sectors	35.381	837	231				36.449
5. Other	IE,NO	IE,NO	IE,NO				IE,NO
B. Fugitive Emissions from Fuels	2.684	1.104	0				3.788
Solid Fuels	35	556	IE				591
Oil and Natural Gas	2.649	548	IE				3.198
2. Industrial Processes	14.082	53	162	7.574	25	220	22.116
A. Mineral Products	10.625	NA	NE				10.625
B. Chemical Industry	853	40	161				1.054
C. Metal Production	2.604	12	1		IE	IE	2.618
D. Other Production	NA	0	0				0
E. Production of Halocarbons and SF6				IE	IE	IE	IE
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE
G. Other	NA	NA	NA	IE	IE	IE	IE,NA,
3. Solvent and Other Product Use	708		460				1.167
4. Agriculture		17.438	19.953				37.391
A. Enteric Fermentation		9.971					9.971
B. Manure Management		6.721	1.549				8.270
C. Rice Cultivation		308					308
D. Agricultural Soils(3)		IE,NA	18.324				18.324
E. Prescribed Burning of Savannas		NE	NE				NE
F. Field Burning of Agricultural Residues		438	80				518
G. Other		NE	NE				NE
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE
A. Forest Land	NE	NE	NE				NE
B. Cropland	NE	NE	NE				NE
C. Grassland	NE	NE	NE				NE
D. Wetlands	NE	NE	NE				NE
E. Settlements	NE	NE	NE				NE
F. Other Land	NE	NE	NE				NE
G. Other	NE	NE	NE				NE
6. Waste	3	11.590	1.279				12.873
A. Solid Waste Disposal on Land	NA NA	10.964	1.279				10.964
B. Waste-water Handling	IVA	610	1.269				1.879
C. Waste Incineration	3	1	1.209				1.079
D. Other	NA NA	15	0				16
7. Other (as specified in Summary 1.A)	NE NE	NE.	NE.	NE	NE	NE	NE
Care. (ac specifica in cuminary ray	ML	142	INL	INL	, VL	IVE	IN.
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE
Aviation Aviation	NE NE	NE NE	NE NE				NE NE
Marine Marine	NE NE	NE NE	NE NE				NE NE
Multilateral Operations	NE NE	NE NE	NE NE				NE NE
CO2 Emissions from Biomass	NE NE	NE	NE				NE NE
CO2 LINISSIONS NON DIONIASS	NE						NE
	T	ivalent Emissio		111	0	 	311.900

5.2.10 Finland

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2013 Submission 2014 v1.0 FINLAND

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2 e	equivalent (Gg)		
Total (Net Emissions) (1)	50.230	4.055	5.214	926	2	37	60.463
1. Energy	46.137	368	913				47.417
A. Fuel Combustion (Sectoral Approach)	46.008	329	913				47.250
Energy Industries	23.383	23	335				23.740
Manufacturing Industries and Construction	8.068	14	137				8.219
3. Transport	12.308	33	171				12.512
Other Sectors	888	255	41				1.185
5. Other	1.361	4	230				1.594
B. Fugitive Emissions from Fuels	129	39	0				167
Solid Fuels	NO	NO	IE				IE,NO
Oil and Natural Gas	129	39	IE				167
2. Industrial Processes	4.057	9	166	926	2	37	5.197
A. Mineral Products	1.181	NO	NE				1.181
B. Chemical Industry	726	0	166				893
C. Metal Production	2.149	9	NO		IE	IE	2.158
D. Other Production	NO	0	0				C
E. Production of Halocarbons and SF6				IE	IE	IE	IE
F. Consumption of Halocarbons and SF6 (2)				IE	ΙE	IE	IE
G. Other	NA	NA	NA	IE	ΙE	IE	IE,NA
3. Solvent and Other Product Use	37		26				63
4. Agriculture		1.810	3.950				5.760
A. Enteric Fermentation		1.557					1.557
B. Manure Management		252	423				675
C. Rice Cultivation		NO					NO
D. Agricultural Soils(3)		NE,NO	3.527				3.527
E. Prescribed Burning of Savannas		NE	NE				NE
F. Field Burning of Agricultural Residues		0	0				1
G. Other		NE	NE				NE
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE
A. Forest Land	NE	NE	NE				NE
B. Cropland	NE	NE	NE				NE
C. Grassland	NE	NE	NE				NE
D. Wetlands	NE	NE	NE				NE
E. Settlements	NE	NE	NE				NE
F. Other Land	NE	NE	NE				NE
G. Other	NE	NE	NE				NE
6. Waste	IE,NO,	1.868	158				2.026
A. Solid Waste Disposal on Land	NO NO	1.697	0				1.697
B. Waste-water Handling	1.0	113	99				212
C. Waste Incineration	ΙE	IE	IE				IE
D. Other	NO	58	59				117
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE
Aviation	NE NE	NE NE	NE NE				NE NE
Marine	NE NE	NE NE	NE NE				NE NE
Multilateral Operations	NE NE	NE	NE.				NE NE
CO2 Emissions from Biomass	NE NE	14	IAE				NI NI
OOL LINGSIONS HOLL DIGINASS	NE						N
	T-+-1 CO2 T	indept Facing Co.		dlies Lea II	la a Chance	and Francis	00.40
	Total CO2 Equ	ivalent Emissio			Jse Change a Jse Change a	and Forestry	60.46

5.2.11 France

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2013 Submission 2014 v1.0 FRANCE

				PFCs (2)	SF6 (2)	Total
		CO2 e	quivalent (Gg)		
364.285	51.135	57.895	17.898	400	507	492.12
344.397	2.796	4.317				351.51
341.065	1.594	4.317				346.97
52.711	31	628				53.37
	148	779				63.99
	169	1.526				133.09
93.890	1.246	1.384				96.52
NO	NO	NO				NC
3.332	1.202	0				4.53
NANO	61	IE				6
3.332	1.141	IE				4.47
17.670	44	906	17.898	400	507	37.42
		NE	111000			11.82
		906				2.97
				ΙΕ	IE	3.820
NA	0	0				5.02
		j	IF	IF	IF	li li
						IE
NO	NO	NO				IE,NC
	NO		IL	IL	IL	1.13
997	20.240					89.54
		51.192				
		4.000				28.17
		4.932				14.96
		40.054				11
						46.25
						NI
						3:
						N
						N
NE	NE	NE				NI
NE	NE	NE				N
NE	NE	NE				N
NE	NE	NE				N
NE	NE	NE				NI
NE	NE	NE				NI
						NI
						12.51
						8.45
INA,INO						2.03
1 222						1.32
						70
			NE	NE	ME	N
INC	INC	INC	INE	INC	INE	N
						N
						N
						N
	NE	NE				N
NE						N
Total CO2 Equi	ivalent Emission	ns without Lan	d Use, Land-L	Ise Change a	and Forestry	492.12
	344.397 341.065 52.711 63.067 131.397 93.890 NO 3.332 NA,NO 3.332 17.670 11.821 2.024 3.825 NA NO	344.397 2.796 341.065 1.594 52.711 31 63.067 148 131.397 169 93.890 1.246 NO NO NO 3.332 1.202 NANO 61 3.332 1.141 17.670 44 11.821 NA 2.024 42 3.825 1 NA 0 NO NO 997 38.348 28.178 10.029 1177 NA N	364.285 51.135 57.895 344.397 2.796 4.317 341.065 1.594 4.317 52.711 31 628 63.067 148 779 131.397 169 1.526 93.890 1.246 1.384 NO NO NO NO 3.332 1.202 0 NA,NO 61 IE 3.3332 1.141 IE 17.670 44 906 11.821 NA NE 2.024 42 906 3.825 1 NA NA 0 O NO NO NO 997 38.898 51.192 28.478 10.029 4.932 117 NA 46.251 NA NE N	364.285	364.285	364.285 51.135 57.895 17.898 400 507 344.397 2.796 4.317 341.065 1.594 4.317 52.711 31 628 63.067 148 779 131.397 169 1.526 93.890 1.246 1.384 NO N

5.2.12 Greece

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2013 Submission 2014 v1.0 GREECE

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2 (equivalent (Gg)		
Total (Net Emissions) (1)	82.320	9.453	6.798	4.023	110	5	102.710
1. Energy	76.251	1.394	486				78.131
A. Fuel Combustion (Sectoral Approach)	76.242	151	486				76.878
Energy Industries	50.300	16	162				50.477
Manufacturing Industries and Construction	6.468	9	33				6.510
3. Transport	13.521	51	170				13.742
Other Sectors	5.953	75	121				6.149
5. Other	IE,NO	IE,NO	IE,NO				IE,NO,
B. Fugitive Emissions from Fuels	9	1.243	0				1.252
Solid Fuels	IE,NO	1.047	IE				1.047
Oil and Natural Gas	9	196	IE				206
2. Industrial Processes	5.903	0	307	4.023	110	5	10.348
A. Mineral Products	4.379	NA,NO	NE				4.379
B. Chemical Industry	502	0	307				809
C. Metal Production	1.021	0	NA		IE	IE	1.021
D. Other Production	NA	0	0				0
E. Production of Halocarbons and SF6				IE	IE	IE	IE
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE
G. Other	NO	NO	NO	IE	IE	IE	IE,NO,
3. Solvent and Other Product Use	163		156				319
4. Agriculture		3.729	5.448				9.176
A. Enteric Fermentation		3.169					3.169
B. Manure Management		405	596				1.001
C. Rice Cultivation		123					123
D. Agricultural Soils(3)		NE,NO	4.840				4.840
E. Prescribed Burning of Savannas		NE	NE				NE
F. Field Burning of Agricultural Residues		32	12				44
G. Other		NE	NE				NE
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE
A. Forest Land	NE	NE	NE				NE
B. Cropland	NE	NE	NE				NE
C. Grassland	NE	NE	NE				NE
D. Wetlands	NE	NE	NE				NE
E. Settlements	NE	NE	NE				NE
F. Other Land	NE	NE	NE				NE
G. Other	NE	NE	NE				NE
6. Waste	3	4.330	402				4.735
A. Solid Waste Disposal on Land	NA,NO	3.204	0				3.204
B. Waste-water Handling	, ,	1.109	383				1.492
C. Waste Incineration	3	0	1				4
D. Other	NA,NO	17	19				35
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE
Aviation	NE.	NE.	NE				NE
Marine	NE NE	NE.	NE				NE
Multilateral Operations	NE.	NE.	NE				NE
CO2 Emissions from Biomass	NE						NE
	Total CO2 Fo	uivalent Emissio	ns without Lan	d Use Tand-I	Ise Change a	and Forestry	102.710
		Equivalent Emis					NE,

5.2.13 Hungary

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2013 Submission 2014 v1.0 HUNGARY

							Total
SINK CATEGORIES			CO2 e	quivalent (Gg)		
Total (Net Emissions) (1)	43.101	8.028	6.767	1.006	1	153	59.056
1. Energy	40.014	2.398	218				42.631
A. Fuel Combustion (Sectoral Approach)	39.820	316	218				40.354
Energy Industries	14.501	22	56				14.579
Manufacturing Industries and Construction	3.670	10	10				3.691
3. Transport	10.956	25	109				11.089
Other Sectors	10.693	260	43				10.996
5. Other	NO	NO	NO				NO,
B. Fugitive Emissions from Fuels	194	2.082	0				2.277
Solid Fuels	IE,NA,NO	11	IE				11
Oil and Natural Gas	194	2.071	IE				2.266
2. Industrial Processes	2.920	39	23	1.006	1	153	4.142
A. Mineral Products	1.085	NA,NO	NE				1.085
B. Chemical Industry	482	35	23				539
C. Metal Production	282	4	NA		IE	IE	286
D. Other Production	NO	0	0				0
E. Production of Halocarbons and SF6				IE	IE	IE	IE
F. Consumption of Halocarbons and SF6 (2)				IE	ΙE	IE	IE
G. Other	1.071	NO	NO	IE	ΙE	IE	1.071
3. Solvent and Other Product Use	74		277				350
4. Agriculture		2.819	5.964				8.783
A. Enteric Fermentation		1.542					1.542
B. Manure Management		1.265	833				2.098
C. Rice Cultivation		12					12
D. Agricultural Soils(3)		NA	5.131				5.131
E. Prescribed Burning of Savannas		NE	NE				NE
F. Field Burning of Agricultural Residues		NA,NO	NA,NO				NA,NO,
G. Other		NE	NE				NE
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE
A. Forest Land	NE	NE	NE				NE
B. Cropland	NE	NE	NE				NE
C. Grassland	NE	NE	NE				NE
D. Wetlands	NE	NE	NE				NE
E. Settlements	NE	NE	NE				NE
F. Other Land	NE	NE	NE				NE
G. Other	NE	NE	NE				NE
6. Waste	93	2.771	285				3.150
A. Solid Waste Disposal on Land	NANO	2.472	0				2.472
B. Waste-water Handling	IVA,IVO	283	265				548
C. Waste Incineration	93	203	3				97
D. Other	NA NA	15	17				32
7. Other (as specified in Summary 1.A)	NE NE	NE.	NE	NE	NE	NE	NE
Callet (all operation in cultilliary lan)	IAL	IAC	HE	HL	IAE	145	INL
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE
Aviation Aviation	NE NE	NE NE	NE NE				NE NE
Marine Marine	NE NE	NE NE	NE NE				NE NE
Multilateral Operations	NE NE	NE NE	NE NE				NE NE
CO2 Emissions from Biomass	NE NE	NE	NE				NE NE
COZ EIIISSIOIIS II UIII DIUIIIASS	NE						NE
				d Use, Land-L			59.056

5.2.14 Croatia

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2013 Submission 2014 v1.0 CROATIA

					PFCs (2)	SF6 (2)	Total
SINK CATEGORIES	_		CO2 e	equivalent (Gg)		
Total (Net Emissions) (1)	18.615	3.272	3.280	512	NA,NE,NO,	10	25.689
1. Energy	16.578	1.244	94				17.916
A. Fuel Combustion (Sectoral Approach)	16.031	131	94				16.256
Energy Industries	5.141	5	14				5.160
Manufacturing Industries and Construction	3.120	6	8				3.134
3. Transport	5.685	12	50				5.747
Other Sectors	2.085	108	22				2.214
5. Other	NO	NO	NO				NO
B. Fugitive Emissions from Fuels	547	1.113	0				1.660
Solid Fuels	NO	NO	IE				IE,NO
Oil and Natural Gas	547	1.113	ΙE				1.660
2. Industrial Processes	1.932	35	679	512	NA,NO	10	3.168
A. Mineral Products	1.432	NE,NO	NE				1.432
B. Chemical Industry	482	35	679				1.195
C. Metal Production	19	NE,NO	NO		IE	IE	19
D. Other Production	NE	0	0				0
E. Production of Halocarbons and SF6				IE	IE	IE	IE
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE
G. Other	NO	NO	NO	IE	ΙE	IE	IE,NO
3. Solvent and Other Product Use	104		51				156
4. Agriculture		972	2.352				3.324
A. Enteric Fermentation		777					777
B. Manure Management		185	249				434
C. Rice Cultivation		NO					NO,
D. Agricultural Soils(3)		9	2.103				2.113
E. Prescribed Burning of Savannas		NE	NE				NE
F. Field Burning of Agricultural Residues		NO	NO				NO,
G. Other		NE	NE				NE
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE
A. Forest Land	NE	NE	NE				NE
B. Cropland	NE	NE	NE				NE
C. Grassland	NE	NE	NE				NE
D. Wetlands	NE	NE	NE.				NE
E. Settlements	NE	NE	NE				NE
F. Other Land	NE NE	NE.	NE.				NE NE
G. Other	NE	NE	NE				NE
6. Waste	0	1.022	104				1.126
A. Solid Waste Disposal on Land	NANO	793	0				793
B. Waste-water Handling	INA,INO	228	104				333
C. Waste Incineration	0	NE,NO	NE,NO				0
D. Other	NO	NO NO	NO.				NO.
7. Other (as specified in Summary 1.A)	NE NE	NE NE	NE	NE	NE	NE	NE
7. Other (as specified in outlinary 1.A)	INC	INE	INL	INL	IVE	145	
Memo Items: (4)							
International Bunkers	NIE	NE	N/E				NE
	NE	NE	NE				NE NE
Aviation	NE NE	NE NE	NE NE				NE NE
Marine Multiple val Operations	NE NE	NE NE	NE NE				NE N E
Multilateral Operations CO2 Emissions from Biomass	NE NE	NE	NE				
GOZ EMISSIONS FROM BIOMASS	NE						NE
							25.689
	Total CO2 Equ						

5.2.15 Ireland

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2013 Submission 2014 v1.0 IRELAND

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2 e	equivalent (Gg)		
Total (Net Emissions) (1)	36.166	11.978	7.441	982	8	39	56.614
1. Energy	34.734	196	337				35.267
A. Fuel Combustion (Sectoral Approach)	34.734	169	337				35.239
Energy Industries	11.042	5	123				11.170
Manufacturing Industries and Construction	4.442	7	15				4.464
3. Transport	10.697	16	108				10.821
Other Sectors	8.553	140	91				8.785
5. Other	NO	NO	NO				NO
B. Fugitive Emissions from Fuels	0	28	0				28
Solid Fuels	NO	NO	IE				IE,NO
Oil and Natural Gas	0	28	IE				28
2. Industrial Processes	1.320	0	0	982	8	39	2.349
A. Mineral Products	1.320	NO	NE				1.320
B. Chemical Industry	0	0	0				(
C. Metal Production	NO	NO	NO		IE	IE	IE,NO
D. Other Production	NE	0	0				C
E. Production of Halocarbons and SF6				IE	ΙE	IE	IE
F. Consumption of Halocarbons and SF6 (2)				IE	ΙE	IE	IE
G. Other	NO	NO	NO	IE	ΙE	IE	IE,NO
3. Solvent and Other Product Use	73		NA,NE				73
4. Agriculture		10.958	6.957				17.915
A. Enteric Fermentation		8.751					8.751
B. Manure Management		2.207	448				2.655
C. Rice Cultivation		NO					NO
D. Agricultural Soils(3)		NA,NO	6.510				6.510
E. Prescribed Burning of Savannas		NE	NE				NE
F. Field Burning of Agricultural Residues		NO	NO				NO
G. Other		NE	NE				NE
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE
A. Forest Land	NE	NE	NE				NE
B. Cropland	NE	NE	NE				NE
C. Grassland	NE	NE	NE				NE
D. Wetlands	NE	NE	NE				NE
E. Settlements	NE	NE	NE				NE
F. Other Land	NE	NE	NE				NE
G. Other	NE	NE	NE				NE
6. Waste	39	823	147				1.009
A. Solid Waste Disposal on Land	NANO	804	0				804
B. Waste-water Handling	117 (110	19	146				166
C. Waste Incineration	39	0	0				40
D. Other	NO	NO	NO				NO
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE
((()							
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE
Aviation	NE NE	NE NE	NE NE				NE NE
Marine	NE NE	NE NE	NE NE				NE NE
Multilateral Operations	NE NE	NE	NE.				NE NE
CO2 Emissions from Biomass	NE NE	NL	INE				NI NI
OOL LIIIIGGIOIIG II UIII DIUIIIGGG	INC						N
	T-+-1 CO2 5	indept Facing Co.		dlies Lea II	la a Chance	and Francis	50.04
		ivalent Emission quivalent Emis					56.614 NE

5.2.16 Italy

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2013 Submission 2014 v1.0 ITALY

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2 e	equivalent (Gg)		
Total (Net Emissions) (1)	366.997	33.857	27.564	9.817	1.314	321	439.869
1. Energy	350.264	6.412	4.434				361.110
A. Fuel Combustion (Sectoral Approach)	348.194	1.600	4.434				354.227
Energy Industries	112.692	110	504				113.305
Manufacturing Industries and Construction	51.360	116	1.049				52.525
3. Transport	102.004	212	967				103.183
Other Sectors	81.812	1.162	1.885				84.859
5. Other	326	1	29				355
B. Fugitive Emissions from Fuels	2.070	4.813	0				6.883
Solid Fuels	0	67	IE				67
Oil and Natural Gas	2.070	4.746	IE				6.816
2. Industrial Processes	15.619	55	234	9.817	1.314	321	27.361
A. Mineral Products	12.656	NA	NE				12.656
B. Chemical Industry	1.507	5	234				1.747
C. Metal Production	1.456	50	NA		IE	IE	1.505
D. Other Production	NA	0	0	-			0
E. Production of Halocarbons and SF6				IE	IE	IE	IE
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE
G. Other	NA	NA	NA	IE	ΙE	IE	IE,NA,
3. Solvent and Other Product Use	944		466				1.410
4. Agriculture		14.037	20.470				34.507
A. Enteric Fermentation		10.772					10.772
B. Manure Management		1.702	3.697				5.399
C. Rice Cultivation		1.550					1.550
D. Agricultural Soils(3)		NE,NO	16.769				16.769
E. Prescribed Burning of Savannas		NE	NE				NE
F. Field Burning of Agricultural Residues		14	5				19
G. Other		NE	NE				NE
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE
A. Forest Land	NE	NE	NE				NE
B. Cropland	NE	NE	NE				NE
C. Grassland	NE	NE	NE				NE
D. Wetlands	NE	NE	NE				NE
E. Settlements	NE	NE	NE				NE
F. Other Land	NE	NE	NE				NE
G. Other	NE	NE	NE				NE
6. Waste	170	13.352	1.959				15.481
A. Solid Waste Disposal on Land	NANO	10.570	0				10.570
B. Waste-water Handling		2.725	1.935				4.661
C. Waste Incineration	170	51	24				245
D. Other	NA	6	NA				6
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE
, , , , , , , , , , , , , , , , , , , ,							
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE
Aviation	NE NE	NE NE	NE.				NE NE
Marine	NE NE	NE NE	NE NE				NE NE
Multilateral Operations	NE NE	NE	NE				NE
CO2 Emissions from Biomass	NE NE	142	INE				NE
	742						10.
	Total CO2 Far-	ivalent Emissio	ne without Loo	dliee Landi	lea Change	and Forestry	439.869
			sions with Lan				439.869 NE,

5.2.17 Lithuania

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2013 Submission 2014 v1.0 LITHUANIA

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2 e	equivalent (Gg)		
Total (Net Emissions) (1)	13.677	2.939	4.152	263	NA,NE,NO,	4	21.034
1. Energy	10.746	456	99				11.302
A. Fuel Combustion (Sectoral Approach)	10.739	196	99				11.034
Energy Industries	3.727	10	21				3.757
Manufacturing Industries and Construction	1.314	4	8				1.326
3. Transport	4.511	12	40				4.562
Other Sectors	1.179	171	31				1.381
5. Other	9	0	0				9
B. Fugitive Emissions from Fuels	7	260	0				267
Solid Fuels	NO	NO	IE				IE,NO
Oil and Natural Gas	7	260	IE				267
2. Industrial Processes	2.849	0	596	263	NA,NO	4	3.712
A. Mineral Products	517	NA,NE,NO	NE				517
B. Chemical Industry	2.319	0	596				2.915
C. Metal Production	4	NO	NO		IE	IE	4
D. Other Production	9	0	0				9
E. Production of Halocarbons and SF6				IE	IE	IE	IE
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE
G. Other	NA	NA	NA	IE	ΙE	IE	IE,NA
3. Solvent and Other Product Use	80		3				82
4. Agriculture		1.639	3.382				5.021
A. Enteric Fermentation		1.155					1.155
B. Manure Management		484	250				734
C. Rice Cultivation		NO					NO.
D. Agricultural Soils(3)		NA	3.132				3.132
E. Prescribed Burning of Savannas		NE	NE				NE
F. Field Burning of Agricultural Residues		NO	NO				NO.
G. Other		NE	NE				NE
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE
A. Forest Land	NE	NE	NE				NE
B. Cropland	NE	NE	NE				NE
C. Grassland	NE	NE	NE				NE
D. Wetlands	NE	NE	NE.				NE
E. Settlements	NE	NE	NE				NE
F. Other Land	NE NE	NE NE	NE.				NE NE
G. Other	NE	NE	NE				NE
6. Waste	2	844	72				917
A. Solid Waste Disposal on Land	NA NA	741	0				741
B. Waste-water Handling	INA	102	72				174
C. Waste Incineration	2	NA	0				174
D. Other	NA NA	NA NA	NA				NA
7. Other (as specified in Summary 1.A)	NE NE	NE.	NE.	NE	NE	NE	NE.
7. Other (as specified in outliniary 1.2)	INE	NE	INL	INL	INL	140	IAL
Memo Items: (4)							
International Bunkers	NIE	NE	N/E				A I F
	NE	NE NE	NE				NE
Aviation	NE NE	NE NE	NE NE				NE NE
Marine	NE NE	NE NE	NE NE				NE NE
Multilateral Operations CO2 Emissions from Biomass	NE NE	NE	NE				NE NE
COZ EMISSIONS FROM BIOMASS	NE						NE
	T						
	Total CO2 Equ	ivalent Emissio	ns without Lan	d Use. Land-L	Jse Change a	and Forestry	21.034

5.2.18 Luxembourg

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2013 Submission 2014 v1.0 LUXEMBOURG

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2 e	equivalent (Gg)		
Total (Net Emissions) (1)	10.449	432	470	69	0	9	11.428
1. Energy	9.931	58	108				10.097
A. Fuel Combustion (Sectoral Approach)	9.931	17	108				10.056
Energy Industries	572	1	3				576
Manufacturing Industries and Construction	1.560	2	26				1.589
3. Transport	6.314	6	78				6.398
Other Sectors	1.484	8	1				1.493
5. Other	NO	NO	NO				NC
B. Fugitive Emissions from Fuels	0	41	0				4
Solid Fuels	NO	NO	IE				IE,NC
Oil and Natural Gas	0	41	IE				4
2. Industrial Processes	509	0	0	69	0	9	580
A. Mineral Products	422	NO	NE				422
B. Chemical Industry	0	0	0				(
C. Metal Production	87	NA,NO	NA		IE	IE	87
D. Other Production	NO	0	0				(
E. Production of Halocarbons and SF6				IE	IE	IE	IE
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE
G. Other	NA	NA	NA	IE	IE	IE	IE,NA
3. Solvent and Other Product Use	9		3				11
4. Agriculture		341	345				686
A. Enteric Fermentation		249					249
B. Manure Management		92	34				125
C. Rice Cultivation		NA,NO					NA,NO
D. Agricultural Soils(3)		NA,NE	311				311
E. Prescribed Burning of Savannas		NE	NE				NE
F. Field Burning of Agricultural Residues		NO	NO				NO
G. Other		NE	NE				NE
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NI
A. Forest Land	NE	NE	NE				NE
B. Cropland	NE	NE	NE				NE
C. Grassland	NE	NE	NE				NE
D. Wetlands	NE	NE	NE				NE
E. Settlements	NE	NE	NE				NE
F. Other Land	NE NE	NE	NE				NE
G. Other	NE NE	NE	NE				NE
6. Waste	IE,NA,NO,	33	14				47
A. Solid Waste Disposal on Land	NA,NO	24	0				24
B. Waste-water Handling	INA,NO	3	7				1(
C. Waste Incineration	IE	JE	IE				IE
D. Other	NO NO	6	7				13
7. Other (as specified in Summary 1.A)	NE NE	NE	, NE	NE	NE	NE	NE
1. Other (as specifica in outlinary 1.24)	100	INE	, , ,	INC.	112	INE	141
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE
Aviation	NE NE	NE NE	NE				NE
Marine	NE NE	NE.	NE NE				NE
Multilateral Operations	NE NE	NE.	NE.				NI
	NE NE	140	142				NI
ICO2 Fmissions from Biomass							
CO2 Emissions from Biomass	INL						10
CO2 Emissions from Biomass		uivalent Emissio	ne without Lon	dllee Land I	lea Change	and Forcetry	11.42

5.2.19 Latvia

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2013 Submission 2014 v1.0 LATVIA

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2 e	equivalent (Gg)		
Total (Net Emissions) (1)	7.416	1.640	1.821	84	NA,NE,NO,	14	10.97
1. Energy	6.800	297	130				7.22
A. Fuel Combustion (Sectoral Approach)	6.800	238	130				7.16
Energy Industries	2.169	4	9				2.182
Manufacturing Industries and Construction	834	8	18				86
3. Transport	2.796	4	54				2.854
Other Sectors	993	221	49				1.263
5. Other	7	0	1				8
B. Fugitive Emissions from Fuels	0	59	0				5
Solid Fuels	NO	NO	IE				IE,NC
Oil and Natural Gas	0	59	IE				59
2. Industrial Processes	567	0	0	84	NA,NO	14	66
A. Mineral Products	563	IE,NA,NE,NO	NE				563
B. Chemical Industry	0	0	0				(
C. Metal Production	5	0	NO		IE	IE	
D. Other Production	NA	0	0				(
E. Production of Halocarbons and SF6				IE	IE	IE	IE
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE
G. Other	NO	NO	NO	IE	IE	IE	IE,NC
3. Solvent and Other Product Use	49		0				49
4. Agriculture		801	1.642				2.443
A. Enteric Fermentation		703					700
B. Manure Management		98	115				213
C. Rice Cultivation		NO					NC
D. Agricultural Soils(3)		NA,NE	1.526				1.526
E. Prescribed Burning of Savannas		NE	NE				NE
F. Field Burning of Agricultural Residues		NO	NO				NC
G. Other		NE	NE				NE
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NI
A. Forest Land	NE	NE	NE				NE
B. Cropland	NE	NE	NE				NE
C. Grassland	NE	NE	NE				NE
D. Wetlands	NE	NE	NE				NE
E. Settlements	NE	NE	NE				NE
F. Other Land	NE	NE	NE				NE
G. Other	NE	NE	NE				NE
6. Waste	0	542	49				59
A. Solid Waste Disposal on Land	NANO	454	0				454
B. Waste-water Handling	10,410	87	48				134
C. Waste Incineration	0	NA,NO	0				
D. Other	NA NA	1	2				
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	N
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE
Aviation	NE NE	NE NE	NE NE				NE NE
Marine	NE NE	NE NE	NE NE				NE NE
Multilateral Operations	NE NE	NE.	NE.				N
CO2 Emissions from Biomass	NE NE	, VL	.,,_				NI NI
COL LINGUIGIO II OIII DIOIIIGGG	INL						IN
	Total CO2 F=	uisplant Emissis	no without!	dlloo lord!	laa Chance e	and Forestr	10.97
		uivalent Emissio		d Use, Land-L d Use, Land-L			10.97 NE

5.2.20 Malta

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2013 Submission 2014 v1.0 MALTA

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2 e	equivalent (Gg)		
Total (Net Emissions) (1)	2.439	104	56	171	0	0	2.770
1. Energy	2.438	3	11				2.452
A. Fuel Combustion (Sectoral Approach)	2.438	3	11				2.452
Energy Industries	1.696	1	4				1.701
Manufacturing Industries and Construction	64	0	0				64
3. Transport	538	1	7				547
Other Sectors	140	0					140
5. Other	NA	NA	NA				NA
B. Fugitive Emissions from Fuels	0	0	0				(
Solid Fuels	NA,NO	NA,NO	IE				IE,NA,NC
Oil and Natural Gas	0	0	IE				(
2. Industrial Processes	0	0	0	171	0	0	172
A. Mineral Products	0	NO	NE				(
B. Chemical Industry	0	0	0				(
C. Metal Production	NA,NO	NA,NO	NA		IE	IE	IE,NA,NO
D. Other Production	NA	0	0				(
E. Production of Halocarbons and SF6				IE	IE	IE	IE
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE
G. Other	NA	NA	NA	IE	IE	IE	IE,NA
3. Solvent and Other Product Use	NA		2				2
4. Agriculture		51	29				80
A. Enteric Fermentation		29					29
B. Manure Management		22	3				25
C. Rice Cultivation		NA,NO					NA,NO
D. Agricultural Soils(3)		NA	26				26
E. Prescribed Burning of Savannas		NE	NE				NE
F. Field Burning of Agricultural Residues		NA,NO	NA,NO				NA,NO
G. Other		NE	NE				NE
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				Ni
A. Forest Land	NE	NE	NE				NE
B. Cropland	NE	NE	NE				NE
C. Grassland	NE	NE	NE				NE
D. Wetlands	NE	NE	NE				NE
E. Settlements	NE	NE	NE				NE
F. Other Land	NE	NE	NE				NE
G. Other	NE	NE	NE				NE
6. Waste	1	50	14				65
A. Solid Waste Disposal on Land	NA	50	0				50
B. Waste-water Handling		0	14				14
C. Waste Incineration	1	0					
D. Other	NO	NO	NO				NO
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE
Aviation	NE	NE	NE				NE
Marine	NE	NE	NE				NE
Multilateral Operations	NE	NE	NE				NI
CO2 Emissions from Biomass	NE						N
		uivalent Emissic					2.770
	Total CO2	Equivalent Emis	sions with Lan	d Use, Land-U	Jse Change a	and Forestry	NE

5.2.21 Netherlands

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2013 Submission 2014 v1.0 NETHERLANDS

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2 e	equivalent (Gg)		
Total (Net Emissions) (1)	164.548	15.023	9.292	2.055	151	196	191.264
1. Energy	158.577	2.278	626				161.481
A. Fuel Combustion (Sectoral Approach)	157.032	1.515	626				159.174
Energy Industries	60.027	105	264				60.396
Manufacturing Industries and Construction	24.644	54	29				24.727
3. Transport	32.704	46	271				33.020
Other Sectors	39.316	1.310	56				40.682
5. Other	341	1	6				348
B. Fugitive Emissions from Fuels	1.545	762	0				2.307
Solid Fuels	631	21	IE				652
Oil and Natural Gas	914	742	IE				1.656
2. Industrial Processes	5.851	287	1.279	2.055	151	196	9.819
A. Mineral Products	1.165	NO	NE				1.165
B. Chemical Industry	3.209	252	1.267				4.728
C. Metal Production	1.177	IE,NA,NO	NO		IE	IE	1.177
D. Other Production	26	0	0				26
E. Production of Halocarbons and SF6				IE	IE	IE	IE
F. Consumption of Halocarbons and SF6 (2)				IE	ΙE	IE	IE
G. Other	273	35	13	IE	ΙE	IE	321
3. Solvent and Other Product Use	120		87				206
4. Agriculture		9.508	6.802				16.310
A. Enteric Fermentation		6.813					6.813
B. Manure Management		2.695	1.039				3.734
C. Rice Cultivation		NO					NO.
D. Agricultural Soils(3)		NA,NE	5.763				5.763
E. Prescribed Burning of Savannas		NE	NE				NE
F. Field Burning of Agricultural Residues		NO	NO				NO.
G. Other		NE	NE				NE
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE
A. Forest Land	NE	NE	NE				NE
B. Cropland	NE	NE	NE				NE
C. Grassland	NE	NE	NE				NE
D. Wetlands	NE	NE	NE				NE
E. Settlements	NE	NE	NE				NE
F. Other Land	NE	NE	NE				NE
G. Other	NE	NE	NE				NE
6. Waste	IE,NA,NO,	2.951	498				3.449
A. Solid Waste Disposal on Land	NANO	2.732	0				2.732
B. Waste-water Handling	,	195	462				658
C. Waste Incineration	IE	IE	IE				IE,
D. Other	NA	24	35				59
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE
. ,							
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE
Aviation	NE	NE.	NE				NE
Marine	NE NE	NE.	NE.				NE NE
Multilateral Operations	NE NE	NE	NE.				NE
CO2 Emissions from Biomass	NE NE	.,					NE
	Total CO2 Four	ivalent Emissio	ns without Lan	dlise Land I	Ise Change	and Forestry	191.264
	TOTAL COZ EQU				Jse Change a		131.204

5.2.22 Poland

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2013 Submission 2014 v1.0 POLAND

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2 e	equivalent (Gg)		
Total (Net Emissions) (1)	320.969	40.748	29.730	8.154	42	42	399.68
1. Energy	302.924	15.474	2.106				320.50
A. Fuel Combustion (Sectoral Approach)	299.522	3.150	2.106				304.77
Energy Industries	171.584	94	871				172.54
Manufacturing Industries and Construction	31.143	89	175				31.40
3. Transport	44.291	99	550				44.94
Other Sectors	52.504	2.869	509				55.88
5. Other	IE,NO	IE,NO	IE,NO				IE,NC
B. Fugitive Emissions from Fuels	3.402	12.323	0				15.72
Solid Fuels	1.553	7.282	IE				8.83
Oil and Natural Gas	1.849	5.041	IE				6.89
2. Industrial Processes	17.131	304	1.051	8.154	42	42	26.72
A. Mineral Products	9.538	NA	NE				9.53
B. Chemical Industry	4.317	277	1.051				5.64
C. Metal Production	2.135	26	NA,NO		IE	IE	2.16
D. Other Production	10	0	0				1
E. Production of Halocarbons and SF6				IE	IE	IE	II
F. Consumption of Halocarbons and SF6 (2)				IE	ΙE	IE	II
G. Other	1.132	NO	NO	IE	ΙE	IE	1.13
3. Solvent and Other Product Use	636		124				76
4. Agriculture		11.249	25.319				36.56
A. Enteric Fermentation		8.852					8.85
B. Manure Management		2.378	4.820				7.19
C. Rice Cultivation		NA,NO					NA,NC
D. Agricultural Soils(3)		NA	20.487				20.487
E. Prescribed Burning of Savannas		NE	NE				NE
F. Field Burning of Agricultural Residues		19	11				31
G. Other		NE	NE				N
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				N
A. Forest Land	NE	NE	NE				NI
B. Cropland	NE	NE	NE				NI
C. Grassland	NE	NE	NE				NI
D. Wetlands	NE	NE	NE				NI
E. Settlements	NE	NE	NE				N
F. Other Land	NE	NE	NE				NI
G. Other	NE	NE	NE				N
6. Waste	279	13.722	1.131				15.13
A. Solid Waste Disposal on Land	NA,NO	8.395	0				8.39
B. Waste-water Handling	10,410	5.327	1.114				6.44
C. Waste Incineration	279	NA	17				29
D. Other	NO	NO	NO				NC
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	N
Memo Items: (4)							
International Bunkers	NE	NE	NE				NI
Aviation	NE NE	NE NE	NE NE				NI NI
Marine	NE NE	NE NE	NE NE				N
Multilateral Operations	NE NE	NE.	NE				N
CO2 Emissions from Biomass	NE NE	145	INL				N N
COL LINES.C.O HOM DIGINAGO	IVL						· ·
	Total CO2 Face	ivalent Emissio	ne without Lan	dllee Land I	Ico Chanca	and Forestry	399.68
		Equivalent Emissio					399.68 NE

5.2.23 Portugal

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2013 Submission 2014 v1.0 PORTUGAL

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES	•		CO2 e	quivalent (Gg)		
Total (Net Emissions) (1)	48.389	12.311	4.468	1.784	NA,NE,NO,	48	67.001
1. Energy	44.552	560	500				45.611
A. Fuel Combustion (Sectoral Approach)	43.619	250	500				44.369
Energy Industries	16.024	8	127				16.159
Manufacturing Industries and Construction	6.973	33	77				7.083
3. Transport	16.498	26	164				16.687
Other Sectors	4.076	183	131				4.391
5. Other	48	0	0				49
B. Fugitive Emissions from Fuels	932	310	0				1.242
1. Solid Fuels	1	8	IE				Ç
Oil and Natural Gas	931	302	IE				1.233
2. Industrial Processes	3.628	39	66	1.784	NA,NO	48	5.566
A. Mineral Products	3.491	17	NE				3.508
B. Chemical Industry	75	8	66				149
C. Metal Production	63	13	NO		ΙE	IE	76
D. Other Production	0	0	0				(
E. Production of Halocarbons and SF6				IE	ΙE	IE	IE
F. Consumption of Halocarbons and SF6 (2)				IE	ΙE	IE	IE
G. Other	NO	NO	NO	IE	IE	IE	IE,NO
3. Solvent and Other Product Use	190		40				230
4. Agriculture	100	3.903	3.270				7.173
A. Enteric Fermentation		2.653	0.270				2.653
B. Manure Management		1.049	286				1.335
C. Rice Cultivation		176	200				176
D. Agricultural Soils(3)		NA	2.966				2.966
E. Prescribed Burning of Savannas		NE NE	NE				NE
F. Field Burning of Agricultural Residues		25	18				43
G. Other		NE	NE				NE
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE
A. Forest Land	NE	NE	NE				NE
B. Cropland	NE	NE	NE				NE
C. Grassland	NE	NE	NE				NE
D. Wetlands	NE	NE	NE				NE
E. Settlements	NE	NE	NE				NE
F. Other Land	NE	NE	NE				NE
G. Other	NE	NE	NE				NE
6. Waste	18	7.810	592				8.42°
A. Solid Waste Disposal on Land	NA	5.044	0				5.044
B. Waste-water Handling		2.765	582				3.347
C. Waste Incineration	18	0	10				29
D. Other	NO	NO	NO				NC
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	N
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE
Aviation	NE	NE	NE				NE
Marine	NE	NE	NE				NE
Multilateral Operations	NE	NE	NE				NI
CO2 Emissions from Biomass	NE						NI
	Total CO2 Equ	ivalent Emissio	ne without Lan	dllee Landl	lee Chango	and Forestry	67.00
		quivalent Emis					67.00 NE

5.2.24 Romania

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2013 Submission 2014 v1.0 ROMANIA

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2 e	quivalent (Gg)		
Total (Net Emissions) (1)	73.269	21.932	11.440	1.060	6	41	107.748
1. Energy	62.955	7.791	446				71.192
A. Fuel Combustion (Sectoral Approach)	62.334	861	446				63.641
Energy Industries	26.336	11	96				26.443
Manufacturing Industries and Construction	13.422	36	55				13.514
3. Transport	14.536	34	147				14.718
Other Sectors	7.481	760	142				8.382
5. Other	558	21	6				585
B. Fugitive Emissions from Fuels	621	6.930	0				7.551
Solid Fuels	NA	545	ΙE				545
Oil and Natural Gas	621	6.385	ΙE				7.006
2. Industrial Processes	10.178	14	953	1.060	6	41	12.252
A. Mineral Products	4.426	NA,NE	NE				4.426
B. Chemical Industry	2.737	14	953				3.704
C. Metal Production	3.014	NA,NE	NA		ΙE	IE	3.014
D. Other Production	NE	0	0				
E. Production of Halocarbons and SF6				ΙE	IE	IE	IE
F. Consumption of Halocarbons and SF6 (2)				ΙΕ	ΙE	IE	IE
G. Other	NA	NA	NA	ΙΕ	IE	IE	IE,NA
3. Solvent and Other Product Use	128	10.	NE.				128
4. Agriculture	120	8.849	9.426				18.276
A. Enteric Fermentation		8.166	01.120				8.166
B. Manure Management		584	1.074				1.658
C. Rice Cultivation		18	1.07 1				18
D. Agricultural Soils(3)		NE,NO	8.324				8.324
E. Prescribed Burning of Savannas		NE NE	NE				NE
F. Field Burning of Agricultural Residues		81	28				109
G. Other		NE NE	NE				NE NE
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NI
		NE	NE NE				NE
A. Forest Land	NE						
B. Cropland	NE	NE	NE				NE
C. Grassland	NE	NE	NE				NE
D. Wetlands	NE	NE	NE				NE
E. Settlements	NE	NE	NE				NE
F. Other Land	NE	NE	NE				NE
G. Other	NE	NE	NE				NE
6. Waste	9	5.277	615				5.90 ²
A. Solid Waste Disposal on Land	NA	2.966	0				2.966
B. Waste-water Handling		2.311	614				2.924
C. Waste Incineration	9	NE	1				10
D. Other	NA	NA	NA				N.A
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	N
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE
Aviation	NE	NE	NE				NE
Marine	NE	NE	NE				N
Multilateral Operations	NE	NE	NE				N
CO2 Emissions from Biomass	NE						N
	Total CO2 Equi	ivalent Emission	ns without Lan	d Use, Land-L	Ise Change a	and Forestry	107.748
		quivalent Emiss					NE

5.2.25 Sweden

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2013 Submission 2014 v1.0 SWEDEN

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2 e	equivalent (Gg)	•	
Total (Net Emissions) (1)	44.494	4.627	6.119	765	69	47	56.121
1. Energy	40.001	524	974				41.498
A. Fuel Combustion (Sectoral Approach)	39.116	464	974				40.553
Energy Industries	11.178	92	474				11.744
Manufacturing Industries and Construction	7.421	48	254				7.722
3. Transport	19.469	53	145				19.667
Other Sectors	883	272	98				1.253
5. Other	164	0	2				166
B. Fugitive Emissions from Fuels	885	60	0				945
Solid Fuels	7	0	IE				7
Oil and Natural Gas	879	60	IE				939
2. Industrial Processes	4.228	8	74	765	69	47	5.191
A. Mineral Products	2.048	NA	NE				2.048
B. Chemical Industry	130	7	74				212
C. Metal Production	2.050	0	NA,NO		IE	IE	2.050
D. Other Production	NE	0	0				
E. Production of Halocarbons and SF6				IE	IE	IE	IE
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE
G. Other	NO	NO	NO	IE	ΙE	IE	IE,NO
3. Solvent and Other Product Use	204		98				303
4. Agriculture		2.783	4.813				7.596
A. Enteric Fermentation		2.475					2.475
B. Manure Management		308	428				736
C. Rice Cultivation		NO					NO.
D. Agricultural Soils(3)		NA,NE	4.384				4.384
E. Prescribed Burning of Savannas		NE	NE				NE
F. Field Burning of Agricultural Residues		NO	NO				NO.
G. Other		NE	NE				NE
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE
A. Forest Land	NE	NE	NE				NE
B. Cropland	NE	NE	NE				NE
C. Grassland	NE	NE	NE				NE
D. Wetlands	NE	NE	NE				NE
E. Settlements	NE	NE	NE				NE
F. Other Land	NE	NE	NE				NE
G. Other	NE	NE	NE				NE
6. Waste	61	1.313	161				1.534
A. Solid Waste Disposal on Land	NO	1.005	0				1.005
B. Waste-water Handling		308	155				463
C. Waste Incineration	61	0	6				66
D. Other	NA	NA	NA				NA
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE
, , , , , , , , , , , , , , , , , , , ,							
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE
Aviation	NE NE	NE NE	NE.				NE
Marine	NE NE	NE NE	NE NE				NE
Multilateral Operations	NE NE	NE	NE				NE
CO2 Emissions from Biomass	NE NE	142	142				NE NE
	142						Iqu
	Total CO2 Fax	ivalent Emissio	ne without Lon	dllee Land I	lea Change	and Forestry	56.121
					Jse Change a Jse Change a		56.121 NE,

5.2.26 Slovenia

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2013 Submission 2014 v1.0 SLOVENIA

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2 e	equivalent (Gg)		
Total (Net Emissions) (1)	15.022	1.800	1.101	232	26	17	18.197
1. Energy	14.209	344	147				14.701
A. Fuel Combustion (Sectoral Approach)	14.129	136	147				14.412
Energy Industries	5.665	2	26				5.692
Manufacturing Industries and Construction	1.654	5	16				1.675
3. Transport	5.019	7	53				5.078
Other Sectors	1.788	122	53				1.963
5. Other	3	0	0				3
B. Fugitive Emissions from Fuels	80	208	0				289
Solid Fuels	80	187	IE				267
Oil and Natural Gas	0	21	IE				21
2. Industrial Processes	808	0	0	232	26	17	1.082
A. Mineral Products	629	NA	NE				629
B. Chemical Industry	1	0	0				1
C. Metal Production	178	NA,NO	NO		ΙE	IE	178
D. Other Production	NA	0	0				0
E. Production of Halocarbons and SF6				IE	IE	IE	IE
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE
G. Other	NA	NA	NA	IE	ΙE	IE	IE,NA,
3. Solvent and Other Product Use	NA,NE		65				65
4. Agriculture		1.036	828				1.864
A. Enteric Fermentation		648					648
B. Manure Management		388	128				517
C. Rice Cultivation		NO					NO,
D. Agricultural Soils(3)		NO	700				700
E. Prescribed Burning of Savannas		NE	NE				NE
F. Field Burning of Agricultural Residues		NA,NO	NA,NO				NA,NO,
G. Other		NE	NE				NE
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE
A. Forest Land	NE	NE	NE				NE
B. Cropland	NE	NE	NE				NE
C. Grassland	NE	NE	NE				NE
D. Wetlands	NE NE	NE.	NE.				NE
E. Settlements	NE	NE.	NE				NE.
F. Other Land	NE NE	NE.	NE.				NE NE
G. Other	NE	NE	NE				NE
6. Waste	5	419	60				485
A. Solid Waste Disposal on Land	NANO	359	0				359
B. Waste-water Handling	INA,INO	60	60				121
C. Waste Incineration	5	NA	0				121
D. Other	NA NA	NA NA	NA				NA,
7. Other (as specified in Summary 1.A)	NE NE	NE.	NE.	NE	NE	NE	NE.
1. Carot (as specified in Cultilliary LA)	IAE	INE	NE	INC	INC	IAIT	NE
Memo Items: (4)							
International Bunkers	NIE	NE	N/E				
	NE	NE NE	NE				NE NE
Aviation	NE	NE	NE NE				NE NE
Marine	NE	NE NE	NE NE				NE
Multilateral Operations	NE	NE	NE				NE
CO2 Emissions from Biomass	NE						NE
		iivalent Emissio					18.197
	Total CO2 E	Equivalent Emis	sions with Lan	d Use, Land-L	Jse Change a	and Forestry	NE,

5.2.27 Slovakia

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2013 Submission 2014 v1.0 SLOVAKIA

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2 e	equivalent (Gg)		
Total (Net Emissions) (1)	36.520	4.180	2.792	494	22	22	44.030
1. Energy	28.691	1.126	175				29.991
A. Fuel Combustion (Sectoral Approach)	28.690	54	175				28.919
Energy Industries	9.429	7	37				9.473
Manufacturing Industries and Construction	6.606	8	15				6.629
3. Transport	6.403	13	78				6.493
Other Sectors	5.277	24	44				5.346
5. Other	976	2	1				978
B. Fugitive Emissions from Fuels	0	1.072	0				1.072
Solid Fuels	NA,NO	316	IE				316
Oil and Natural Gas	0	756	IE				756
2. Industrial Processes	7.738	2	302	494	22	22	8.579
A. Mineral Products	2.383	NA	NE				2.383
B. Chemical Industry	652	1	302				955
C. Metal Production	4.703	1	NA		IE	IE	4.704
D. Other Production	NO	0	0				0
E. Production of Halocarbons and SF6				IE	IE	IE	IE
F. Consumption of Halocarbons and SF6 (2)				IE	ΙE	IE	IE
G. Other	NA	NA	NA	IE	ΙE	IE	IE,NA,
3. Solvent and Other Product Use	82		91				173
4. Agriculture		1.065	2.071				3.137
A. Enteric Fermentation		914					914
B. Manure Management		151	300				451
C. Rice Cultivation		NA,NO					NA,NO,
D. Agricultural Soils(3)		NA,NO	1.771				1.771
E. Prescribed Burning of Savannas		NE	NE				NE
F. Field Burning of Agricultural Residues		NA,NO	NA,NO				NA,NO,
G. Other		NE	NE				NE
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE
A. Forest Land	NE	NE	NE				NE
B. Cropland	NE	NE	NE				NE
C. Grassland	NE	NE	NE				NE
D. Wetlands	NE	NE	NE				NE
E. Settlements	NE	NE	NE				NE
F. Other Land	NE NE	NE	NE				NE.
G. Other	NE	NE	NE.				NE.
6. Waste	10	1.987	153				2.150
A. Solid Waste Disposal on Land	NO	1.624	0				1.624
B. Waste-water Handling	110	292	72				363
C. Waste Incineration	10	NO NO	2				12
D. Other	NO	71	79				150
7. Other (as specified in Summary 1.A)	NE NE	NE.	NE	NE	NE	NE	NE
Care. (ac specifica in cultillary 124)	140	NL	INL	INL	IVL	IAE	, i
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE
Aviation	NE NE	NE NE	NE NE				NE NE
Marine	NE NE	NE NE	NE NE				NE NE
Multilateral Operations	NE NE	NE NE	NE NE				NE NE
CO2 Emissions from Biomass	NE NE	NE	NE				NE NE
CO2 LINISSIONS ITOMI DIOMIASS	NE						NE
	T-1-1-000 T	ivalent Emissio		111	0		44.030
	Lotal (10) Fan	III/alant Emicein	ne without I an	Lica Land-L	ICA (hange s		44 030

5.2.28 United Kingdom

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2013
Submission 2014 v1.0
UNITED KINGDOM

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2 6	equivalent (Gg)	-	
Total (Net Emissions) (1)	470.407	50.236	35.313	14.282	208	542	570.988
1. Energy	459.507	7.695	4.104				471.306
A. Fuel Combustion (Sectoral Approach)	455.341	947	4.104				460.392
Energy Industries	171.004	203	1.449				172.656
Manufacturing Industries and Construction	64.511	125	899				65.535
3. Transport	111.169	60	974				112.203
Other Sectors	106.135	558	759				107.452
5. Other	2.522	1	23				2.547
B. Fugitive Emissions from Fuels	4.166	6.748	0				10.91
Solid Fuels	177	1.551	IE				1.728
Oil and Natural Gas	3.989	5.197	IE				9.186
2. Industrial Processes	10.648	86	64	14.282	208	542	25.831
A. Mineral Products	6.810	3	NE				6.814
B. Chemical Industry	2.668	82	61				2.811
C. Metal Production	1.170	0	3		IE	IE	1.174
D. Other Production	NE	0	0				(
E. Production of Halocarbons and SF6				IE	IE	IE	IE
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE
G. Other	NA	NA	NA	IE	IE	IE	IE,NA
3. Solvent and Other Product Use	NE		NE,NO				NENO
4. Agriculture		22.345	29.926				52.271
A. Enteric Fermentation		15.592					15.592
B. Manure Management		6.753	2.604				9.358
C. Rice Cultivation		NA,NO					NA,NO
D. Agricultural Soils(3)		IE,NA,NE,NO	27.321				27.321
E. Prescribed Burning of Savannas		NE	NE				NE
F. Field Burning of Agricultural Residues		NA,NO	NA,NO				NA,NO
G. Other		NE	NE				NE
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				N
A. Forest Land	NE	NE	NE				NE
B. Cropland	NE	NE	NE				NE
C. Grassland	NE	NE	NE				NE
D. Wetlands	NE	NE	NE				NE
E. Settlements	NE	NE	NE				NE
F. Other Land	NE	NE	NE				NE
G. Other	NE	NE	NE				NE
6. Waste	252	20.109	1,219				21.580
A. Solid Waste Disposal on Land	NA,NE,NO	18.483	0				18.483
B. Waste-water Handling	, <u>_</u> ,	1.624	1.174				2.798
C. Waste Incineration	252	2	45				299
D. Other	NA	NA NA	NA				NA
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE
. ,							
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE
Aviation	NE NE	NE NE	NE				NE
Marine	NE NE	NE.	NE NE				NE
Multilateral Operations	NE NE	NE	NE				N
CO2 Emissions from Biomass	NE.	142	142				NI NI
	INE						14.
	Total CO2 Ea	uivalent Emissio	ne without Lan	dllee Land I	Isa Chango	and Forestry	570.988
	Total CO2 Eq	uivaletti EttiiSSIO	ms without Lan	u USE, Land-U	ose Unange a	ina rolesity	570.980

5.2.29 EU-15

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2013 Submission 2014 v1.0 EUROPEAN UNION (15)

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES	,,,,	l.	CO2 €	equivalent (Gg			
Total (Net Emissions) (1)	2.931.104	289.405	258.605	73,919	2.676	5.911	3.561.620
1. Energy	2.770.651	38.261	26.647	10.010	2.0.0	0.011	2.835.559
A. Fuel Combustion (Sectoral Approach)	2.752.798	12.420	26.647				2.791.865
Energy Industries	998.200	2.670	8.099				1.008.969
Manufacturing Industries and Construction	437.188	1,239	4.934				443.361
3. Transport	752.604	954	7.518				761.076
Other Sectors	558.860	7.547	5.795				572.201
5. Other	5.946	10	301				6.257
B. Fugitive Emissions from Fuels	17.853	25.842	0				43.694
Solid Fuels	854	6.251	IE				7.105
Oil and Natural Gas	16.999	19.590	IE				36.589
2. Industrial Processes	152.972	623	7.541	73.919	2.676	5.911	243.642
A. Mineral Products	84.157	20	NE				84.177
B. Chemical Industry	31.200	461	7.510				39.170
C. Metal Production	37.282	106	19		ΙE	IE	37.407
D. Other Production	29	0	0				29
E. Production of Halocarbons and SF6				IE	ΙE	IE	ΙΕ
F. Consumption of Halocarbons and SF6 (2)				IE	ΙE	IE	ΙΕ
G. Other	305	35	13	IE	IE	IE	353
3. Solvent and Other Product Use	5.214		2.116				7.329
4. Agriculture		163.815	210.893				374.707
A. Enteric Fermentation		120.823					120.823
B. Manure Management		40.172	20.842				61.015
C. Rice Cultivation		2.274					2.274
D. Agricultural Soils(3)		9	189.925				189.934
E. Prescribed Burning of Savannas		NE	NE				NE
F. Field Burning of Agricultural Residues		536	125				661
G. Other		NE	NE				NE
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE
A. Forest Land	NE	NE	NE				NE
B. Cropland	NE	NE	NE				NE
C. Grassland	NE	NE	NE				NE
D. Wetlands	NE	NE	NE				NE
E. Settlements	NE.	NE	NE				NE
F. Other Land	NE NE	NE NE	NE.				NE NE
G. Other	NE NE	NE NE	NE.				NE
6. Waste	2,268	86.707	11.408				100.383
A. Solid Waste Disposal on Land	2.200	74.596	11.408				74.596
B. Waste-water Handling	0	10.926	10.007				20.933
C. Waste Incineration	2.252	78	171				2.501
D. Other	15	1.106	1.230				2.352
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE
(. 42		.42	. 42	.45		.,,_
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE
Aviation	NE NE	NE NE	NE NE				NE NE
Marine	NE NE	NE NE	NE NE				NE NE
Multilateral Operations	NE NE	NE.	NE				NE.
CO2 Emissions from Biomass	NE NE	NE	INL				NE.
OOL Emissions II OIII Diomass	NL						NL
	Total CO2 F-	in plant Emissis	no without !	dlloo lord!	laa Chance	and Forest	2 564 620
		ivalent Emissio					3.561.620
	Total CO2	Equivalent Emis	sions with Lan	a ∪se, Land-l	use Change a	and Forestry	NE,

5.2.30 EU-28

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2013 Submission 2014 v1.0 EUROPEAN UNION (28)

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2 (equivalent (Gg)		
Total (Net Emissions) (1)	3.639.582	392.608	334.000	89.133	2.780	6.320	4.464.424
1. Energy	3,419,480	72.887	31.542				3,523,908
A. Fuel Combustion (Sectoral Approach)	3.396.554	18.519	31.542				3.446.615
Energy Industries	1.340.803	2.871	9.658				1.353.331
Manufacturing Industries and Construction	520.445	1.468	5.352				527.265
3. Transport	875.354	1.204	9.364				885.922
Other Sectors	651.318	12.942	6.837				671.096
5. Other	8.634	35	331				9.000
B. Fugitive Emissions from Fuels	22.926	54.368	0				77.293
Solid Fuels	2.681	17.747	IE				20.429
Oil and Natural Gas	20.244	36.620	IE				56.864
2. Industrial Processes	210.589	1.098	11.703	89.133	2.780	6.320	321.623
A. Mineral Products	112.199	23	NE				112.223
B. Chemical Industry	43.180	848	11.671				55.699
C. Metal Production	52.654	191	19		IE	IE	52.865
D. Other Production	47	0	0				47
E. Production of Halocarbons and SF6				IE	IE	IE	IE
F. Consumption of Halocarbons and SF6 (2)				IE	ΙE	IE	IE
G. Other	2.508	35	13	IE	ΙE	IE	2.556
3. Solvent and Other Product Use	6.620		3.047				9.666
4. Agriculture		197.490	273.290				470.780
A. Enteric Fermentation		147.531					147.531
B. Manure Management		46.865	30.007				76.871
C. Rice Cultivation		2.417					2.417
D. Agricultural Soils(3)		18	243.108				243.126
E. Prescribed Burning of Savannas		NE	NE				NE
F. Field Burning of Agricultural Residues		660	175				835
G. Other		NE	NE				NE
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE
A. Forest Land	NE	NE	NE				NE
B. Cropland	NE	NE	NE				NE
C. Grassland	NE	NE	NE				NE
D. Wetlands	NE	NE	NE				NE
E. Settlements	NE	NE	NE				NE
F. Other Land	NE	NE	NE				NE
G. Other	NE	NE	NE				NE
6. Waste	2.894	121.133	14,419				138.446
A. Solid Waste Disposal on Land	0	99.122	0				99.122
B. Waste-water Handling		20.721	12.866				33.587
C. Waste Incineration	2.879	79	207				3.165
D. Other	15	1.211	1.346				2.571
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE
Aviation	NE NE	NE	NE				NE
Marine	NE NE	NE	NE.				NE
Multilateral Operations	NE	NE.	NE				NE
CO2 Emissions from Biomass	NE						NE
	Total CO2 For	uivalent Emissio	ns without I an	d Use Tand-I	Ise Change a	and Forestry	4.464.424
		Equivalent Emis					NE,

5.3 Annex III. Methodology for the proxy calculated by EEA

The proxy inventory is now largely based on estimates from member states with gap filling only where necessary. Detail on the methodology of the proxy calculated by EEA that is used for gap filling is provided here.

5.3.1 Energy

5.3.1.1 1.A Energy – Fuel combustion

Methods and data sources used

Four different approaches for the estimation of CO₂ emissions from Fuel Combustion based on different data sources and methods were calculated for each Member State as presented in Table 14. Subsequently, the approach that led to emission estimates closest to the Member States' inventory estimation in past years was chosen as the final value for each Member State.

Table 14 Overview of approaches used for the estimation of CO₂ emissions from 1.A fuel combustion

	Approach I	Approach II	Approach III	Approach IV		
Data sources	BP energy review	Eurostat monthly	EUTL data,	Member States'		
		energy statistics	Eurostat data for	national energy		
			transport	statistics		
Method	2014 consump-	2014 consump-	detailed estima-	2014 consump-		
	tion trend for	tion trend for	tion for inventory	tion trend for		
	solid, liquid and	solid, liquid and	source categories	solid, liquid and		
	gaseous fuels	gaseous fuels	1A1, 1A2, 1A3	gaseous fuels		
	applied to inven-	applied to inven-	and 1A4, constant	applied to inven-		
	tory data for 2013	tory data for 2013	emissions for 1A5	tory data for 2013		

Source: Öko-Institut

In Approach I, the main source for the estimation of CO₂ emissions from source category 1.A (Energy - Fuel Combustion) is the most recent BP Statistical Review of World Energy, which contains individual data for 21 EU Member States. No data are published for Croatia, Cyprus, Estonia, Latvia, Luxembourg, Malta and Slovenia in this source. The share of these (small) countries in primary energy consumption amounts to approximately 2 % of total EU consumption, with some differences regarding individual energy sources. The BP data refer to primary energy consumption and covers only commercially traded fuels.

Approach II is based on Eurostat monthly energy statistics which reflect Member States' submissions of monthly Oil and Gas Questionnaires and monthly Coal Questionnaires to Eurostat.

In contrast to all other approaches for CO2 emissions from sector 1.A (Fuel Combustion), Approach III makes use of CO2 estimates for categories 1.A.1 (Energy Industries – chapter 5.3.1.2), 1.A.2 (Manufacturing Industries and Construction – chapter 5.3.1.3), 1.A.3 (Transport – chapter 5.3.1.4) and 1.A.4 (Other sectors i.e. Commercial/Institutional, Residential and Agriculture/Forestry/Fishing – chapter 5.3.1.5). In this 'bottom up' approach those CO2 emission estimates and construction of the contraction of the contractio

mates for 2013 are complemented with reported 2012 CO2 emissions for category 1.A.5 (Other) in order to estimate 2013 CO2 emissions for 1A (Fuel Combustion) CO2 emissions.

In Approach IV, finally, early national energy statistics are used: For a considerable number of Member States, preliminary energy statistics were available. Fuel consumption data were (if necessary) converted in energy units and aggregated to solid, liquid & gaseous fuel categories.

CO₂ emissions reported in source category 1.A (Fuel Combustion) are split up in the CRF by the fuel categories solid fuels, liquid fuels, gaseous fuels and other fuels. CO₂ emissions from other fuels cover mostly municipal or industrial waste incineration or co-incineration of secondary waste-type fuels. CO₂ emissions from the biomass fuel category are not accounted for in CRF category 1.A (Fuel Combustion) and were consequently not included in the estimation.

All data sources were used in order to derive specific information for the development of CO₂ emissions from the fuel categories solid, liquid and gaseous fuels, as defined in the CRF with source category 1.A (Fuel Combustion). For each of those fuel categories a fuel consumption trend 2012 to 2013 was derived from the respective data sources (this applies to approaches I (BP), II (Eurostat) and IV (national energy statistics)). 2013 CO₂ emissions per fuel category were then estimated by multiplying the CO₂ emissions in that fuel category of the previous year by the fuel category specific consumption trend. None of the data sources provided information on the development of CO₂ emissions from the other fuels category. Thus 2013 CO₂ emissions from other fuels in source category 1.A (Fuel Combustion) were approximated using the respective emissions as reported by the Member States for 2012²². For some Member States country-specific adjustments were made for other fuels, e.g. for Finland reporting peat under 'other fuels' which is included under solid fuels in BP or Eurostat statistics. The general approach to the CO₂ emission calculation for 1.A (Fuel combustion) is depicted in Equation 1 (applies to approaches I (BP), II (Eurostat) and IV (national energy statistics)):

In the case of Finland, CO₂ emissions from other fuels have an extraordinary high share in total 1A CO₂ emissions (16 % in 2012). This is due to the fact that Finland reports emissions from peat combustions in the other fuels category. For all other used data sources, however, peat would be classified as a solid fuel. Thus, Finnish CO₂ emissions from peat combustion in the past years were identified from the CRF submissions and transferred from "other fuels" to "solid fuels" in order to arrive at improved overall

CO2 emission estimates for category 1A Fuel Combustion.

Equation 1

$$E_{IA,CO2}^{Y} = \frac{c_{solid}^{Y}}{c_{solid}^{Y-1}} \cdot E_{solid,CO2}^{Y-1} + \frac{c_{liquid}^{Y}}{c_{liquid}^{Y-1}} \cdot E_{liquid,CO2}^{Y-1} + \frac{c_{gaseous}^{Y}}{c_{gaseous}^{Y-1}} \cdot E_{gaseous}^{Y-1} \cdot E_{other fuels,CO2}^{Y-1}$$
 with
$$E_{IA,CO2}^{Y} \qquad CO2 \ emissions \ in \ source \ category \ IA$$

$$c_{solid/liquid/gaseous}^{Y} consumption \ of \ solid/liquid/gaseous \ fuels$$

$$c_{solid/liquid/gaseous}^{Y-1} consumption \ of \ solid/liquid/gaseous \ fuels \ in \ the \ previous \ year$$

$$E_{...,CO2}^{Y-1} \qquad CO2 \ emissions \ in \ the \ respective \ fuel \ category \ in \ the \ previous \ year$$

In approach III (Bottom-up: EUTL data & Eurostat data for transport) the calculation approach is as follows:

Equation 2

$$\begin{split} E_{IA,CO2}^Y &= E_{IAI,CO2}^Y + E_{IA2,CO2}^Y + E_{IA3,CO2}^Y + E_{IA4,CO2}^{Y-1} + E_{IA,5CO2}^{Y-1} \\ with \\ E_{IA,CO2}^Y &\quad CO2 \ emissions \ in \ source \ category \ 1A \\ E_{IAI/IA2/IA5,CO2}^Y &\quad CO2 \ emission \ estimates \ in \ source \ category \ 1A1 / 1A2 / 1A3 \\ E_{IA4/IA5CO2}^{Y-1} &\quad CO2 \ emissions \ in \ source \ category \ 1A4 / 1A5 \ in \ the \ previous \ year \end{split}$$

All approaches were calculated for the years 2009 to 2013 (for BP data longer time series were available) and were compared with Member States' final inventory emissions. Based on the analysis of the data source time series and an expert judgment of the validity of the provisional Eurostat and Member States' energy statistics, a specific approach was chosen for each Member State. In this process, the overall selection criteria for CO₂ approaches in 1A are:

- An analysis of deviations for all approaches for the previous year.
- A check how well different approaches compare and whether the selected approach seems to be an outlier.
- An analysis of the likeliness of trend change year X vs. year X-1 with different approaches
- A compare with the results of Member States' own proxy inventories

The BP data source (approach I) was chosen for Bulgaria, Czech Republic, Greece, Netherlands, Portugal and Slovakia. Eurostat data (Approach II) was used for Belgium, Germany, Hungary, Luxembourg, Poland, Romania and United Kingdom. The Bottom-Up approach (Approach III) relying on EUTL data, Eurostat transport data and earlier officially reported emission data was chosen for Cyprus, Estonia, France, Ireland, Italy, Lithuania and Malta. Early national energy

statistics data (Approach IV) were chosen for Austria, Croatia, Denmark, Finland, Latvia, Slovenia, Spain and Sweden.

Member States' own proxy inventories were used for QA/QC purposes and for verification of the approximated GHG estimates: For countries submitting own proxy calculations, results for 1A were compared and the method that fitted best to Member States' own proxy calculations was selected for these countries.

The estimation for CH₄ emissions from source category 1.A (Fuel Combustion) is based on the approximated trend of CO₂ emissions and depicted in Equation 3:

Equation 3

```
\begin{split} E_{1\text{A,CH4}}^Y &= (\frac{E_{1\text{A,C02}}^Y}{E_{1\text{A,C02}}}) \cdot E_{1\text{A,CH4}}^{Y-1} \\ with \\ E_{1\text{A,CH4}}^Y & CH_4 \text{ emissions for source category } 1A \\ E_{1\text{A,C02}}^Y & CO_2 \text{ emissions for source category } 1A \text{ as estimated in this report} \\ E_{1\text{A,C02}}^{Y-1} & CO_2 \text{ emissions for source category } 1A \text{ from previous year} \\ E_{1\text{A,CH4}}^{Y-1} & CH_4 \text{ emissions for source category } 1A \text{ from previous year} \\ E_{1\text{A,CH4}}^{Y-1} & CH_4 \text{ emissions for source category } 1A \text{ from previous year} \end{split}
```

The estimation for N_2O emissions from source category 1.A (Fuel Combustion) is similar to CH_4 (Equation 4):

Equation 4

```
\begin{split} E_{1\text{A,N2O}}^Y &= (\frac{E_{1\text{A,CO2}}^Y}{E_{1\text{A,N2O}}}) \cdot E_{1\text{A,N2O}}^{Y-1} \\ with \\ E_{1\text{A,N2O}}^Y &\quad N_2O \, emissions \, \, for \, source \, \, category \, \, 1A \\ E_{1\text{A,CO2}}^Y &\quad CO_2 \, \, emissions \, \, for \, source \, \, category \, \, 1A \, as \, estimated \, \, in \, this \, report \\ E_{1\text{A,CO2}}^{Y-1} &\quad CO_2 \, \, emissions \, \, for \, source \, \, category \, \, 1A \, \, from \, previous \, year \\ E_{1\text{A,N2O}}^{Y-1} &\quad N_2O \, \, emissions \, \, for \, source \, \, category \, \, 1A \, \, from \, previous \, year \end{split}
```

Results for 2013

The CO₂ emissions in category 1 A (Fuel Combustion) account for approx. 75 % of overall greenhouse gas emissions (without LULUCF) in the EU-28. As mentioned above, 2013 CO₂ emissions in this category are based on four different approximation approaches. Table 15 shows the calculation results for all Member States and highlights the approaches chosen per Member State.

Table 15 2013 CO₂ emissions for source category 1.A Fuel combustion in various approximation approaches

	Approach I	Approach II	Approach III Bottom up:	Approach IV preliminary
		Eurostat monthly	1A1+1A2+1A3+	national energy
Gg CO2	BP (Trend)	(trend)	(1A4+1A5) _{Y-1}	statistics (trend)
AT	58.309	57.358	55.796	58.085
BE	93.397	92.563	89.569	not available
BG	40.909	40.431	40.949	40.297
CY	not available	5.562	5.772	not available
CZ	97.935	98.328	100.974	98.602
DE	783.943	780.588	781.651	794.015
DK	40.574	40.292	41.731	39.285
EE	not available	16.518	18.638	12.439
ES	223.758	224.930	236.396	230.996
FI	49.432	49.543	48.706	46.008
FR	343.387	342.939	341.065	344.020
UK	452.935	455.341	446.446	453.380
GR	76.242	76.367	79.449	not available
HR	not available	16.666	16.862	16.031
HU	39.693	39.820	41.314	not available
IE	36.206	35.194	34.734	35.697
IT	344.436	342.457	348.194	341.139
LT	10.724	10.649	10.739	10.415
LU	not available	9.931	9.995	10.265
LV	not available	6.511	7.095	6.800
MT	not available	2.615	2.438	not available
NL	157.032	157.571	155.933	158.877
PL	301.449	299.522	299.997	not available
PT	43.619	47.405	43.509	43.796
RO	65.447	62.334	64.543	64.422
SE	39.765	38.140	40.518	39.116
SI	not available	13.071	13.884	14.129
SK	28.690	26.229	27.282	not available

Note: The result for the approach chosen as the best guess per Member State is highlighted in colour.

The figures presented in this table in the column 'Eurostat monthly trend' deviate from figures published by Eurostat as early CO₂ estimates from energy due to the fact that the Eurostat early estimates are based on the IPCC reference approach method and in this report a sectoral approach calculation method was performed which leads to different estimates for 2013 CO₂ emissions from the energy sector.

Source: EEA's proxy GHG emissions

Table 16, Table 17 and Table 18 show the results for the proxy inventory in 2013 compared to the inventory time series for the EU and all Member States for CO_2 , CH_4 and N_2O emissions respectively.

Table 16 CO2 emissions for source category 1.A Fuel Combustion

Source Category	1A Fuel Combustion (Sectoral Approach)									
Gas	CO2	:02								
Member		Inventory data							Proxy	
State	1990	1995	2000	2005	2008	2009	2010	2011	2012	2013
	Gg									
AT	54.070	56.228	57.868	70.279	63.449	59.110	62.952	60.617	58.297	58.085
BE	110.196	114.507	115.148	113.543	108.834	99.020	105.157	95.736	92.828	92.563
BG	72.284	50.027	40.087	44.644	48.582	42.770	44.756	49.811	45.006	40.909
CY	3.858	4.930	6.182	6.946	7.563	7.465	7.231	6.984	6.519	5.772
CZ	145.593	116.346	113.591	114.332	109.136	104.458	106.585	104.497	101.289	97.935
DE	977.715	869.890	827.826	800.110	791.058	735.202	773.833	754.308	766.580	780.588
DK	51.303	58.893	51.363	48.888	49.014	47.243	47.533	42.600	38.023	39.285
EE	35.632	17.330	14.496	15.714	16.430	13.832	17.451	17.961	16.572	18.638
ES	204.841	241.081	281.869	336.023	307.082	272.883	258.579	260.710	257.187	230.996
FI	52.954	54.518	52.985	52.542	53.275	51.301	58.918	51.875	46.390	46.008
FR	363.902	364.706	382.707	393.135	368.798	353.226	360.306	335.045	340.913	341.065
UK	565.267	526.947	532.961	537.098	514.559	469.695	486.407	446.153	466.357	455.341
GR	74.363	78.079	93.665	103.293	101.424	97.078	90.135	89.326	85.003	76.242
HR	20.594	15.036	17.347	20.280	20.496	19.360	18.721	18.509	16.949	16.031
HU	66.313	56.617	53.565	55.067	52.041	47.360	47.941	46.223	42.679	39.820
IE	30.154	33.007	41.760	44.894	44.569	40.130	39.868	36.440	36.507	34.734
IT	400.728	413.811	433.642	457.250	434.918	391.313	400.897	389.735	366.277	348.194
LT	32.154	13.467	10.278	12.242	12.484	11.257	12.143	11.305	11.305	10.739
LU	10.327	8.213	8.044	11.436	10.560	10.124	10.659	10.531	10.326	9.931
LV	18.412	8.840	6.774	7.507	7.838	7.162	7.978	7.135	6.795	6.800
MT	1.865	2.211	2.345	2.703	2.715	2.642	2.640	2.667	2.806	2.438
NL	149.860	161.599	161.709	167.054	166.864	161.996	172.730	159.838	157.966	157.032
PL	350.820	338.994	296.475	297.549	301.363	291.363	309.430	304.709	298.404	299.522
PT	40.195	48.678	59.257	62.393	53.057	51.781	47.174	46.475	45.714	43.619
RO	157.710	108.791	79.484	83.314	84.094	71.997	68.562	73.903	72.786	62.334
SE	51.502	53.122	48.375	47.384	43.638	41.790	45.862	42.189	39.729	39.116
SI	13.646	14.078	14.237	15.528	16.820	15.228	15.312	15.339	14.839	14.129
SK	53.899	37.125	34.355	34.118	32.185	29.652	30.112	29.972	27.954	28.690
EU-15	3.137.377	3.083.278	3.149.180	3.245.322	3.111.100	2.881.890	2.961.011	2.821.577	2.808.098	2.752.798
EU-28	4.110.157	3.867.068	3.838.396	3.955.267	3.822.846	3.546.438	3.649.871	3.510.593	3.472.001	3.396.554

Table 17 CH4 emissions for source category 1.A Fuel Combustion

Source Category	1A	Fuel Combu	stion (Secto	ral Approac	h)					
Gas	CH4									
Member				In	ventory data	a	Proxy			
State	1990	1995	2000	2005	2008	2009	2010	2011	2012	2013
	Gg									
AT	22,1	20,5	15,2	13,4	11,7	11,0	12,0	10,7	11,4	11,3
BE	22,3	19,1	16,3	16,2	18,7	17,6	19,7	15,6	16,4	16,4
BG	16,8	12,0	11,8	12,9	12,8	11,8	13,2	14,3	14,8	13,4
CY	0,4	0,5	0,6	0,7	0,8	0,9	0,9	0,9	0,9	0,8
CZ	69,7	38,9	27,4	26,6	26,1	26,4	28,2	26,5	28,2	27,3
DE	209,1	94,1	78,8	82,1	98,5	101,8	126,9	131,1	139,6	142,2
DK	8,7	21,5	26,4	24,4	21,2	19,2	21,6	18,5	15,1	15,6
EE	4,7	5,7	5,4	5,0	5,9	6,2	6,5	5,7	6,0	6,7
ES	56,3	57,3	63,8	77,0	75,5	77,2	78,7	75,9	78,8	70,8
FI	14,6	14,2	13,6	14,5	14,9	15,3	16,9	14,9	15,8	15,7
FR	232,2	218,0	165,6	128,3	97,3	89,5	91,3	72,9	75,9	75,9
UK	118,3	82,6	69,4	50,6	50,0	47,1	49,9	46,1	46,2	45,1
GR	10,0	10,1	11,7	10,4	10,0	9,6	9,0	8,9	8,0	7,2
HR	9,7	5,4	6,4	5,8	5,1	5,2	5,7	6,5	6,6	6,2
HU	38,3	20,6	14,6	14,5	13,6	15,0	16,0	16,8	16,1	15,1
IE	20,3	14,1	10,9	9,8	9,6	9,9	9,4	8,6	8,4	8,0
IT	76,7	88,0	78,9	70,2	72,2	71,0	74,4	76,3	80,1	76,2
LT	11,3	7,4	8,6	9,4	9,8	9,8	9,9	9,7	9,8	9,4
LU	1,5	1,4	1,3	1,2	0,9	0,9	0,9	0,8	0,9	0,8
LV	12,5	13,5	11,3	13,1	11,7	12,9	12,2	10,5	11,3	11,3
MT	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1
NL	34,8	44,7	44,0	44,0	76,3	78,5	83,3	78,3	72,6	72,2
PL	125,0	178,5	115,2	125,9	137,5	139,4	162,8	145,3	149,5	150,0
PT	22,2	21,0	19,0	15,9	13,8	13,3	12,7	13,1	12,5	11,9
RO	33,0	22,2	37,9	43,5	51,6	49,8	51,1	47,3	47,9	41,0
SE	23,8	24,5	20,4	21,3	21,4	23,1	23,0	22,6	22,4	22,1
SI	7,5	7,2	6,5	5,9	6,0	6,5	6,3	6,8	6,8	6,5
SK	2,9	2,7	2,6	2,9	3,3	2,3	2,4	2,4	2,5	2,6
EU-15	873,0	731,1	635,4	579,2	592,0	585,0	629,8	594,3	604,2	591,4
EU-28	1.205,0	1.045,9	883,8	845,6	876,7	871,5	945,1	887,2	904,9	881,9

Table 18 N₂O emissions for source category 1.A Fuel Combustion

Source Category	1A	Fuel Combu	stion (Secto	ral Approac	h)					
Gas	N2O									
Member	Inventory data									Proxy
State	1990	1995	2000	2005	2008	2009	2010	2011	2012	2013
	Gg									
AT	1,8	2,1	2,4	2,7	2,4	2,3	2,3	2,2	2,2	2,2
BE	2,2	2,6	2,6	2,1	2,5	2,2	2,4	2,3	2,4	2,4
BG	1,1	1,4	1,2	0,9	0,9	0,8	0,8	0,9	0,9	0,8
CY	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
CZ	2,4	2,3	2,9	3,7	3,8	3,8	3,7	3,7	3,6	3,5
DE	22,4	19,4	17,6	16,3	17,3	16,7	18,0	18,5	19,0	19,3
DK	1,0	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,1	1,1
EE	0,4	0,2	0,2	0,3	0,3	0,3	0,3	0,3	0,3	0,4
ES	5,1	7,1	9,5	8,8	8,5	7,9	7,7	7,6	7,5	6,7
FI	3,2	3,2	3,1	3,1	3,1	2,9	3,3	3,1	3,0	2,9
FR	12,1	13,8	14,0	14,8	14,4	13,5	14,1	13,1	13,9	13,9
UK	19,0	18,6	16,6	15,7	13,7	12,4	12,6	12,3	13,6	13,2
GR	2,9	3,1	3,2	3,4	3,2	2,9	2,5	2,3	1,7	1,6
HR	0,3	0,2	0,5	0,5	0,4	0,4	0,4	0,3	0,3	0,3
HU	0,9	0,9	1,2	0,8	0,8	0,8	0,8	0,8	0,8	0,7
IE	0,8	1,2	1,2	1,4	1,3	1,3	1,2	1,2	1,1	1,1
IT	14,8	17,4	17,3	17,2	16,6	15,9	15,9	15,8	15,0	14,3
LT	0,4	0,2	0,2	0,3	0,4	0,3	0,3	0,3	0,3	0,3
LU	0,2	0,2	0,3	0,4	0,4	0,3	0,4	0,4	0,4	0,3
LV	0,5	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4
MT	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
NL	1,1	1,6	1,8	1,9	1,9	2,0	2,0	2,0	2,0	2,0
PL	5,8	6,3	5,9	6,0	6,3	6,3	6,8	6,8	6,8	6,8
PT	1,5	2,4	2,0	2,1	2,0	1,9	1,8	1,7	1,7	1,6
RO	2,9	1,6	1,6	1,6	1,8	1,7	1,6	1,7	1,7	1,4
SE	3,4	3,6	3,0	3,1	3,1	3,1	3,5	3,2	3,2	3,1
SI	0,5	0,9	1,0	0,6	0,6	0,5	0,5	0,5	0,5	0,5
SK	0,8	0,6	0,5	0,6	0,7	0,5	0,5	0,5	0,5	0,6
EU-15	91,4	97,4	95,7	94,1	91,8	86,4	88,9	86,9	87,8	86,0
EU-28	107,6	112,7	111,3	109,9	108,3	102,2	105,1	103,3	104,1	101,7

5.3.1.2 1.A.1 Energy Industries

Methods and data sources used

The GHG emissions for source category 1.A.1 (Energy Industries) were estimated on the basis of a separate analysis of the following source categories

- Public Electricity and Heat Production (1.A.1.a)
- Petroleum Refining (1.A.1.b)
- Manufacture of Solid Fuels and Other Energy Industries (1.A.1.c)

The main data source for the estimation of CO₂ emissions from source category 1.A.1.a (Public Electricity and Heat Production) is an analysis of the verified emissions data reported by installations covered under the EU ETS and recorded in the EUTL. Öko-Institut undertook a supplementary analysis on an installation-by-installation basis to separate the electricity generation installations from industrial combustion installations which are both reported under main activity code 1 in the ETS data (Combustion installations with a rated thermal input exceeding 20 MW). Based on these data the emissions were calculated as follows:

Equation 5

$$E_{IAIaCO2}^{Y} = \frac{E_{CIIL(I/power)}^{Y}}{E_{CIIL(I/power)}^{Y-I}} \cdot E_{IAIaCO2}^{Y-I}$$
with
$$E_{IAIaCO2}^{Y} \qquad CO_2 \ emissions \ for \ source \ category \ IA1a$$

$$E_{IAIaCO2}^{Y-I} \qquad CO_2 \ emissions \ for \ source \ category \ IA1a \ from \ previous \ year$$

$$E_{CIIL(...)}^{Y} \qquad CITL \ emissions \ for \ combustion \ / \ electricity \ generation \ installati \ ons$$

$$E_{CIIL(...)}^{Y-I} \qquad CITL \ emissions \ for \ combustion \ / \ electricity \ generation \ installati \ ons$$

$$from \ previous \ year$$

Since Croatia only in 2013 participated in the EU ETS, 1A1a emissions 2013 for Croatia were calculated using Member States data on gross electricity production from thermal power plants as follows:

Equation 6

$$E_{IA1aCO2}^{Y} = \frac{E_{MS(powerproduction)}^{Y}}{E_{MS(powerproduction)}^{Y-1}} \cdot E_{IA1aCO2}^{Y-1}$$
with
$$E_{IA1aCO2}^{Y} \qquad CO_2 \ emissions \ for \ source \ category \ 1A1a$$

$$E_{IA1aCO2}^{Y-1} \qquad CO_2 \ emissions \ for \ source \ category \ 1A1a \ from \ previous \ year$$

$$E_{MS(...)}^{Y-1} \qquad MS \ data \ on \ gross \ electricit \ y \ production \ (thermal \ power \ plants)$$

$$E_{MS(...)}^{Y-1} \qquad MS \ data \ on \ gross \ electricit \ y \ production \ (thermal \ power \ plants)$$

$$from \ previous \ year$$

Three different approaches were used for CH₄ emissions from source category 1.A.1.a (Public Electricity and Heat Production):

- 1. For the Member States with no strong correlation between CO₂ and CH₄ emissions in the previous years the average 2010–2012 of the CH₄ emission data from the last inventory submissions were used.
- 2. For the Member States with strong growth of CH₄ emissions in previous years a linear trend extrapolation of the years 2003 to 2012.
- 3. For the Member States with a significant correlation for the trends of CO₂ and CH₄ emissions in the previous years, the projection of CH₄ emissions is based on the following equation:

Equation 7

$$E_{IAIa,CH4}^{Y} = \frac{E_{IAIa,CO2}^{Y}}{E_{IAIa,CO2}^{Y-I}} \cdot E_{IAIa,CH4}^{Y-I}$$
 with
$$E_{IAIa,CH4}^{Y} \qquad CH4 \ emissions for \ source category 1A1a$$

$$E_{IAIa,CH4}^{Y-I} \qquad CH4 \ emissions for \ source category 1A1a \ from \ previous \ year$$

$$E_{IAIa,CO2}^{Y} \qquad CO2 \ emissions for \ source category 1A1a \ (see above)$$

$$E_{IAIa,CO2}^{Y-I} \qquad CO2 \ emissions for \ source category 1A1a \ from \ previous \ year$$

$$CO2 \ emissions for \ source category 1A1a \ from \ previous \ year$$

The second option (linear trend extrapolation) was used for Germany, the third option (estimates on the basis of trend dynamics) was chosen for Bulgaria, Cyprus, Greece and Malta, Netherlands and Sweden. For all other EU 28 Member States, the CH₄ emissions were estimated on averages of the reported 2010–2012 CH₄ emissions.

For N_2O emissions from source category 1.A.1.a (Public Electricity and Heat Production), two different approaches were used

- 1. For the Member States with no strong correlation between CO_2 and N_2O emissions in the previous years the average 2010–2012 of the N_2O emission data from the last inventory submission were used.
- 2. For the Member States with a significant correlation for the trends of CO₂ and N₂O emissions in the previous years, the projection of N₂O emissions is based on the following formula:

Equation 8

$$E_{1A1a,N2O}^{Y} = \frac{E_{1A1a,CO2}^{Y}}{E_{1A1a,CO2}^{Y-1}} \cdot E_{1A1a,N2O}^{Y-1}$$
 with
$$E_{1A1a,N2O}^{Y} \qquad \qquad N2O \ emissions for \ source category 1A1a$$

$$E_{1A1a,N2O}^{Y-1} \qquad \qquad N2O \ emissions for \ source category 1A1a \ from \ previous \ year$$

$$E_{1A1a,CO2}^{Y} \qquad \qquad CO2 \ emissions for \ source category 1A1a \ (see above)$$

$$E_{1A1a,CO2}^{Y-1} \qquad CO2 \ emissions for \ source category 1A1a \ from \ previous \ year$$

$$CO2 \ emissions for \ source category 1A1a \ from \ previous \ year$$

The first option was used for Austria, Belgium, Denmark, Finland, Latvia, Italy, Lithuania, Luxembourg, Netherlands, Portugal, Slovakia, Spain, Sweden, United Kingdom. For all other EU-28

Member States, the N₂O emissions were estimated on the basis of trend dynamics for CO₂ emissions (option 2).

The main source for the estimation of CO₂ emissions from source category 1.A.1.b (Petroleum Refining) is EUTL data. For Bulgaria, Croatia, Poland, Romania, Slovenia and Slovakia sufficient and consistent data were not available. Therefore the average of the CO₂ emissions of the years 2009–2010 from the last inventory submission were used for these countries. Cyprus, Estonia, Latvia, Luxembourg, Malta and Slovenia did not report emissions from source category 1.A.1.b, therefore no emissions were estimated for these countries. For all other countries the emissions were calculated as follows:

Equation 9

$$E_{IAIb,CO2}^{Y} = \frac{E_{CIIL\,ref\,-inp}^{Y}}{E_{CIIL\,ref\,-inp}^{Y-1}} \cdot E_{IAIb,CO2}^{Y-1}$$
 with
$$E_{IAIb,CO2}^{Y} \qquad CO2 \ \ emissions \ for \ source \ category \ 1A1b$$

$$E_{IAIb,CO2}^{Y-1} \qquad CO2 \ \ Emissions \ for \ source \ category \ 1A1b \ \ from \ previous \ year$$

$$E_{CIIL\,ref\,-inp}^{Y} \qquad CITL \ \ emissions \ from \ input \ to \ refineries$$

$$AR_{CIIL\,ref\,-inp}^{Y-1} \qquad CITL \ \ emissions \ from \ input \ to \ refineries \ for \ previous \ year$$

For CH₄ emissions from source category 1.A.1.b (Petroleum Refining) two different approaches were used

- 1. For the Member States with no strong correlation between CO₂ and CH₄ emissions in the previous years the average 2010–2012 of the CH₄ emission data from the last inventory submission were used.
- 2. For the Member States with a significant correlation for the trends of CO₂ and CH₄ emissions in the previous years, the projection of CH₄ emissions is based on the following formula:

Equation 10

$$E_{1A1b,CH4}^{Y} = \frac{E_{1A1b,CO2}^{Y}}{E_{1A1b,CO2}^{Y-1}} \cdot E_{1A1b,CH4}^{Y-1}$$
 with
$$E_{1A1bCH4}^{Y} \qquad \qquad CH4 \ emissions \ for \ source \ category \ 1A1b$$

$$E_{1A1bCH4}^{Y-1} \qquad \qquad CH4 \ emissions \ for \ source \ category \ 1A1b \ from \ previous \ year$$

$$E_{1A1bCO2}^{Y} \qquad \qquad CO2 \ emissions \ for \ source \ category \ 1A1b \ (see \ above)$$

$$E_{1A1bCO2}^{Y-1} \qquad \qquad CO2 \ emissions \ for \ source \ category \ 1A1b \ from \ previous \ year$$

The first option was used for Austria, France, Ireland, Netherlands, Poland, Portugal and Romania. For all other EU-28 Member States that report CH₄ emissions, emissions were estimated on the basis of the trend dynamics for CO₂ emissions (option 2).

Two different approaches were used for N_2O emissions from source category 1.A.1.b (Petrole-um Refining):

- 1. For the Member States with no strong correlation between CO_2 and N_2O emissions in the previous years the average 2010–2012 of the N_2O emission data from the last inventory submission were used.
- 2. For the Member States with a significant correlation for the trends of CO₂ and N₂O emissions in the previous years, the projection of N₂O emissions is based on the following formula.

Equation 11

$$E_{IAIb,N2O}^{Y} = \frac{E_{IAIb,CO2}^{Y}}{E_{IAIb,CO2}^{Y-I}} \cdot E_{IAIb,N2O}^{Y-I}$$
 with
$$E_{IAIb,N2O}^{Y} \qquad \qquad N2O \ emissions for \ source category 1A1b$$

$$E_{IAIb,N2O}^{Y-1} \qquad \qquad N2O \ emissions for \ source category 1A1b \ from \ previous \ year$$

$$E_{IAIb,CO2}^{Y} \qquad \qquad CO2 \ emissions for \ source category 1A1b \ (see above)$$

$$E_{IAIb,CO2}^{Y-I} \qquad CO2 \ emissions for \ source category 1A1b \ from \ previous \ year$$

The first option was used for Austria, Belgium, Croatia, Czech Republic, Denmark, Ireland, Netherlands, Poland, Portugal, Romania and United Kingdom. For all other EU-28 Member States that report N₂O emissions, the N₂O emissions were estimated on the basis of the trend dynamics for CO₂ emissions (option 2).

For the source category 1.A.1.c (Manufacture of Solid Fuels and Other Energy Industries) for CO₂, CH₄ as well as N₂O the data from the last inventory submission were used.

The total greenhouse gas emissions for source category 1.A.1 (Energy Industries) were calculated as the sum of the estimates for the source categories 1.A.1.a, 1.A.1.b and 1.A.1.c (see above).

Results for 2013

Table 19, Table 20 and Table 21 show the results for the proxy inventory as calculated by EEA for 1A1 Energy Industries compared to the inventory time series for the EU and all Member States for CO_2 , CH_4 and N_2O emissions respectively.

Table 19 CO2 emissions for 1.A.1 Energy Industries

Source Category	1A1	1. Energy I	ndustries							
Gas	CO2									
Member					Inventory da	ıta				Proxy
State	1990	1995	2000	2005	2008	2009	2010	2011	2012	2013
		•	•	•		Gg	•	•	•	
AT	13.792	12.919	12.221	16.223	13.632	12.598	13.947	13.723	12.325	9.171
BE	29.792	29.225	28.305	29.235	25.327	25.743	26.312	22.917	22.695	21.622
BG	38.661	27.120	23.977	26.934	32.072	29.505	31.419	36.211	31.446	27.907
CY	1.767	2.170	2.961	3.472	3.967	3.992	3.868	3.710	3.546	2.830
CZ	57.672	60.386	59.240	60.832	58.726	55.868	58.553	58.088	57.110	56.479
DE	423.418	365.317	356.812	377.293	364.582	339.966	352.522	349.937	360.077	363.676
DK	26.146	32.168	25.554	22.731	23.890	23.823	23.625	19.746	16.531	19.444
EE	28.821	14.386	11.897	12.362	12.577	10.658	14.195	14.492	13.042	15.140
ES	77.355	85.229	104.714	124.305	107.726	90.193	73.914	86.280	91.150	75.354
FI	19.051	23.894	21.864	21.664	23.877	24.936	30.226	24.390	20.371	23.383
FR	63.525	55.031	61.351	66.150	60.930	58.825	59.442	51.194	52.054	52.711
UK	234.408	200.676	196.698	210.869	207.586	184.528	190.280	177.176	188.349	171.004
GR	42.993	44.770	54.629	57.940	58.019	54.480	52.037	53.838	54.507	50.300
HR	7.127	5.262	5.877	6.779	6.705	6.373	5.884	6.253	5.598	5.141
HU	20.473	22.226	23.425	19.650	20.189	17.057	17.751	17.076	16.450	14.501
IE	11.159	13.317	16.050	15.657	14.495	12.926	13.176	11.798	12.647	11.042
IT	136.503	139.841	151.894	159.829	156.106	131.167	132.557	130.562	125.639	112.692
LT	13.516	6.354	5.037	5.625	4.807	4.782	5.287	4.420	4.371	3.727
LU	33	91	117	1.241	996	1.192	1.204	998	1.032	572
LV	6.268	3.418	2.473	2.048	1.917	1.867	2.250	2.072	1.855	2.169
MT	1.367	1.606	1.688	1.989	2.003	1.911	1.887	1.931	2.050	1.696
NL	52.501	61.416	63.630	67.313	65.204	64.234	66.212	62.424	59.939	60.027
PL	234.687	190.588	176.596	177.220	172.876	165.413	171.938	173.916	168.642	171.584
PT	16.261	19.808	21.490	25.331	19.143	19.291	14.392	16.345	17.290	16.024
RO	72.546	61.890	42.615	41.132	41.407	34.918	32.007	35.383	32.390	26.336
SE	9.797	11.147	8.599	10.358	9.653	10.026	12.460	10.127	9.726	11.178
SI	6.239	5.601	5.473	6.297	6.356	6.058	6.184	6.229	5.961	5.665
SK	19.560	12.463	12.884	12.451	11.262	10.161	9.827	9.983	9.427	9.429
EU-15	1.156.733	1.094.851	1.123.930	1.206.139	1.151.168	1.053.929	1.062.307	1.031.455	1.044.333	998.200
EU-28	1.665.436	1.508.321	1.498.072	1.582.929	1.526.031	1.402.492	1.423.358	1.401.221	1.396.222	1.340.803

Table 20 CH4 emissions for 1.A.1 Energy Industries

Source Category	1A1	1. Energy In	dustries							
Gas	CH4									
Member				In	ventory data	3				Proxy
State	1990	1995	2000	2005	2008	2009	2010	2011	2012	2013
					G	g				
AT	0,2	0,2	0,2	0,3	0,4	0,4	0,4	0,5	0,5	0,5
BE	0,8	0,8	0,7	0,7	1,7	1,7	2,0	1,8	1,7	1,7
BG	0,5	0,3	0,3	0,3	0,3	0,3	0,4	0,4	0,4	0,3
CY	0,1	0,1	0,1	0,1	0,2	0,2	0,1	0,1	0,1	0,1
CZ	0,7	0,7	0,8	0,8	0,9	1,0	1,1	1,1	1,1	1,1
DE	11,2	14,0	16,9	32,3	48,0	52,5	62,7	70,1	78,0	79,5
DK	0,7	11,5	14,7	12,5	10,2	9,0	11,2	9,4	6,6	9,1
EE	0,4	0,3	0,3	0,4	0,4	0,5	0,6	0,6	0,6	0,6
ES	1,2	1,2	2,0	5,4	10,0	7,9	9,0	7,9	7,9	8,1
FI	0,4	0,6	0,7	1,0	1,1	1,0	1,2	1,1	1,0	1,1
FR	2,7	2,0	1,4	1,7	1,5	1,6	1,6	1,5	1,4	1,5
UK	7,9	9,8	11,0	12,4	10,9	11,3	11,5	10,3	10,1	9,7
GR	0,6	0,6	0,8	0,8	0,9	0,8	0,7	0,7	0,7	0,7
HR	0,2	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2
HU	0,4	0,5	0,5	1,0	1,1	1,2	1,2	1,0	0,9	1,0
IE	0,3	0,3	0,4	0,4	0,3	0,3	0,3	0,2	0,3	0,3
IT	9,3	8,6	6,8	6,3	5,6	5,2	5,0	5,6	5,4	5,2
LT	0,4	0,2	0,2	0,4	0,4	0,5	0,5	0,4	0,5	0,5
LU	0,0	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1
LV	0,3	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
MT	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
NL	2,8	3,8	4,4	6,0	4,8	5,3	5,3	5,0	4,5	5,0
PL	3,3	2,3	2,2	2,7	3,1	3,5	4,0	4,4	5,1	4,5
PT	0,2	0,3	0,3	0,4	0,4	0,4	0,4	0,4	0,4	0,4
RO	1,6	1,2	0,8	0,7	0,6	0,5	0,5	0,6	0,5	0,5
SE	1,1	1,8	2,2	3,4	3,9	4,2	4,8	4,1	4,2	4,4
SI	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
SK	0,3	0,2	0,2	0,2	0,2	0,2	0,3	0,3	0,4	0,3
EU-15	39,3	55,6	62,6	83,7	99,8	101,6	116,0	118,7	122,9	127,1
EU-28	47,5	61,9	68,3	90,8	107,7	110,0	125,3	128,3	133,1	136,7

Table 21 N₂O emissions for 1.A.1 Energy Industries

Source Category	1A1	1. Energy In	dustries							
Gas	N2O									
Member				ir	ventory dat	3				Proxy
State	1990	1995	2000	2005	2008	2009	2010	2011	2012	2013
					G	g				
AT	0,1	0,2	0,2	0,3	0,3	0,3	0,4	0,4	0,4	0,4
BE	0,6	0,6	0,7	0,4	0,4	0,5	0,5	0,5	0,5	0,5
BG	0,4	0,3	0,3	0,3	0,4	0,4	0,4	0,5	0,4	0,3
CY	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
CZ	0,8	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9
DE	10,6	8,5	8,0	9,0	9,3	9,0	9,3	9,4	9,8	9,9
DK	0,3	0,4	0,4	0,3	0,3	0,3	0,3	0,3	0,3	0,3
EE	0,1	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1
ES	0,9	1,8	2,0	2,4	2,4	2,2	2,0	2,0	1,9	2,0
FI	0,4	0,6	0,7	0,8	1,0	0,9	1,2	1,1	1,0	1,1
FR	1,9	1,8	2,1	2,4	2,2	2,2	2,2	2,0	2,0	2,0
UK	6,6	5,5	4,9	5,3	4,8	4,3	4,4	4,5	5,3	4,7
GR	0,5	0,5	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,5
HR	0,0	0,0	0,0	0,1	0,1	0,0	0,1	0,1	0,1	0,0
HU	0,2	0,2	0,2	0,2	0,3	0,2	0,3	0,2	0,2	0,2
IE	0,2	0,2	0,3	0,3	0,5	0,5	0,5	0,4	0,5	0,4
IT	1,7	1,7	1,7	1,9	1,9	1,7	1,7	1,8	1,8	1,6
LT	0,1	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1
LU	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
LV	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
MT	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
NL	0,4	0,5	0,6	0,8	0,8	0,8	0,8	0,8	0,9	0,9
PL	3,4	2,8	2,6	2,6	2,6	2,6	2,7	2,7	2,8	2,8
PT	0,2	0,2	0,4	0,5	0,4	0,5	0,4	0,4	0,4	0,4
RO	0,6	0,6	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,3
SE	1,1	1,1	1,0	1,3	1,3	1,5	1,7	1,4	1,5	1,5
SI	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
SK	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
EU-15	25,6	23,6	23,5	26,4	26,3	25,3	25,9	25,6	26,7	26,1
EU-28	31,6	28,8	28,2	31,4	31,4	30,2	31,0	30,8	31,9	31,2

5.3.1.3 1.A.2 Manufacturing Industries and Construction

Methods and data sources used

The main source for the estimation of CO₂ emissions from source category 1.A.2 (Manufacturing Industries and Construction) are the verified emissions data from the EUTL. To calculate CO₂ emissions from 1.A.2, total verified emissions without power installations and refineries are used.

Based on these data the 1A2 CO₂ emissions for most EU 28 Member States were calculated as follows:

Equation 12

```
E_{IA2,CO2}^{Y} = \frac{E_{CITL(...)}^{Y}}{E_{CITL(...)}^{Y-I}} \cdot E_{IA2,CO2}^{Y-I}
with
E_{IA2,CO2}^{Y} \qquad CO_2 \text{ emissions for source category 1A2}
E_{IA2,CO2}^{Y-I} \qquad CO_2 \text{ emissions for source category 1A2 from previous year}
E_{CITL}^{Y} \qquad CITL \text{ emissions for installations reported under different main activities}
E_{CITL(...)}^{Y-I} \qquad CITL \text{ emissions for installations reported under different main activities}
E_{CITL(...)}^{Y-I} \qquad CITL \text{ emissions for installations reported under different main activities from previous year}
```

For Croatia and Cyprus, the average 2010–2012 of the CO₂ emission data from the last inventory submission were used.

For CH₄ emissions from source category 1.A.2 two different approaches were used

- 1. For the Member States with no strong correlation between CO₂ and CH₄ emissions in the previous years, the average 2010–2012 of the CH₄ emission data from the last inventory submission were used.
- 2. For the Member States with a significant correlation for the trends of CO₂ and CH₄ emissions in the previous years, the projection of CH₄ emissions is based on the following formula:

Equation 13

$$E_{IA2CH4}^{Y} = \frac{E_{IA2,CO2}^{Y}}{E_{IA2,CO2}^{Y-1}} \cdot E_{IA2,CH4}^{Y-1}$$
 with
$$E_{IA2CH4}^{Y} \qquad \qquad CH4 \ emissions \ for \ source \ category \ 1A2$$

$$E_{IA2CH4}^{Y-1} \qquad \qquad CH4 \ emissions \ for \ source \ category \ 1A2 \ from \ previous \ year$$

$$E_{IA2CO2}^{Y} \qquad \qquad CO2 \ emissions \ for \ source \ category \ 1A2 \ (see \ above)$$

$$E_{IA2CO2}^{Y-1} \qquad \qquad CO2 \ emissions \ for \ source \ category \ 1A2 \ from \ previous \ year$$

The second option was used for Austria. For all other EU-27 Member States the CH₄ emissions were estimated on the average of 2010–2012 emissions (option 1).

Two different approaches were used for N₂O emissions from source category 1.A.2:

1. For the Member States with no strong correlation between CO_2 and N_2O emissions in the previous years the average 2011–2012 of the N_2O emission data from the last inventory submission were used.

2. For the Member States with a significant correlation for the trends of CO_2 and N_2O emissions in the previous years, the projection of N_2O emissions is based on the following formula.

Equation 14

$$E_{1\text{A2,N2O}}^{Y} = \frac{E_{1\text{A2,CO2}}^{Y}}{E_{1\text{A2,CO2}}^{Y-1}} \cdot E_{1\text{A2,N2O}}^{Y-1}$$
with
$$E_{1\text{A2,N2O}}^{Y} \qquad \qquad N_{2\text{O emissions for source category 1A2}}$$

$$E_{1\text{A2,N2O}}^{Y-1} \qquad \qquad N_{2\text{O emissions for source category 1A2 from previous year}}$$

$$E_{1\text{A2,N2O}}^{Y} \qquad \qquad N_{2\text{O emissions for source category 1A2 from previous year}}$$

$$E_{1\text{A2,CO2}}^{Y} \qquad \qquad CO_{2\text{ emissions for source category 1A2 from previous year}}$$

$$E_{1\text{A2,CO2}}^{Y-1} \qquad \qquad CO_{2\text{ emissions for source category 1A2 from previous year}}$$

The first option was used for Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Finland, Greece, Hungary, Latvia, Portugal, Romania and United Kingdom. For all other EU-28 Member States the N₂O emissions were estimated on the basis of the trend dynamics for CO₂ emissions (option 2).

Results for 2013

Table 22, Table 23 and Table 24 show the results for the proxy inventory in 2012 for 1A2 Manufacturing Industries and construction compared to the inventory time series for the EU and all Member States for CO_2 , CH_4 and N_2O emissions respectively.

Table 22 CO₂ emissions from 1.A.2 Manufacturing Industries and Construction

Source Category	1A2	2. Manufact	turing Indus	tries and Co	nstruction					
Gas	CO2									
Member				I	nventory da	ta				Proxy
State	1990	1995	2000	2005	2008	2009	2010	2011	2012	2013
		•			(∃ g	•			
AT	12.685	13.489	13.891	16.161	15.932	14.229	15.774	15.554	15.409	15.472
BE	32.605	32.492	33.148	28.689	28.146	19.809	23.540	22.871	20.712	19.835
BG	19.539	14.609	8.446	8.025	6.288	3.602	3.767	3.598	3.320	3.388
CY	529	740	801	886	845	713	625	542	413	527
CZ	46.485	27.703	27.132	23.161	20.159	19.315	18.700	18.690	16.464	16.786
DE	175.635	134.373	117.692	103.755	117.032	99.143	115.178	116.568	114.136	114.804
DK	5.444	5.909	6.016	5.551	5.061	4.111	4.524	4.494	4.235	5.236
EE	2.479	881	572	715	1.076	586	506	715	762	728
ES	44.157	58.382	57.724	68.774	57.304	47.995	49.588	46.522	45.493	43.328
FI	13.182	11.955	11.737	11.160	10.582	8.246	9.701	9.478	8.229	8.068
FR	85.397	81.930	83.346	78.024	74.545	63.562	67.058	62.527	62.607	63.067
UK	104.630	96.781	96.784	87.557	79.626	68.803	68.427	64.184	64.471	64.511
GR	9.163	9.216	9.722	10.171	9.346	7.412	6.717	5.271	5.496	6.468
HR	5.843	3.541	3.617	4.081	4.198	3.379	3.397	3.175	2.787	3.120
HU	16.367	10.630	6.045	5.862	5.556	4.341	4.602	4.544	3.969	3.670
IE	3.943	4.330	5.618	5.839	5.626	4.470	4.513	4.254	4.255	4.442
IT	85.276	85.037	82.245	78.551	70.905	54.580	60.015	59.852	53.656	51.360
LT	5.739	1.510	985	1.223	1.244	1.012	1.113	1.157	1.259	1.314
LU	6.285	3.344	1.438	1.558	1.405	1.284	1.385	1.283	1.256	1.560
LV	3.743	1.863	1.152	1.165	1.100	883	1.074	874	928	834
MT	59	60	57	51	48	40	46	73	73	64
NL	33.008	28.840	27.345	27.406	27.539	24.942	27.227	25.911	25.810	24.644
PL	42.235	62.427	47.514	35.186	32.944	29.381	31.032	31.488	30.635	31.143
PT	9.621	10.728	12.566	10.594	9.759	8.527	9.078	8.365	7.414	6.973
RO	56.226	30.256	18.858	18.341	17.929	12.816	13.117	14.456	15.271	13.422
SE	11.581	13.027	12.039	10.763	9.719	7.977	9.345	8.717	8.172	7.421
SI	3.085	2.587	2.240	2.450	2.269	1.888	1.874	1.683	1.616	1.654
SK	16.781	12.360	9.845	9.415	8.996	8.551	8.396	8.952	7.200	6.606
EU-15	632.611	589.834	571.313	544.554	522.527	435.091	472.071	455.851	441.352	437.188
EU-28	851.723	759.001	698.577	655.114	625.178	521.597	560.321	545.798	526.051	520.445

Table 23 CH4 emissions from 1.A.2 Manufacturing Industries and Construction

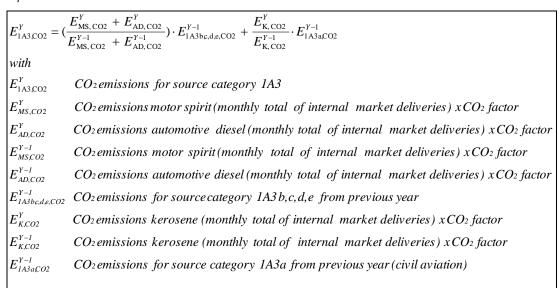
Source Category	1A2	2. Manufact	uring Indust	ries and Cor	struction					,
Gas	CH4									
Member				In	ventory data	a				Proxy
State	1990	1995	2000	2005	2008	2009	2010	2011	2012	2013
					G	g				
AT	0,3	0,4	0,4	0,6	0,7	0,6	0,6	0,7	0,6	0,7
BE	3,9	3,2	3,6	3,3	3,8	2,5	3,2	2,8	1,8	2,8
BG	1,1	1,1	0,7	0,7	0,6	0,4	0,5	0,5	0,6	0,5
CY	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
CZ	4,3	2,9	2,7	2,6	2,4	2,4	2,3	2,5	2,4	2,4
DE	9,7	8,4	8,6	9,5	10,1	9,0	9,8	10,1	10,1	9,7
DK	0,4	0,4	1,1	0,9	0,6	0,6	0,6	0,6	0,4	0,6
EE	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
ES	3,8	7,3	16,4	27,9	21,5	18,0	19,5	18,9	21,2	18,8
FI	0,6	0,7	0,7	0,6	0,6	0,5	0,7	0,8	0,8	0,7
FR	11,1	10,9	11,0	10,0	8,8	6,2	7,5	7,5	6,9	7,1
UK	7,3	7,6	8,1	7,3	6,7	5,9	6,0	5,9	5,9	6,0
GR	0,4	0,4	0,5	0,5	0,5	0,4	0,4	0,4	0,3	0,4
HR	0,5	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3
HU	1,0	0,7	0,5	0,5	0,6	0,5	0,5	0,5	0,4	0,5
IE	0,3	0,2	0,3	0,4	0,4	0,3	0,3	0,3	0,3	0,3
IT	6,8	7,0	5,7	6,3	6,2	4,2	5,5	6,9	8,1	5,5
LT	0,3	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2
LU	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
LV	0,3	0,2	0,2	0,3	0,3	0,3	0,4	0,5	0,5	0,4
MT	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
NL	2,8	2,7	3,0	2,6	2,7	2,6	2,6	2,5	2,5	2,6
PL	4,6	6,9	5,2	4,2	4,2	4,0	4,3	4,5	4,5	4,2
PT	1,3	1,5	1,6	1,7	1,6	1,6	1,6	1,5	1,4	1,6
RO	4,8	3,0	1,8	1,9	1,9	1,5	1,7	1,9	2,2	1,7
SE	2,2	2,7	2,0	2,1	2,2	2,2	2,4	2,2	2,2	2,3
SI	0,4	0,3	0,2	0,4	0,3	0,3	0,3	0,2	0,2	0,3
SK	0,7	0,5	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4
EU-15	51,1	53,5	63,3	73,8	66,6	54,7	60,9	61,3	62,9	59,0
EU-28	69,3	69,6	75,5	85,5	78,0	64,9	71,9	72,9	74,6	69,9

Table 24 N₂O emissions from 1.A.2 Manufacturing Industries and Construction

Source Category	1A2	2. Manufact	uring Indust	ries and Cor	struction					
Gas	N2O									
Member				Ir	ventory data	a				Proxy
State	1990	1995	2000	2005	2008	2009	2010	2011	2012	2013
					G	g				
AT	0,3	0,3	0,4	0,5	0,5	0,5	0,5	0,5	0,5	0,5
BE	0,5	0,5	0,6	0,6	1,0	0,5	0,7	0,6	0,7	0,7
BG	0,1	0,1	0,1	0,1	0,1	0,0	0,1	0,1	0,1	0,1
CY	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
CZ	0,6	0,4	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3
DE	4,3	3,1	2,5	2,2	2,5	2,2	2,5	2,6	2,5	2,5
DK	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
EE	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
ES	1,4	1,6	1,8	2,1	1,8	1,6	1,6	1,5	1,5	1,4
FI	0,6	0,5	0,6	0,5	0,5	0,4	0,4	0,4	0,4	0,4
FR	2,7	2,7	2,9	2,8	2,8	2,5	2,6	2,5	2,5	2,5
UK	5,1	4,7	4,2	4,2	3,7	3,0	3,1	2,7	2,9	2,9
GR	0,1	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1
HR	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
HU	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
IE	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,0	0,0	0,0
IT	4,9	4,5	4,7	5,0	4,6	4,0	4,0	4,0	3,5	3,4
LT	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
LU	0,1	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1
LV	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,1
MT	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
NL	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
PL	0,6	1,0	0,7	0,5	0,5	0,5	0,5	0,6	0,6	0,6
PT	0,2	0,2	0,3	0,3	0,3	0,3	0,3	0,2	0,2	0,2
RO	0,3	0,2	0,1	0,2	0,2	0,1	0,2	0,2	0,2	0,2
SE	1,1	1,2	1,0	1,0	0,9	0,8	0,9	0,9	0,9	0,8
SI	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
SK	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,1	0,1	0,0
EU-15	21,6	19,9	19,5	19,8	19,3	16,2	17,1	16,4	16,2	15,9
EU-28	23,7	21,8	20,9	21,2	20,6	17,5	18,4	17,8	17,6	17,3

5.3.1.4 1.A.3 Transport

Methods and data sources used


The main sources for the estimation of CO₂ emissions from source category 1.A.3 (Transport) are the following Eurostat data, extracted from Eurostat's database:

 Monthly data for the observed gross inland deliveries of motor gasoline, transport diesel and aviation fuels;

Based on these data source three slightly different options to calculate the CO₂ emissions were developed. Out of these, the most suitable approach was chosen for each Member State taking into account the performance of the respective approximation approaches to reproduce the reported emissions of previous years,

Option 1 for calculating CO₂ emissions (Equation 15) was chosen for 16 Member States: Austria, Bulgaria, France, Germany, Greece, Hungary, Ireland, Italy, Lithuania, Luxembourg, the Netherlands, Poland, Portugal, Spain, Sweden and the United Kingdom:

Equation 15

Country - specific CO₂ factors are calculated using net calorific values and implied emission factors based on the CRF submissions of the previous year

Option 2 (Equation 16) was chosen for 6 Member States: Belgium, Cyprus, Czech Republic, Denmark, Finland and Latvia:

Equation 16

 $E_{1A3,CO2}^{Y} = Fw_{t} \cdot E_{1A3,CO2}^{Y-1}$ $E_{1A3,CO2}^{Y}$ CO2 emissions for source category 1A3 Fw. Weighted Factor $E_{IA3,CO2}^{Y-I}$ CO2 emissions for source category 1A3 from previous year $\frac{C_{\text{motorspinit}}^{Y}}{C_{\text{motorspinit}}^{Y-1}} \cdot S_{\text{t, motorspinit}}^{Y} + \frac{C_{\text{automotivediesel}}^{Y}}{C_{\text{automotivediesel}}^{Y-1}} \cdot S_{\text{t, automotivediesel}}^{Y} + \frac{C_{\text{kerosene}}^{Y}}{C_{\text{kerosene}}^{Y-1}} \cdot S_{\text{t, kerosene}}^{Y}$ with $C_{
m motorspirit}^{\it Y}$ Consumption of motor spirit (monthly total of internal market deliveries) $C_{
m motor spirit}^{
m Y-1}$ Consumption of motor spirit (monthly total of internal market deliveries) previous year $S_{\rm t,\,motor\,spirit}^{Y}$ Share (mass) of motor spirit in total consumption of regarded fuels $C_{
m automotive diesel}^{\it Y}$ Consumption of automotive diesel (monthly total of internal market deliveries) $C_{
m automotive diesel}^{
m Y-l}$ Consumption of automotive diesel (monthly total of internal market deliveries) previous year S_{t, automotivediesel} Share (mass) of automotive diesel in total consumption of regarded fuels $C_{ ext{kerosene}}^{Y}$ Consumption of kerosene (monthly total of internal market deliveries) $C_{\mathrm{kerosene}}^{\scriptscriptstyle Y-1}$ Consumption of kerosene (monthly total of internal market deliveries) previous year $S_{t,\,\mathrm{kerosene}}^{Y}$ Share (mass) of kerosene in total consumption of regarded fuels

Option 3 for calculating CO₂ emissions (Equation 17) was chosen for 6 Member States: Croatia, Estonia, Malta, Romania, Slovakia and Slovenia:

Equation 17

$$E_{1A3CO2}^{Y} = Fw_{m} \cdot E_{1A3bc,d,c,CO2}^{Y-1} + \frac{C_{kenosene}^{Y}}{C_{kenosene}^{Y-1}} \cdot E_{1A3aCO2}^{Y-1}$$
with
$$E_{1A3CO2}^{Y} = CO_{2} \text{ emissions for source category } IA3$$

$$Fw_{m} \qquad Weighted \text{ Factor}$$

$$E_{1A3bc,d,c,CO2}^{Y-1} = CO_{2} \text{ emissions for source category } IA3b,c,d,e \text{ from previous year}$$

$$C_{kenosene}^{Y-1} = Consumption \text{ of kerosene}(monthly \text{ total of internal market deliveries})}$$

$$C_{kenosene}^{Y-1} = Consumption \text{ of kerosene}(monthly \text{ total of internal market deliveries}) \text{ previous year}}$$

$$E_{1A3aCO2}^{Y-1} = CO_{2} \text{ emissions for source category } IA3a \text{ from previous year}(civil \text{ aviation})}$$

$$Fw_{m} = \frac{C_{motorspirit}^{Y}}{C_{motorspirit}^{Y-1}} \cdot S_{m, motorspirit}^{Y} + \frac{C_{automotivediesel}^{Y}}{C_{automotivediesel}^{Y-1}} \cdot S_{m, automotivediesel}^{Y}$$
with
$$C_{motorspirit}^{Y} = Consumption \text{ of motor spirit}(monthly \text{ total of internal market deliveries})}$$

$$C_{motorspirit}^{Y} = Consumption \text{ of motor spirit}(monthly \text{ total of internal market deliveries})}$$

$$C_{motorspirit}^{Y} = Consumption \text{ of motor spirit}(monthly \text{ total of internal market deliveries})}$$

$$C_{motorspirit}^{Y} = Share (mass) \text{ of motor spirit in total consumption of motor spirit and automotive diesel}$$

$$C_{automotivediesel}^{Y} = Consumption \text{ of automotive diesel}(monthly \text{ total of internal market deliveries})}$$

$$C_{motorspirit}^{Y} = Consumption \text{ of automotive diesel}(monthly \text{ total of internal market deliveries})}$$

$$C_{automotivediesel}^{Y} = Consumption \text{ of automotive diesel}(monthly \text{ total of internal market deliveries})}$$

$$C_{motorspirit}^{Y} = Consumption \text{ of automotive diesel}(monthly \text{ total of internal market deliveries})}$$

$$C_{motorspirit}^{Y} = Consumption \text{ of automotive diesel}(monthly \text{ total of internal market deliveries})$$

$$C_{motorspirit}^{Y} = Consumption \text{ of automotive diesel}(monthly \text{ total of internal market deliveries})$$

$$C_{motorspirit}^{Y} = Consumption \text{ of automotive diesel}(monthly \text{ total of internal market})$$

The estimation for CH₄ emissions from source category 1.A.3 (Transport) is based on the approximated trend of CO₂ emissions and depicted in Equation 18:

Equation 18

$E_{1 \text{A3,CH4}}^{Y} =$	$(\frac{E_{_{1\mathrm{A3CO2}}}^{Y}}{E_{_{1\mathrm{A3CO2}}}^{Y-1}}) \cdot E_{_{1\mathrm{A3CH4}}}^{Y-1}$
with	
$E_{ m 1A3,CH4}^{ m Y}$	CH ₄ emissions for source category 1A3
$E_{1 ext{A3,CO2}}^{Y}$	CO2 emissions for source category 1A3 as approximated using CO2 options 1-3 respectively
$E_{ m 1A3,CO2}^{Y-1}$	CO2 emissions for source category 1A3 from previous year
$E_{ m 1A3,CH4}^{Y-1}$	CH ₄ emissions for source category 1A3 from previous year

The estimation for N_2O emissions from source category 1.A.3 (Transport) is similar to CH_4 (Equation 19):

Equation 19

```
E_{1\mathrm{A3,N2O}}^{Y} = (\frac{E_{1\mathrm{A3,CO2}}^{Y}}{E_{1\mathrm{A3,CO2}}^{Y-1}}) \cdot E_{1\mathrm{A3,N2O}}^{Y-1} with E_{1\mathrm{A3,N2O}}^{Y} \qquad N_{2}O \text{ emissions for source category 1A3} E_{1\mathrm{A3,N2O}}^{Y} \qquad CO_{2} \text{ emissions for source category 1A3 as approximated using CO}_{2} \text{ options } 1-3 \text{ respectively} E_{1\mathrm{A3,CO2}}^{Y-1} \qquad CO_{2} \text{ emissions for source category 1A3 from previous year} E_{1\mathrm{A3,N2O}}^{Y-1} \qquad N_{2}O \text{ emissions for source category 1A3 from previous year}
```

Results for 2013

Table 25, Table 26 and Table 27 show the results for the proxy inventory in 2013 for 1A3 Transport compared to the inventory time series for the EU and all Member States for CO_2 , CH_4 and N_2O emissions respectively.

Table 25 CO2 emissions for source category 1.A.3

Source Category	1A3	Transport								
Gas	CO2									
Member				I	nventory da	ta				Proxy
State	1990	1995	2000	2005	2008	2009	2010	2011	2012	2013
					(∋ g				
AT	13.771	15.675	18.621	24.675	22.317	21.524	22.191	21.511	21.418	22.264
BE	20.348	22.291	24.392	25.986	27.620	26.792	26.867	26.692	24.658	23.350
BG	6.578	4.364	5.492	7.579	8.401	8.083	7.844	8.036	8.322	7.736
CY	1.188	1.491	1.773	2.062	2.230	2.233	2.277	2.212	2.053	1.908
CZ	7.576	9.617	11.932	17.221	18.321	17.763	16.729	16.561	16.230	16.115
DE	162.368	175.691	180.963	160.423	153.215	152.742	153.491	155.468	153.861	162.063
DK	10.619	11.940	12.173	13.166	13.860	13.135	13.068	12.703	12.103	11.912
EE	2.418	1.540	1.628	2.104	2.277	2.100	2.222	2.237	2.256	2.258
ES	58.236	69.113	85.616	102.331	101.798	94.480	91.041	85.803	79.764	76.934
FI	12.483	11.735	12.592	13.470	13.363	12.689	13.198	13.015	12.471	12.308
FR	119.382	129.372	138.072	139.310	130.846	129.394	131.393	132.302	130.858	131.397
UK	113.406	115.016	120.990	125.783	121.612	117.205	115.658	114.191	113.775	111.169
GR	14.082	16.042	18.317	21.052	21.676	24.572	21.862	19.474	15.838	13.521
HR	4.019	3.407	4.464	5.553	6.178	6.181	5.961	5.825	5.648	5.685
HU	8.368	7.095	8.842	11.713	12.823	12.745	11.590	11.258	10.718	10.956
IE	5.022	6.054	10.562	12.906	13.595	12.383	11.471	11.162	10.776	10.697
IT	101.269	111.445	120.101	125.825	122.053	117.629	117.066	116.069	104.845	102.004
LT	7.386	3.812	3.360	4.319	5.321	4.367	4.490	4.462	4.487	4.511
LU	2.673	3.379	4.778	6.918	6.484	5.991	6.329	6.742	6.432	6.314
LV	2.898	2.014	2.112	2.990	3.529	3.130	3.205	2.839	2.737	2.796
MT	342	437	494	554	548	562	583	558	542	538
NL	25.994	29.166	32.395	34.638	35.483	34.071	34.659	34.896	33.659	32.704
PL	20.276	23.137	27.276	34.582	44.216	44.616	46.987	47.544	46.148	44.291
PT	10.139	13.322	19.157	19.586	18.947	18.933	18.711	17.361	16.812	16.498
RO	11.986	8.207	9.558	12.489	15.072	14.900	14.125	14.345	14.876	14.536
SE	18.890	19.219	19.571	21.267	20.780	20.389	20.636	20.162	18.913	19.469
SI	2.665	3.617	3.631	4.346	6.069	5.263	5.204	5.633	5.706	5.019
SK	4.888	4.243	4.150	6.163	6.615	6.081	6.558	6.304	6.481	6.403
EU-15	688.681	749.461	818.298	847.337	823.648	801.929	797.643	787.549	756.184	752.604
EU-28	769.269	822.442	903.010	959.014	955.248	929.954	925.417	915.363	882.389	875.354

Table 26 CH4 emissions for source category 1.A.3

Source Category	1A3	Transport								
Gas	CH4									
Member				In	ventory data	1				Proxy
State	1990	1995	2000	2005	2008	2009	2010	2011	2012	2013
					G	9				
AT	3,1	3,1	1,9	1,3	0,9	0,8	0,7	0,6	0,6	0,6
BE	4,9	3,8	2,5	1,6	1,1	1,0	0,9	0,8	0,7	0,7
BG	3,9	2,1	1,2	0,9	0,8	0,8	0,7	0,7	0,6	0,6
CY	0,2	0,2	0,3	0,3	0,4	0,4	0,4	0,4	0,4	0,4
CZ	1,4	1,7	1,7	1,6	1,4	1,2	1,1	1,0	0,9	0,9
DE	53,5	33,9	21,5	12,9	9,2	8,6	7,8	7,6	7,1	7,5
DK	2,3	2,3	1,8	1,3	1,0	0,8	0,7	0,7	0,6	0,6
EE	0,9	0,5	0,5	0,4	0,4	0,4	0,4	0,2	0,2	0,2
ES	15,1	15,1	12,2	7,9	5,8	5,2	4,9	4,5	4,2	4,0
FI	4,7	3,9	3,2	2,4	1,9	1,8	1,8	1,8	1,6	1,6
FR	40,4	32,8	24,9	17,6	12,7	11,4	10,4	9,1	8,0	8,1
UK	30,4	23,1	14,5	8,3	6,0	4,4	3,8	3,3	2,9	2,9
GR	4,9	5,1	5,7	5,6	5,0	4,8	4,3	3,7	2,9	2,5
HR	1,6	1,2	1,4	1,0	0,9	0,8	0,7	0,7	0,6	0,6
HU	2,4	1,8	1,5	2,1	1,7	1,5	1,3	1,2	1,2	1,2
IE	1,8	1,8	1,7	1,3	1,1	1,0	0,9	0,9	0,8	0,8
IΤ	39,2	43,6	33,4	20,3	14,7	13,1	12,5	11,7	10,4	10,1
LT	1,8	1,0	0,8	0,8	0,7	0,7	0,6	0,5	0,5	0,5
LU	0,9	0,8	0,8	0,6	0,4	0,3	0,3	0,3	0,3	0,3
LV	0,8	0,6	0,5	0,4	0,3	0,3	0,2	0,2	0,2	0,2
MT	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
NL	7,6	5,9	4,1	2,9	2,7	2,5	2,4	2,4	2,2	2,2
PL	4,7	6,1	4,6	4,7	5,1	5,0	5,1	5,0	4,9	4,7
PT	4,1	4,4	3,8	2,5	1,8	1,8	1,6	1,4	1,2	1,2
RO	9,0	2,9	2,7	3,1	2,7	2,3	1,8	1,8	1,7	1,6
SE	8,9	7,4	5,1	3,5	2,9	2,7	2,6	2,4	2,4	2,5
SI	1,2	1,4	0,9	0,6	0,5	0,4	0,4	0,4	0,4	0,3
SK	1,2	1,2	1,0	0,9	0,8	0,7	0,7	0,6	0,6	0,6
EU-15	221,7	187,1	137,2	90,2	67,0	60,3	55,8	51,2	46,0	45,5
EU-28	250,9	208,1	154,2	107,1	82,8	74,9	69,3	64,0	58,2	57,3

Table 27 N₂O *emissions for source category 1.A.3*

Source Category	1A3	Transport								
Gas	N2O									
Member				lr	ventory data	a				Proxy
State	1990	1995	2000	2005	2008	2009	2010	2011	2012	2013
					G	g		•		
AT	0,6	0,9	1,0	1,1	0,9	0,8	0,8	0,7	0,7	0,7
BE	0,8	1,1	1,0	0,7	0,8	0,9	0,9	0,9	0,9	0,8
BG	0,4	1,0	0,7	0,3	0,3	0,3	0,3	0,3	0,3	0,3
CY	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
CZ	0,5	0,8	1,4	2,3	2,3	2,3	2,2	2,2	2,1	2,1
DE	4,0	5,6	5,3	3,4	3,7	3,9	4,2	4,5	4,8	5,0
DK	0,4	0,4	0,5	0,5	0,5	0,4	0,4	0,4	0,4	0,4
EE	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
ES	1,8	2,7	4,6	3,0	3,0	2,8	2,8	2,7	2,6	2,5
FI	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6
FR	3,3	5,0	4,7	4,9	4,8	4,3	4,5	4,6	4,9	4,9
UK	4,0	5,6	4,8	3,9	3,1	2,9	3,0	3,1	3,2	3,1
GR	1,0	1,4	1,3	1,4	1,4	1,3	1,0	0,8	0,6	0,5
HR	0,1	0,1	0,3	0,4	0,2	0,2	0,2	0,2	0,2	0,2
HU	0,3	0,4	0,8	0,4	0,4	0,4	0,4	0,4	0,3	0,4
IE	0,2	0,5	0,6	0,6	0,4	0,4	0,4	0,4	0,3	0,3
IT	3,2	5,6	5,3	3,8	3,7	3,6	3,6	3,6	3,2	3,1
LT	0,1	0,1	0,1	0,1	0,2	0,1	0,1	0,1	0,1	0,1
LU	0,1	0,2	0,2	0,3	0,2	0,2	0,2	0,3	0,3	0,3
LV	0,3	0,2	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2
MT	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
NL	0,3	0,8	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9
PL	0,6	0,7	1,0	1,2	1,7	1,7	1,9	1,9	1,9	1,8
PT	0,3	1,1	0,7	0,7	0,7	0,6	0,6	0,5	0,5	0,5
RO	1,8	0,6	0,6	0,5	0,6	0,5	0,4	0,5	0,5	0,5
SE	0,6	0,7	0,5	0,4	0,4	0,4	0,4	0,4	0,5	0,5
SI	0,1	0,6	0,7	0,2	0,3	0,2	0,2	0,2	0,2	0,2
SK	0,4	0,3	0,3	0,3	0,3	0,2	0,3	0,3	0,3	0,3
EU-15	21,1	32,1	31,8	26,2	25,1	23,9	24,2	24,4	24,4	24,3
EU-28	25,9	36,9	37,9	32,1	31,7	30,1	30,3	30,6	30,5	30,2

5.3.1.5 1.A.4 Other sectors

The CO₂ emissions from source category 1.A.4 (Other sectors) were estimated on three approaches:

- Multiple linear regression on gas and oil consumption data
- Previous year data
- Subtraction from bottom-up calculation for sector 1.A

The multiple linear regression on gas and oil consumption data is based on data from Eurostat on gross inland consumption for natural gas and on gross inland deliveries for total fuel oil, heating oil and other gas oil are used. Based on these data the 1.A.4 CO₂ emissions for some EU 28 Member States were calculated as follows:

Equation 20

$$E_{IA4CO2}^{Y} = a \cdot AR_{gas-cons}^{Y} + b \cdot AR_{oil-cons}^{Y} + c$$
with
$$E_{IA4CO2}^{Y} \qquad CO2 \ emissions \ for \ source \ category \ IA4$$

$$AR_{gas-cons}^{Y} \qquad Gas \ consumption$$

$$AR_{oil-prod}^{Y-1} \qquad Oil \ consumption$$

$$a \qquad Proportionally \ cons \ tan \ t \ for \ gas \ consumption$$

$$b \qquad Pr \ oportionally \ cons \ tan \ t \ for \ oil \ consumption$$

$$c \qquad Intercept$$

The constants a, b and c in this formula were calculated using a multiple linear regression of 1.A.4 CO₂ emission data from inventories on gas and oil consumption data from 2008 to 2012. This approach was only used, if on one hand both the regression has shown a good correlation and the emission estimated from the equation was within the range of the year-to-year changes of historic years²³ and on the other hand, emissions for total 1.A emissions were estimated by approach III (bottom-up approach). So this method for 1.A.4 based on gas and oil consumption was only used for France and Ireland.

For Cyprus, Estonia, Italy, Lithuania and Malta, previous year data from inventories was used as emission estimate.

For all other member states, approximated emissions of source category 1.A.4 were estimated by a subtraction approach: Based on the real-time projection for the source categories 1.A, 1.A.1, 1.A.2 and 1.A.3 and constant emissions for 1.A.5, the emissions for the source categories 1.A.4 were calculated based on the following formula:

Equation 21

$$E_{1A4}^{Y} = E_{1A}^{Y} - E_{1A1}^{Y} - E_{1A2}^{Y} - E_{1A3}^{Y} - E_{1A5}^{Y}$$
with
$$E_{i}^{Y} \qquad Emissions \ for \ source \ category \ i$$

This subtraction method was used for all member states, where total 1.A emissions were estimated using an approach other than approach III (bottom-up approach).

As a result, the emissions from 1.A.4 have higher uncertainties than the other source categories in the energy sector.

²³ Measured as coefficient of determination R^2 >60% and change within 1 standard deviation (σ).

For all Member States, CH₄ and N₂O inventory data from previous year was used as emission estimate for source category 1.A.4.

Results for 2013

Table 25, Table 26 and Table 27 show the results for the proxy inventory in 2013 for 1A4 Other sectors compared to the inventory time series for the EU and all Member States for CO_2 , CH_4 and N_2O emissions respectively.

Table 28 CO2 emissions for source category 1.A.4

Source Category	1A4	Other Secto	ors							
Gas	CO2									
Member				ı	nventory da	ta				Proxy
State	1990	1995	2000	2005	2008	2009	2010	2011	2012	2013
					(∋g				
AT	13.786	14.113	13.095	13.177	11.523	10.713	10.995	9.782	9.097	11.130
BE	27.287	30.390	29.206	29.537	27.677	26.616	28.386	23.211	24.717	27.711
BG	7.476	3.879	2.160	2.106	1.821	1.581	1.725	1.966	1.918	1.879
CY	363	511	626	505	478	510	444	500	490	490
CZ	32.259	17.448	14.054	12.024	10.797	10.394	11.520	10.065	10.390	7.460
DE	204.483	190.555	170.074	156.945	154.930	142.027	151.363	131.151	137.532	139.069
DK	8.976	8.623	7.509	7.168	6.096	6.014	6.209	5.465	5.038	2.577
EE	1.871	495	383	498	489	460	487	496	490	490
ES	25.093	28.357	33.815	40.612	40.254	40.215	44.035	42.106	40.781	35.381
FI	6.907	5.458	5.174	4.830	4.039	4.054	4.333	3.688	3.957	888
FR	95.598	98.372	99.938	109.651	102.477	101.444	102.412	89.021	95.393	93.890
UK	107.538	110.588	115.573	110.047	102.481	96.179	109.148	87.851	97.239	106.135
GR	8.126	8.051	10.997	14.130	12.384	10.613	9.519	10.742	9.161	5.953
HR	3.606	2.826	3.389	3.867	3.415	3.428	3.480	3.257	2.916	2.085
HU	21.104	16.667	15.253	17.842	13.473	13.218	13.997	13.345	11.541	10.693
IE	10.031	9.305	9.530	10.491	10.852	10.351	10.708	9.225	8.830	8.553
IT	76.634	76.047	78.596	91.847	85.117	87.092	90.631	82.757	81.812	81.812
LT	5.514	1.790	895	1.062	1.100	1.085	1.236	1.254	1.179	1.179
LU	1.310	1.389	1.699	1.719	1.675	1.657	1.740	1.509	1.606	1.484
LV	5.504	1.545	1.037	1.296	1.289	1.276	1.441	1.343	1.267	993
MT	96	108	105	109	116	129	123	105	140	140
NL	37.791	41.665	37.756	37.322	38.284	38.428	44.305	36.253	38.217	39.316
PL	53.622	62.842	45.089	50.561	51.327	51.953	59.473	51.762	52.978	52.504
PT	4.070	4.738	5.949	6.810	5.123	4.945	4.907	4.326	4.150	4.076
RO	14.434	7.880	8.215	10.192	8.875	9.092	9.046	9.180	9.690	7.481
SE	10.389	9.025	7.772	4.773	3.334	3.157	3.247	2.999	2.754	883
SI	1.625	2.271	2.889	2.432	2.122	2.016	2.046	1.791	1.552	1.788
SK	10.443	6.686	5.922	4.660	4.008	3.879	4.396	3.698	3.869	5.277
EU-15	638.019	636.677	626.683	639.059	606.246	583.505	621.940	540.086	560.284	558.860
EU-28	795.936	761.625	726.700	746.212	705.558	682.526	731.354	638.847	658.705	651.318

Table 29 CH4 emissions for source category 1.A.4

Source Category	1A4	Other Secto	rs							
Gas	CH4									
Member				In	ventory data	a				Proxy
State	1990	1995	2000	2005	2008	2009	2010	2011	2012	2013
					G	g				
AT	18,4	16,8	12,6	11,1	9,8	9,2	10,2	8,9	9,6	9,5
BE	12,7	11,4	9,5	10,7	12,1	12,4	13,7	10,1	12,2	11,2
BG	11,2	8,2	9,6	10,9	11,0	10,4	11,7	12,7	13,3	12,1
CY	0,1	0,2	0,2	0,2	0,2	0,3	0,3	0,3	0,3	0,3
CZ	63,0	33,4	22,2	21,6	21,3	21,8	23,6	21,9	23,7	22,8
DE	123,6	37,1	31,6	27,1	30,9	31,5	46,4	43,1	44,2	45,4
DK	5,4	7,3	8,7	9,7	9,4	8,9	9,1	7,9	7,5	5,4
EE	3,3	4,9	4,5	4,1	5,1	5,3	5,5	4,8	5,0	5,8
ES	36,2	33,7	33,2	35,8	38,1	46,1	45,3	44,6	45,5	39,9
FI	8,7	8,8	8,8	10,3	11,1	11,8	13,1	11,2	12,2	12,2
FR	177,9	172,4	128,2	99,0	74,3	70,3	71,8	54,8	59,6	59,3
UK	72,6	42,0	35,8	22,5	26,4	25,4	28,5	26,4	27,2	26,6
GR	4,0	3,9	4,8	3,5	3,7	3,6	3,6	4,0	4,1	3,6
HR	7,4	3,7	4,5	4,3	3,7	3,9	4,5	5,3	5,5	5,1
HU	34,5	17,5	12,2	10,9	10,2	11,9	13,0	14,1	13,7	12,4
IE	18,0	11,7	8,4	7,7	7,8	8,2	7,9	7,2	7,1	6,7
IT	21,3	28,5	32,7	37,1	45,5	48,4	51,3	52,0	56,2	55,3
LT	8,8	6,1	7,6	8,0	8,5	8,6	8,6	8,5	8,6	8,1
LU	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,3	0,4	0,4
LV	11,2	12,5	10,5	12,2	11,0	12,1	11,3	9,6	10,4	10,5
MT	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
NL	21,7	32,1	32,4	32,4	66,0	68,1	72,9	68,3	63,2	62,4
PL	112,4	163,1	103,2	114,4	125,1	126,8	149,4	131,4	135,0	136,6
PT	16,6	14,8	13,3	11,3	10,0	9,6	9,1	9,8	9,4	8,7
RO	17,5	14,3	32,2	35,5	44,7	43,9	45,4	40,8	42,5	36,2
SE	11,6	12,6	11,1	12,4	12,4	14,0	13,2	13,8	13,5	12,9
SI	5,9	5,4	5,3	4,9	5,1	5,7	5,5	6,0	6,1	5,8
SK	0,5	0,6	0,8	1,2	1,7	0,9	0,9	1,0	1,0	1,2
EU-15	549,1	433,6	371,5	330,7	358,0	367,8	396,4	362,5	372,0	359,4
EU-28	824,8	703,5	584,2	558,9	605,6	619,3	676,3	619,0	637,2	616,3

Table 30 N₂O emissions for source category 1.A.4

Source Category	1A4	Other Secto	rs							
Gas	N2O									
Member				Ir	ventory data	a				Proxy
State	1990	1995	2000	2005	2008	2009	2010	2011	2012	2013
					G	g				
AT	0,8	0,8	0,8	0,8	0,7	0,7	0,7	0,6	0,6	0,6
BE	0,3	0,3	0,3	0,3	0,3	0,3	0,4	0,3	0,3	0,4
BG	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,1
CY	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
CZ	0,4	0,3	0,2	0,2	0,2	0,2	0,3	0,2	0,3	0,2
DE	3,2	2,1	1,8	1,6	1,8	1,6	1,9	1,9	1,9	1,9
DK	0,2	0,2	0,2	0,3	0,3	0,3	0,3	0,3	0,3	0,3
EE	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2
ES	1,0	1,0	1,1	1,3	1,3	1,4	1,4	1,4	1,4	0,7
FI	0,3	0,2	0,2	0,2	0,2	0,2	0,3	0,2	0,2	0,1
FR	4,2	4,3	4,3	4,8	4,5	4,5	4,8	4,1	4,5	4,5
UK	3,1	2,8	2,5	2,1	2,0	2,0	2,0	2,0	2,0	2,4
GR	1,2	1,1	1,2	1,2	1,1	0,9	0,8	0,9	0,4	0,4
HR	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
HU	0,3	0,2	0,2	0,1	0,1	0,2	0,2	0,2	0,2	0,1
IE	0,3	0,4	0,4	0,4	0,4	0,3	0,3	0,3	0,3	0,3
IT	4,8	5,3	5,5	6,2	6,2	6,4	6,5	6,4	6,5	6,1
LT	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
LU	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
LV	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,2	0,2
MT	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
NL	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2
PL	1,2	1,8	1,6	1,7	1,5	1,5	1,7	1,6	1,6	1,6
PT	0,8	0,8	0,6	0,6	0,6	0,5	0,5	0,5	0,5	0,4
RO	0,2	0,2	0,4	0,5	0,6	0,6	0,6	0,6	0,6	0,5
SE	0,6	0,5	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,3
SI	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
SK	0,1	0,1	0,1	0,1	0,2	0,1	0,1	0,1	0,1	0,1
EU-15	21,0	20,1	19,6	20,3	19,9	19,8	20,6	19,5	19,6	18,7
EU-28	24,1	23,4	22,8	23,8	23,4	23,2	24,2	22,9	23,1	22,1

5.3.1.6 1.A.5 Other Fuel Combustion

For all Member States and all three gases (CO₂, CH₄ and N₂O), inventory data from previous year was used as emission estimate for source category 1.A.5 (Other Fuel Combustion). As a result, the emissions from 1.A.5 have higher uncertainties than the other source categories in the energy sector.

5.3.1.7 1.B Fugitive Emissions

Methods and data sources used

The CO₂ and CH₄ emissions for source category 1.B (Fugitive Emissions from Fuels) were estimated on the basis of a separate analysis of the following source categories:

- Solid Fuels (1.B.1);
- Oil and Natural Gas, Oil (1.B.2.a);
- Oil and Natural Gas, Natural Gas (1.B.2.b);
- Oil and Natural Gas, Venting and Flaring (1.B.2.c).

The estimates for CO₂ emissions for source category 1.B.1 (Solid Fuels) are based on the monthly production data for hard coal and lignite from Eurostat. Two different approaches were used for CO₂ emissions from source category 1.B.1 (Solid Fuels):

- 1. For the Member States with no strong correlation between CO₂ emissions and monthly production data for hard coal or lignite from Eurostat in the previous years the average 2010–2012 of the CO₂ emission data from the last inventory submissions were used.
- 2. For the Member States with a significant correlation for the trends of CO₂ and CH₄ emissions in the previous years, the projection of CO₂ emissions is based on the following equation:

Equation 22

$$E_{IBI,CO2}^{Y} = \frac{AR_{coal-prod}^{Y}}{AR_{coal-prod}^{Y-1}} \cdot E_{IBI,CO2}^{Y-1}$$
with
$$E_{IBI,CO2}^{Y} \qquad CO42 \text{ emissions for source category } 1B1$$

$$E_{IBI,CO2}^{Y-1} \qquad CO2 \text{ emissions for source category } 1B1 \text{ from previous year}$$

$$AR_{coal-prod}^{Y} \qquad Hard \text{ coal or lignite production}$$

$$AR_{coal-prod}^{Y-1} \qquad Hard \text{ coal or lignite production for previous year}$$

For Czech Republic and United Kingdom where hard coal production is the main determinant for CO₂ emissions from source category 1.B.1, the primary hard coal production (Eurostat indicator code 100100, Eurostat product code 2111) was used for the projection of CO₂ emissions arising from this source category. For all other Member states that report CO₂ emissions from 1B1, the inventory data, average 2010-2012, from the last available submission were used.

The estimates for CH₄ emissions for source category 1.B.1 (Solid Fuels) are based on the monthly production data for hard coal and lignite from Eurostat. Two different approaches were used for CH₄ emissions from source category 1.B.1 (Solid Fuels):

- 1. For the Member States with no strong correlation between CH₄ emissions and monthly production data for hard coal and lignite from Eurostat in the previous years the average 2010–2012 of the CH₄ emission data from the last inventory submissions were used.
- 2. For the Member States with a significant correlation for the trends of CO₂ and CH₄ emissions in the previous years, the projection of CO₂ emissions is based on the following equation:

Equation 23

$$E_{1B1,CH4}^{Y} = \frac{AR_{coal-prod}^{Y}}{AR_{coal-prod}^{Y-1}} \cdot E_{1B1,CH4}^{Y-1}$$
 with
$$E_{1B1,CH4}^{Y} \qquad CH4 \ emissions \ for \ source \ category \ 1B1$$

$$E_{1B1,CH4}^{Y-1} \qquad CH4 \ emissions \ for \ source \ category \ 1B1 \ from \ previous \ year$$

$$AR_{coal-prod}^{Y} \qquad Hard \ coal \ or \ lignite \ production$$

$$AR_{coal-prod}^{Y-1} \qquad Hard \ coal \ or \ lignite \ production for \ previous \ year$$

For Czech Republic, Poland and United Kingdom where hard coal production is the main determinant for CH₄ emissions from source category 1.B.1, the primary hard coal production (Eurostat indicator code 100100, Eurostat product code 2111) was used for the projection of CH₄ emissions arising from this source category. For countries with a dominant lignite production (Bulgaria, Greece, Romania and Slovakia), the primary production data for lignite (Eurostat indicator code 100100, Eurostat product code 2210) were used. For all other Member states that report CH₄ emissions from 1B1, the inventory data, average 2009–2012, from the last available submission were used.

For calculating CO₂ and CH₄ emissions from 1B2a, 1B2b, 1B2c the correlation of several trends has been reviewed.

- Eurostat crude oil production (Indicator code 100100, product code 3100);
- Eurostat gas consumption (Indicator code 100900, product code 4100);
- Eurostat gas production (Indicator code 100100, product code 4100);
- EUTL main activity code 21 (refineries).

For the Member States with a significant correlation of CO₂ or CH₄ emissions with one of the trends in the previous years, the projection of emissions is based on the following formula.

Equation 24

$$E_{1B2\,ab,c\,CO2\,or\,CH4}^{Y} = \frac{E_{CIIL}^{Y}\,or\,AR_{Eurostat}^{Y}}{E_{CIIL}^{Y-1}AR_{Eurostat}^{Y-1}} \cdot E_{1B2ab,c\,CO2\,or\,CH4}^{Y-1}$$
 with
$$E_{1B2ab,c\,CO2\,or\,CH4}^{Y} \quad CO2\,or\,CH4 \ emissions \ for \ source \ category \ 1B2a,b,c$$

$$E_{1B2ab,c\,CO2\,or\,CH4}^{Y-1} \quad CO2\,or\,CH4 \ emissions \ for \ source \ category \ 1B2a,b,c$$
 from previous year
$$AR_{Eurostat}^{Y} \quad Crude \ oil \ production, Gas \ production \ or \ Gas \ consumption$$

$$AR_{Eurostat}^{Y-1} \quad Crude \ oil \ production, Gas \ production \ or \ Gas \ consumption$$
 for previous year

For Member States with no strong correlation between one of the trends and CO₂ or CH₄ emissions in the previous years, the emission data from the last inventory submission were used.

Table 31 Best fit trends for calculating CO2 and CH4 emissions from 1B2a, 1B2b and 1B2c

	1B2a CO2	1B2a CH4	1B2b CO2	1B2b CH4	1B2c venting CO2	1B2c venting CH4	1B2c flaring CO2	1B2c flaring CH4
Crude Oil Production	DK, HU, RO	FR, HU, RO					CZ, DE, HU, IT, LT, RO	CZ, LT, RO
CITL Refineries	AT, BE, CZ, FI, FR, IT, LT	BE, CZ, FI, PT, SE				GR	GR	ІТ
Gas Production		IT	DE, RO	HU, NL	HU	HR	HR	
Gas Consumption		AT, PL	IT, LU	ES, HR, IT, LU, PL, RO				

For all other member states that report CO_2 and CH_4 emissions from 1.B.2 either the value for 2012 or the average of 2010–2012 CO_2 or CH_4 emissions from the last inventory submission was used.

For all N₂O emissions from source category 1.B (Fugitive Emissions from Fuels) the emissions data from the last inventory submissions were used.

Results for 2013

Table 32 and Table 33 show the results for the proxy inventory in 2013 for 1B1 Fugitive Emissions from Solid Fuels compared to the inventory time series for the EU and all Member States for CO₂ and CH₄ emissions respectively.

Table 32 CO2 emissions from 1.B.1 Fugitive Emissions from Solid Fuels

Source Category	1B1	1. Solid F	uels							
Gas	CO2									
Member					Inventory da	nta				Proxy
State	1990	1995	2000	2005	2008	2009	2010	2011	2012	2013
						Gg				
AT	IE,NA,NO	IE,NA,NO	IE,NA,NO	IE,NA,NO	IE,NA,NO	IE,NA,NO	IE,NA,NO	IE,NA,NO	IE,NA,NO	IE,NA,NO
BE	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO
BG	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO
CY	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO
CZ	456	356	315	301	288	250	259	255	259	195
DE	12	14	16	3	1	2	2	4	2	3
DK	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO
EE	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
ES	18	13	15	90	43	14	37	44	23	35
FI	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
FR	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO
UK	855	225	102	111	231	146	208	239	227	177
GR	NO	NO	IE,NO	IE,NO	IE,NO	IE,NO	IE,NO	IE,NO	IE,NO	IE,NO
HR	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
HU	7	2	IE,NA,NO	IE,NA,NO	IE,NA,NO	IE,NA,NO	IE,NA,NO	IE,NA,NO	IE,NA,NO	IE,NA,NO
IE	NE,NO	NE,NO	NO	NO	NO	NO	NO	NO	NO	NO
IT	0	0	0	0	0	0	0	0	0	0
LT	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
LU	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
LV	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
MT	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO
NL	403	517	422	599	710	547	972	637	284	631
PL	2.561	1.407	2.689	1.852	1.523	999	1.320	1.468	1.869	1.553
PT	10	2	1	1	1	1	1	1	1	1
RO	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SE	5	6	6	5	4	15	5	6	9	7
SI	98	86	79	81	82	80	81	82	79	80
SK	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO
EU-15	1.302	777	562	810	991	724	1.227	931	546	854
EU-28	4.425	2.629	3.645	3.044	2.884	2.053	2.887	2.736	2.753	2.681

Table 33 CH₄ emissions from 1.B.1 Fugitive Emissions from solid Fuels

Source Category	1B1	1. Solid Fu	els							
Gas	CH4									
Member				lr	ventory dat	а				Proxy
State	1990	1995	2000	2005	2008	2009	2010	2011	2012	2013
					G	g				
AT	0,6	0,3	0,3	0,0	0,0	0,0	0,0	0,0	0,0	0,0
BE	15,7	0,8	0,6	0,6	0,3	0,2	0,3	0,3	0,2	0,3
BG	83,3	76,5	49,1	34,6	38,4	38,4	41,5	51,3	44,7	33,4
CY	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO
CZ	361,9	276,6	197,2	172,0	168,1	152,5	155,7	156,3	155,5	116,8
DE	963,9	706,3	590,6	274,2	183,4	133,3	133,1	125,6	160,5	139,8
DK	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO
EE	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
ES	86,5	70,0	59,4	44,7	33,0	29,6	25,5	30,0	23,9	26,5
FI	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
FR	193,6	198,1	114,4	15,7	3,0	2,5	2,5	4,7	1,6	2,9
UK	871,5	601,1	323,3	154,7	110,9	107,0	99,4	94,9	94,6	73,8
GR	52,2	58,0	64,2	69,7	66,0	65,2	56,8	59,0	63,3	49,8
HR	2,3	1,1	NO	NO	NO	NO	NO	NO	NO	NO
HU	31,4	16,3	14,8	1,0	0,9	0,7	0,6	0,5	0,5	0,5
IE	NE,NO	NE,NO	NO	NO	NO	NO	NO	NO	NO	NO
IT	6,0	3,1	3,6	3,3	3,5	2,2	3,2	3,4	3,0	3,2
LT	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
LU	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
LV	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
MT	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO
NL	1,6	1,6	1,1	1,1	1,0	0,8	1,0	1,0	0,9	1,0
PL	634,7	607,6	529,6	463,1	392,2	353,6	349,6	341,8	359,3	346,8
PT	3,5	0,7	0,5	0,4	0,4	0,4	0,4	0,4	0,4	0,4
RO	156,0	128,9	127,7	97,2	49,9	43,0	36,3	40,9	38,6	26,0
SE	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
SI	14,4	13,0	12,0	12,2	12,1	11,9	11,9	12,1	11,5	8,9
SK	27,2	29,8	29,0	17,6	18,5	19,3	15,3	16,3	16,1	15,0
EU-15	2.195,2	1.639,9	1.158,0	564,5	401,6	341,3	322,3	319,2	348,4	297,7
EU-28	3.506,4	2.789,8	2.117,6	1.362,1	1.081,8	960,7	933,1	938,5	974,6	845,1

Table 34 and Table 35 show the results for the proxy inventory for 2013 for 1B1 Fugitive Emissions from Oil and Natural Gas compared to the inventory time series for the EU and all Member States for CO₂ and CH₄ emissions respectively.

Table 34 CO2 emissions from 1.B.2 Fugitive Emissions from Oil and Natural Gas

Source Category	1B2	2. Oil and	Natural Gas	1								
Gas	CO2											
Member					Inventory da	ata				Proxy		
State	1990	1995	2000	2005	2008	2009	2010	2011	2012	2013		
		Gg										
AT	102	127	165	205	212	265	237	233	237	235		
BE	84	84	165	104	117	117	103	93	92	95		
BG	4	5	3	25	11	2	5	20	18	14		
CY	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	0		
CZ	4	11	14	24	19	17	14	13	12	12		
DE	1.943	2.252	2.405	2.295	1.945	1.826	1.627	1.553	1.454	1.490		
DK	327	449	720	543	392	265	357	256	221	277		
EE	NO	NO	NO	NO	NO	NO	NO	NO	NO	0		
ES	1.656	1.800	2.108	2.053	2.109	2.049	2.137	2.518	3.293	2.649		
FI	219	171	128	127	139	114	138	121	133	129		
FR	4.420	4.466	4.321	4.005	4.910	4.622	4.215	3.982	3.396	3.332		
UK	5.778	8.429	5.684	5.851	4.302	4.490	4.398	4.017	3.550	3.989		
GR	70	39	24	9	5	8	11	9	9	9		
HR	640	869	739	780	659	595	562	577	503	547		
HU	290	317	227	137	212	211	220	216	175	194		
IE	IE,NO	IE,NO	IE,NO	IE,NO	IE,NO	IE,NO	IE,NO	IE,NO	IE,NO	0		
IT	3.344	3.178	2.588	2.117	2.264	2.170	2.322	2.315	2.223	2.070		
LT	1	10	25	17	10	9	9	9	8	7		
LU	0	0	0	0	0	0	0	0	0	0		
LV	0	0	0	0	0	0	0	0	0	0		
MT	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	0		
NL	775	441	267	1.074	920	1.066	1.052	900	791	914		
PL	45	75	172	1.309	1.294	1.280	1.176	1.719	1.854	1.849		
PT	268	724	662	967	918	948	911	910	991	931		
RO	1.213	1.068	962	901	724	682	652	646	608	621		
SE	292	295	351	310	888	898	883	879	874	879		
SI	0	0	0	0	0	0	0	0	0	0		
SK	0	0	0	0	0	0	0	0	0	0		
EU-15	19.278	22.456	19.588	19.662	19.123	18.839	18.391	17.786	17.264	16.999		
EU-28	21.475	24.813	21.730	22.856	22.051	21.636	21.028	20.987	20.444	20.244		

Table 35 CH4 emissions from 1.B.2 Fugitive Emissions from Oil and Natural Gas

Source Category	1B2	2. Oil and	Natural Gas	i						
Gas	CH4									
Member					Inventory da	ata				Proxy
State	1990	1995	2000	2005	2008	2009	2010	2011	2012	2013
			•		•	Gg	•			
AT	10,6	12,0	12,1	11,0	10,8	11,0	11,3	11,2	11,6	11,1
BE	25,2	25,1	21,6	19,8	18,7	18,8	20,9	19,1	18,1	19,4
BG	38,4	33,4	29,6	33,6	32,5	23,4	25,3	32,0	29,8	29,0
CY	0,0	0,1	0,1	NA,NE,NO	NA,NE,NO	NA,NE,NO	VA,NE,NO	NA,NE,NO	NA,NE,NO	0,0
CZ	42,7	31,9	33,1	32,4	30,3	32,3	33,9	31,7	25,6	30,3
DE	370,8	337,8	317,3	293,6	282,2	284,3	274,4	278,3	276,3	276,3
DK	2,1	3,5	4,0	5,2	6,0	5,6	5,3	5,3	5,0	5,2
EE	8,5	4,0	4,6	5,5	5,3	3,6	3,9	3,5	3,6	3,7
ES	29,2	37,3	34,9	40,7	24,3	25,2	25,8	25,9	27,2	26,1
FI	0,5	3,8	2,6	3,0	2,3	2,2	1,9	1,7	1,8	1,8
FR	71,4	60,9	56,0	50,0	51,3	50,6	55,3	52,6	55,6	54,3
UK	493,3	445,5	322,3	278,0	251,9	252,3	248,6	245,5	248,4	247,5
GR	4,4	2,6	6,5	6,9	7,9	8,4	9,0	9,0	9,5	9,3
HR	57,3	54,8	53,0	63,4	72,7	70,2	72,7	68,0	58,7	53,0
HU	73,2	93,5	97,5	97,5	96,5	98,7	101,4	100,0	97,0	98,6
IE	6,3	5,4	4,1	2,7	2,5	1,7	1,5	1,3	1,1	1,3
IT	347,5	324,6	302,3	268,9	237,8	233,8	243,7	238,5	235,4	226,0
LT	7,1	8,7	10,7	11,7	12,0	12,4	12,4	12,4	12,4	12,4
LU	0,8	1,0	1,2	2,1	2,0	2,0	2,2	1,9	1,9	1,9
LV	9,9	7,9	6,0	5,3	4,0	3,8	3,7	2,0	2,8	2,8
MT	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	VA,NE,NO	NA,NE,NO	NA,NE,NO	0,0
NL	78,2	77,9	38,6	36,1	37,9	32,4	35,5	35,9	35,0	35,3
PL	147,4	151,7	168,3	205,6	209,8	201,9	212,4	214,1	226,1	240,0
PT	1,8	2,2	9,1	19,9	21,7	30,7	14,4	7,7	18,8	14,4
RO	817,1	537,6	433,2	421,1	371,8	342,1	334,1	333,7	309,0	304,0
SE	3,7	4,2	4,4	3,9	3,4	3,2	3,0	2,9	3,2	2,9
SI	2,1	2,0	1,4	1,1	1,0	1,0	1,0	1,0	1,0	1,0
SK	24,5	29,1	34,1	32,0	34,9	37,8	34,7	36,0	36,1	36,0
EU-15	1.445,8	1.343,8	1.137,2	1.041,8	960,6	962,1	952,7	936,9	948,8	932,9
EU-28	2.673,9	2.298,4	2.008,7	1.951,1	1.831,6	1.789,2	1.788,2	1.771,3	1.751,0	1.743,8

5.3.2 Industrial Processes

5.3.2.1 2.A Mineral products

Methods and data sources used

The emissions from 2.A Mineral products are based on CO₂ emission data for Cement (2.A.1) Lime (2.A.2) and Glass Production (2.A.7) from the EUTL data which were used as an index of the evolution of the emissions from the production of cement clinker, lime or glass production.

Emissions for 2.A.1 and 2.A.2 were calculated using EUTL data Main activity codes 29, 30 and 34 and a scaling factor based on comparison inventory data - EUTL data for 2012.

In this approach CO₂ emissions from 2.A1 (Cement) and 2.A.2 (Lime) were calculated as follows:

Equation 25

$E_{2Ax}^{Y} =$	$rac{E_{CITL}^{Y}}{E_{CITL}^{Y-1}} \cdot E_{2Ax}^{Y-1}$
with	
E_{2Ax}^{Y}	Emissions for source category 2A1 or 2A2
E_{2Ax}^{Y-1}	Emissions for source category 2A1 or 2A2 from previous year
$E_{\it CITL}^{\it Y}$	CITL emissions for the production of cement clinker and lime
	production
$E_{\it CITL}^{\it Y-1}$	CITL emissions for the production of cement clinker and lime
	production from previous year

Malta did not report 2.A.1 emissions for 2012 therefore no emissions were estimated. Luxembourg, Malta and Netherlands did not report 2.A.2 emissions for 2012 therefore no emissions were estimated.

Since Croatia did not participated 2012 in the EU ETS and therefore emissions could not be estimated from the equation above, 2.A.1 and 2.A.2 emissions 2013 for Croatia were calculated by linear trend extrapolation via minimum square deviation of the emissions of the years 2008–2012.

Two different approaches were used to estimate CO₂ emissions from 2.A.7 (Glass production):

- 1. For the Member States with no strong correlation between CO₂ emissions and EUTL data Main activity code 7 in the previous years the average 2010–2012 of the CO₂ emission data from the last inventory submissions were used.
- 2. For the Member States with a significant correlation between CO₂ emissions and EUTL data Main activity code 7 in the previous years, the projection of CO₂ emissions is based on the following equation:

Equation 26

$E_{2A}^{Y} = \frac{E_{EUTL}^{Y}}{E_{EUTL}^{Y-1}}$	$\cdots E_{2A7}^{Y-1}$
with	
E_{2A}^{Y}	Emissions for source category 2A7
E_{2A}^{Y-1}	Emissions for source category 2A7 from previous year
$E_{\scriptscriptstyle EUTL}^{\scriptscriptstyle Y}$	EUTL emissions for the production of glass production
$E_{ extit{ iny EUTL}}^{ extit{Y-1}}$	EUTL emissions for the production of glass production
	from previous year

Cyprus, Croatia, Ireland, Latvia and Malta did not report 2.A.7 emissions for glass production therefore no emissions were estimated.

The total CO₂ emissions for source category 2.A.7 were calculated from the estimates for source category 2.A.7 glass production and the CO₂ emission data from all other sub-categories of source category 2.A.7 from the last inventory submissions.

Results for 2013

Table 36 shows the CO₂ emissions for the proxy inventory in 2012 for 2A Mineral Products compared to the inventory time series for the EU and all Member States.

Table 36 CO2 emissions from 2.A Mineral Products

Source Category	2A	Mineral Pro	oducts							
Gas	CO2									
Member				li	nventory da	ta				Proxy
State	1990	1995	2000	2005	2008	2009	2010	2011	2012	2013
					G	g		•		
AT	3.274	2.863	2.966	3.133	3.531	2.916	2.936	3.030	2.946	3.055
BE	5.751	6.193	6.146	5.765	5.961	4.691	4.805	5.096	4.691	4.550
BG	3.907	3.240	2.120	2.809	3.474	2.206	2.468	2.721	2.853	2.921
CY	759	839	847	895	896	724	585	572	554	792
CZ	4.830	3.602	4.166	3.855	4.130	3.449	3.425	3.824	3.487	3.309
DE	22.615	23.029	22.157	19.424	20.183	17.784	18.247	19.415	18.942	19.667
DK	1.069	1.405	1.616	1.544	1.320	881	796	972	972	965
EE	628	367	402	416	648	282	339	453	468	447
ES	15.427	15.887	19.121	21.906	18.831	14.661	14.547	12.999	11.844	10.625
FI	1.269	931	1.127	1.260	1.303	938	1.221	1.314	1.165	1.181
FR	16.525	13.943	13.856	14.141	13.625	11.584	12.309	12.296	11.668	11.821
UK	10.505	9.493	9.548	9.290	8.485	6.163	6.381	6.699	6.501	6.810
GR	6.802	7.206	7.503	7.932	6.963	5.325	4.925	3.116	3.741	4.379
HR	1.305	760	1.423	1.786	1.858	1.461	1.432	1.220	1.173	1.432
HU	3.240	2.293	2.242	2.238	2.256	1.606	1.402	1.224	1.281	1.085
IE	1.117	1.084	1.909	2.553	2.302	1.485	1.299	1.167	1.392	1.320
ΙΤ	21.303	20.976	21.455	23.481	21.729	17.466	17.553	17.003	13.968	12.656
LT	2.142	425	357	445	521	305	326	382	455	517
LU	623	519	580	505	466	440	453	473	435	422
LV	585	150	147	189	215	207	469	569	588	563
MT	1	2	0	0	0	0	0	0	0	0
NL	1.172	1.733	1.411	1.447	1.460	1.274	1.254	1.295	1.189	1.165
PL	9.087	9.901	9.641	8.685	10.648	9.267	9.999	11.512	10.064	9.538
PT	3.493	3.949	4.461	4.754	4.787	3.917	4.030	3.396	3.263	3.491
RO	8.173	5.596	4.778	5.597	6.621	4.710	4.608	4.881	5.001	4.426
SE	1.722	1.763	1.880	2.004	2.132	1.810	2.051	2.073	2.146	2.048
SI	725	609	682	761	895	663	629	585	573	629
SK	2.966	2.305	2.524	2.970	3.145	2.456	2.303	2.681	2.474	2.383
EU-15	112.667	110.974	115.735	119.139	113.079	91.334	92.807	90.343	84.864	84.157
EU-28	151.016	141.062	145.064	149.785	148.386	118.670	120.793	120.967	113.836	112.199

5.3.2.2 2.C Metal production

Methods and data sources used

The estimates for CO₂ emissions for source category 2.C (Metal Production) are based on separate estimates for source category 2.C.1 (Iron and Steel Production) and the remaining subcategories of source category 2.C.

For calculating CO₂ emissions from 2.C.1 the correlation of several trends has been analysed. The estimates are based on monthly production data from the World Steel Association or on EUTL data. The following trends have been used:

- 1. Crude steel production data from the World Steel Association;
- 2. Blast furnace iron production data from the World Steel Association;
- 3. EUTL main activity code 22 (Production of coke) and 24 (Production of pig iron or steel) and including those power plants in the EUTL that where identified to use waste gases from the iron and steel industry;
- 4. EUTL main activity code 22 (Production of coke), 23 (Metal ore roasting or sintering) 24 (Production of pig iron or steel), 25 (Production or processing of ferrous metals), 27 (Production of secondary aluminium) and 28 (Production or processing of non-ferrous metals) and including those power plants in the EUTL that where identified to use waste gases from the iron and steel industry;

The estimates for CO₂ emissions for source category 2.C.1 (Iron and Steel Production) are based on the formula:

Equation 27

$$E_{2C1CO2}^{Y} = \frac{AR_{steel}^{Y}}{AR_{steel}^{Y-1}} \cdot E_{2C1CO2}^{Y-1}$$
with
$$E_{2C1CO2}^{Y} \qquad CO2 \ emissions \ for \ source \ category \ 2C1$$

$$E_{2C1CO2}^{Y-1} \qquad CO2 \ emissions \ for \ source \ category \ 2C1 \ from \ previous \ year$$

$$AR_{steel}^{Y} \qquad Crude \ steel \ or \ blast \ furnace \ iron \ production \ or \ EUTL \ data$$

$$AR_{steel}^{Y-1} \qquad Crude \ steel \ or \ blast \ furnace \ iron \ production \ or \ EUTL \ data$$

$$for \ previous \ year$$

This equation and the World Steel Association monthly crude steel production data was used for Czech Republic. For Bulgaria, Finland, Greece, Italy, Luxembourg and Slovakia the World Steel Association monthly blast furnace iron production data was used. For Austria, Finland, Germany, Portugal, Slovenia, Spain and Sweden emission trends from EUTL data were used for the calculation.

For Member States with no strong correlation between one of the trends and CO₂ emissions in the previous years, the emission data average 2010–2012 from the last inventory submission were used. This includes Croatia, France, Hungary, Lithuania, Latvia, Netherlands, Poland, Romania and United Kingdom. Cyprus, Denmark, Estonia, Ireland and Malta did not report emissions in 2.C.1 therefore no emissions were estimated.

The total CO₂ emissions for source category 2.C (Metal Production) were calculated from the estimates for source category 2.C.1 (Iron and Steel Production) and the CO₂ emission data from all other sub-categories of source category 2.C from the last inventory submissions.

Results for 2013

Table 37 shows the CO₂ emissions for the proxy inventory in 2013 for 2C Metal Production compared to the inventory time series for the EU and all Member States.

Table 37 CO₂ emissions from 2.C Metal Production

Source Category	2C	C. Metal Pr	oduction							
Gas	CO2									
Member				lı	ventory dat	a				Proxy
State	1990	1995	2000	2005	2008	2009	2010	2011	2012	2013
					G	g				
AT	3.725	3.942	4.221	5.015	5.828	4.597	5.481	5.693	5.474	5.329
BE	2.022	1.975	1.879	1.701	1.656	859	899	540	444	333
BG	1.383	3.138	2.388	2.100	1.018	80	55	68	50	38
CY	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO
CZ	12.431	7.398	6.890	6.559	7.019	5.191	5.801	5.503	5.250	4.995
DE	24.153	19.225	21.152	21.821	19.927	13.868	17.861	16.995	16.475	16.018
DK	28	39	41	16	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO
EE	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO
ES	3.384	2.247	2.919	3.512	3.511	2.650	3.475	3.060	2.749	2.604
FI	1.936	2.047	2.351	2.372	2.524	1.945	2.408	2.343	2.278	2.149
FR	4.524	5.637	4.349	4.708	4.007	3.445	4.614	3.829	3.021	3.825
UK	2.341	1.953	2.049	2.542	3.121	1.228	1.669	1.347	924	1.170
GR	940	963	946	1.203	1.110	685	860	1.051	1.052	1.021
HR	252	36	18	11	24	11	27	29	0	19
HU	615	408	360	489	448	255	295	334	218	282
IE	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
IT	3.878	3.403	1.754	1.922	1.875	1.307	1.465	1.610	1.520	1.456
LT	21	5	7	7	5	4	4	4	3	4
LU	985	465	146	153	169	129	134	124	100	87
LV	13	4	8	12	9	10	11	0	2	5
MT	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO
NL	2.661	1.908	1.519	1.476	1.214	1.076	998	1.548	1.404	1.177
PL	6.074	4.208	3.348	2.391	2.681	1.693	1.726	2.165	2.297	2.135
PT	170	213	238	98	108	69	46	50	58	63
RO	6.737	7.186	5.046	6.276	5.444	3.606	3.367	3.008	2.592	3.014
SE	3.208	3.444	3.206	3.134	2.952	1.669	3.107	2.932	2.557	2.050
SI	285	211	186	275	188	85	109	166	178	178
SK	4.283	4.344	3.355	3.980	4.267	3.576	4.248	3.649	4.068	4.703
EU-15	53.955	47.460	46.769	49.672	48.003	33.526	43.017	41.123	38.058	37.282
EU-28	86.047	74.399	68.376	71.773	69.104	48.037	58.659	56.050	52.718	52.654

5.3.2.3 Other source categories

For all other source categories covering industrial processes (CRF 2) and solvent and other product use (CRF 3), 2013 activity data from alternative data sources are lacking. These categories were extrapolated from 2012 GHG inventories, either by linear trend extrapolation via minimum square deviation of the emissions of the years 2008–2012 or by taking the constant values of the year 2012. Constant values were used when past trends were inconsistent and strongly fluctuating and trend extrapolation were used when the historic time series showed good correlations with a linear trend (i.e. if the coefficient of determination R^2 of the trend 2008–2012 is greater than or equal to 0.80).

Annex 5.3.2 provides a detailed overview of methods and data sources used for each source category and Member State.

5.3.3 Agriculture

5.3.3.1 4.A Enteric fermentation

Methods and data sources uses

Enteric fermentation (CRF Source Category 4A) emissions were calculated using agriculture activity data and implied emission factors. Livestock data were obtained from the Eurostat annual statistics on agriculture and fisheries, as well as from the annual inventory data in CRF format and the National Inventory Reports (NIR) submitted to the EU and to the UNFCCC. Annual animal population Eurostat data was used for live bovine animals (dairy cattle, non-dairy cattle and buffalo), goats, swine and sheep.

Buffalo are counted within the Eurostat *A2000 Live bovine animals* category and are included in the emissions calculations for Non-Dairy Cattle. Separate calculations were not conducted for Buffalo and emissions from this class are reported as IE. While there are differences in the emissions factors for buffalo and other non-dairy cattle, the total herd size is relatively low.

Livestock surveys do not include poultry as Eurostat only provides livestock surveys for laying hens without broilers and hens. Horses, mules and asses are also not covered by Eurostat animal production data. Therefore, the emissions of the corresponding animal categories were updated using data of previous years via trend extrapolation of UNFCCC inventory data. The proxy CH₄ emissions for source category 4A were calculated based on the following equation:

Equation 28

```
E_{4A}^{Y} = \sum_{i} AF_{i}^{Y-I} \cdot IEF_{i}^{Y-I} \cdot AR_{i}^{Y} + E_{other}^{Y-I} with E_{4A}^{Y} \qquad Emissions \ for \ source \ category \ 4A AF_{i}^{Y-I} \qquad Adjustment \ factor \ for \ animal \ category \ i \ from \ previous \ year(s) IEF_{i}^{Y-I} \qquad Implied \ emission \ factor \ for \ animal \ category \ i \ from \ previous \ year(s) AR_{i}^{Y} \qquad Activity \ rate \ (livestock) \ for \ animal \ category \ i Emissions \ for \ other \ animals \ for \ source \ category \ 4A from \ previous \ year(s)
```

Activity rates provided by Eurostat encompass two animal livestock surveys in May/June and in December for the year Y-1. For each Member State how well the respective livestock surveys correspond with the data used in national GHG inventories was analysed. The results of the best fits differed for each Member States and also for animal categories. For the estimation of approximated 2013 emissions, the animal population surveys were chosen which best corre-

sponded with the livestock data reported in GHG inventories for past years. For some Member States and animal categories Eurostat livestock population tended to show a constant deviation over the time series compared to the animal population reported in GHG inventories. In such cases, a scaling factor was applied to achieve a 2012 data set comparable to animal population reported in GHG inventories. The scaling factor was derived on the basis of the most recent inventory data and the best fitting Eurostat dataset. For some Member States (Romania, Belgium, France, Ireland and Spain) country-specific adjustments were made by applying a percentage trend of the activity data (source: EUROSTAT time series) to the emissions of the previous year 2012.

In general, implied emission factors for each animal category were derived from the national inventory data, which Member States submitted to the EU and the UNFCCC for the year Y-2.

Results for 2013

Table 38 CH4 emissions in Gg from 4.A Enteric Fermentation

Source Category	4A	A. Enteric F	ermentation	1						
Gas	CH4									
Member				lı	ventory dat	а				Proxy
State	1990	1995	2000	2005	2008	2009	2010	2011	2012	2013
		•	•	•	G	g		•		
AT	178,7	172,1	162,7	153,7	153,5	155,5	155,1	153,1	152,0	152,4
BE	201,5	202,6	189,6	173,5	173,9	174,5	175,2	172,3	169,6	170,5
BG	181,5	91,9	83,2	73,4	66,0	62,8	61,3	62,4	60,6	62,8
CY	7,7	8,6	8,5	8,7	8,5	8,5	8,9	9,1	9,2	8,5
CZ	200,9	125,3	106,7	99,7	100,1	97,5	95,2	95,4	96,5	94,6
DE	1.409,3	1.195,0	1.107,8	1.021,4	1.015,3	1.016,3	1.007,4	993,0	992,0	999,6
DK	154,6	149,2	136,2	130,3	134,8	134,4	136,3	135,2	138,3	136,8
EE	48,4	24,9	19,2	19,5	19,3	19,0	19,3	19,6	20,2	20,9
ES	529,5	521,5	568,1	559,9	535,5	531,5	521,1	500,6	488,6	474,8
FI	87,2	77,2	76,1	74,2	72,8	73,5	75,0	74,2	73,5	74,1
FR	1.463,9	1.423,1	1.453,3	1.366,1	1.398,7	1.383,7	1.377,0	1.354,2	1.342,9	1.341,8
UK	894,0	878,3	850,8	789,8	751,2	737,9	741,5	737,7	736,4	742,5
GR	149,0	146,7	149,3	150,7	148,9	148,5	148,7	149,0	148,7	150,9
HR	68,7	48,8	42,9	44,6	40,1	40,3	40,4	40,1	39,6	37,0
HU	143,2	84,8	82,0	73,9	71,0	70,0	69,2	69,2	71,5	73,4
IE	455,9	460,9	452,1	430,1	422,6	416,1	406,7	402,9	419,6	416,7
IT	584,7	588,0	583,1	519,7	523,6	524,1	511,0	512,1	508,0	512,9
LT	153,6	75,8	56,9	61,4	63,4	60,2	58,4	57,2	56,4	55,0
LU	12,4	12,2	11,8	11,1	11,6	11,7	12,0	11,6	11,4	11,9
LV	102,3	41,5	30,7	31,9	31,8	31,5	31,7	31,8	32,7	33,5
MT	1,0	2,0	1,8	1,7	1,6	1,5	1,4	1,4	1,4	1,4
NL	364,2	351,5	313,1	301,4	312,1	313,8	315,7	311,5	312,1	324,4
PL	758,8	532,3	452,5	416,8	431,6	425,0	425,0	425,7	427,5	421,5
PT	130,0	139,2	146,7	142,1	139,4	135,1	132,9	130,6	129,9	126,3
RO	758,8	531,7	423,2	426,0	437,9	428,8	376,0	375,0	381,4	388,8
SE	140,5	141,6	131,6	127,6	124,5	123,7	123,3	122,7	120,9	117,9
SI	31,1	30,6	33,0	31,4	32,3	32,0	31,8	31,1	30,9	30,8
SK	95,9	67,7	50,8	45,5	43,1	41,2	40,8	40,8	42,0	43,5
EU-15	6.755,6	6.458,9	6.332,5	5.951,7	5.918,4	5.880,3	5.838,9	5.760,8	5.743,9	5.753,5
EU-28	9.307,4	8.125,0	7.723,9	7.286,3	7.265,2	7.198,6	7.098,2	7.019,6	7.013,9	7.025,3

5.3.3.2 4.B Manure Management

Methods and data sources used

Manure management (CRF Source Category 4B) emissions calculations use the same Eurostat data as for Enteric Fermentation. Data from livestock surveys provided by Eurostat were used according presented to Table 88, Annex 1. The emission estimation follows a similar equation than the one for 4.A because of the same proxy methodology:

Equation 29

```
E_{4B}^{Y} = \sum_{i} AF_{i}^{Y-1} \cdot IEF_{i}^{Y-1} \cdot AR_{i}^{Y} + E_{other}^{Y-1} with E_{4B}^{Y} \qquad Emissions \ for \ source \ category \ 4B AF_{i}^{Y-1} \qquad Adjustment \ factor \ for \ animal \ category \ i \ from \ previous \ year(s) IEF_{i}^{Y-1} \qquad Implied \ emission \ factor \ for \ animal \ category \ i \ from \ previous \ year(s) AR_{i}^{Y} \qquad Activity \ rate \ (livestock) \ for \ animal \ category \ i Emissions \ for \ other \ animals \ for \ source \ category \ 4B from \ previous \ year(s)
```

Implied emission factors for each animal category for category 4.B were derived from the national inventory data submitted to the EU and the UNFCCC for the year Y-2.

Results for 2013

Table 39 and Table 40 show 4B Manure Management CH₄ and N₂O emissions for the EEA calculated proxy inventory along with selected time series for the EU and Member States as submitted to the UNFCCC.

Table 39 CH4 emissions in Gg from 4.B Manure Management

Source Category	4B	B. Manure I	Management							
Gas	CH4									
Member				li	nventory dat	а				Proxy
State	1990	1995	2000	2005	2008	2009	2010	2011	2012	2013
					G	g				
AT	20,52	19,5	17,5	16,1	15,7	15,9	15,9	15,6	15,4	15,4
BE	68,47	71,3	71,3	63,4	64,9	65,5	67,0	66,5	66,7	66,1
BG	182,10	66,6	20,0	26,5	29,3	28,5	27,8	27,1	24,5	25,1
CY	4,19	5,5	5,7	5,9	6,1	6,1	6,1	5,9	5,4	5,0
CZ	51,20	33,3	28,5	27,9	27,0	25,2	23,4	22,7	22,4	21,7
DE	316,55	287,1	281,1	267,6	255,8	252,8	242,5	235,8	235,9	235,9
DK	46,91	52,0	55,8	62,1	60,6	60,5	61,9	62,3	61,8	61,7
EE	3,60	1,8	1,2	1,8	2,0	2,0	2,2	2,2	2,2	2,2
ES	246,30	268,7	310,4	324,2	322,9	321,9	312,4	314,8	330,5	320,0
FI	9,64	10,6	10,8	12,4	12,5	12,3	12,4	12,1	11,9	12,0
FR	404,03	419,3	472,5	480,7	504,8	494,0	491,7	486,1	481,4	477,6
UK	426,48	422,1	388,2	340,4	324,4	320,0	317,9	315,2	314,3	321,6
GR	20,16	20,1	20,1	19,9	19,4	19,2	19,1	19,1	19,0	19,3
HR	12,26	8,9	8,5	8,4	9,5	10,1	9,8	9,8	9,4	8,8
HU	149,68	87,4	86,2	70,7	66,5	61,8	61,2	60,4	59,6	60,2
IE	112,08	112,6	110,2	107,9	104,5	103,7	102,5	101,7	106,6	105,1
IT	165,08	156,6	156,3	150,1	141,1	136,9	122,3	100,7	81,1	81,0
LT	52,08	28,5	21,6	26,4	25,1	24,4	25,0	23,6	24,1	23,1
LU	3,74	4,4	4,9	4,5	4,3	4,2	4,3	4,3	4,3	4,4
LV	9,67	4,0	3,5	3,9	4,2	4,3	4,5	4,4	4,6	4,7
MT	1,11	1,4	1,6	1,4	1,3	1,3	1,3	1,0	1,0	1,1
NL	145,36	151,8	137,9	126,0	130,1	140,0	137,9	125,4	125,1	128,3
PL	157,85	148,7	132,7	153,6	145,2	139,6	139,0	131,4	117,4	113,3
PT	56,17	58,6	56,1	49,1	50,2	50,2	49,8	49,1	49,3	49,9
RO	80,49	31,8	19,1	34,3	38,5	35,1	29,0	28,3	27,8	27,8
SE	11,86	13,2	12,3	16,0	15,3	14,9	14,9	15,2	14,9	14,7
SI	22,52	20,2	20,4	20,4	20,1	20,4	20,1	19,3	18,6	18,5
SK	22,44	16,4	11,9	9,6	7,8	7,8	7,5	6,9	7,2	7,2
EU-15	2.053,37	2.068,1	2.105,3	2.040,4	2.026,4	2.011,9	1.972,4	1.924,0	1.918,4	1.913,0
EU-28	2.802,58	2.522,6	2.466,3	2.431,3	2.409,1	2.378,4	2.329,3	2.267,0	2.242,8	2.231,7

Table 40 N2O emissions in Gg from 4.B Manure Management

Source Category	4B	B. Manure I	Management							
Gas	N2O									
Member	Inventory data									Proxy
State	1990	1995	2000	2005	2008	2009	2010	2011	2012	2013
	Gg									
AT	3,0	3,1	3,0	2,9	3,0	3,0	3,0	3,0	3,0	3,0
BE	3,1	3,2	2,9	2,6	2,5	2,5	2,5	2,5	2,5	2,5
BG	5,0	2,8	2,3	2,2	1,9	1,8	1,7	1,7	1,7	1,6
CY	0,4	0,4	0,6	0,5	0,5	0,5	0,5	0,5	0,5	0,5
CZ	5,5	3,5	3,1	2,5	2,4	2,3	2,2	2,1	2,1	2,0
DE	12,5	10,3	9,7	9,5	9,4	9,4	9,2	9,0	9,0	8,8
DK	1,9	1,8	1,7	1,7	1,5	1,4	1,4	1,3	1,3	1,2
EE	1,0	0,5	0,4	0,4	0,3	0,3	0,3	0,3	0,3	0,3
ES	4,3	4,7	5,1	5,4	5,3	5,2	5,3	5,3	4,9	5,0
FI	1,6	1,4	1,4	1,4	1,3	1,4	1,4	1,3	1,3	1,4
FR	20,9	20,4	19,2	16,9	16,6	16,5	16,5	16,2	16,0	15,9
UK	10,8	11,3	11,3	9,9	9,1	8,8	8,7	8,6	8,6	8,4
GR	1,7	1,7	1,8	1,9	1,9	1,9	1,9	1,9	1,9	1,9
HR	1,3	0,9	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8
HU	5,7	3,5	3,5	3,2	2,9	2,8	2,8	2,7	2,7	2,7
IE	1,4	1,5	1,5	1,6	1,5	1,5	1,4	1,4	1,5	1,4
IT	12,7	12,2	12,5	12,0	12,2	12,3	12,0	12,0	12,1	11,9
LT	2,9	1,3	0,9	1,0	1,0	0,9	0,9	0,9	0,8	0,8
LU	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
LV	1,8	0,7	0,5	0,5	0,5	0,4	0,4	0,4	0,4	0,4
MT	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
NL	3,8	3,8	3,3	3,0	3,2	3,2	3,2	3,4	3,2	3,4
PL	25,6	21,1	18,8	17,7	17,4	16,6	16,8	16,5	15,7	15,5
PT	1,7	1,6	1,5	1,2	1,0	1,0	1,0	1,0	0,9	0,9
RO	6,8	4,5	2,9	4,7	4,9	4,5	4,0	3,9	3,9	3,5
SE	2,4	2,1	1,9	1,6	1,6	1,5	1,5	1,4	1,4	1,4
SI	0,8	0,7	0,6	0,5	0,5	0,5	0,5	0,4	0,4	0,4
SK	3,5	2,3	1,6	1,3	1,2	1,2	1,2	1,0	1,0	1,0
EU-15	82,1	79,1	77,0	71,6	70,1	69,6	69,1	68,5	67,8	67,2
EU-28	142,4	121,4	113,1	106,7	104,5	102,4	101,2	99,8	98,3	96,8

5.3.3.3 4.D Agricultural Soils

Methods and data sources used

Emissions from 4.D Agricultural Soils are mainly as N_2O produced as a result of applying fertilizers, manure, and other agricultural practices. Only Austria actually reports CH_4 emissions from soils in its inventory. Now that the final proxy uses member state information wherever possible these estimates are of course included.

The EEA proxy for this sub-sector extrapolates aggregated EU 4D emissions and allocates the change by proportion among the EU-28. A previous EEA proxy methodology for N₂O emissions for 4.D Agricultural Soils, was based on the sum of trend estimates of most of the sub-sectors within the 4.D.1 Direct Soil Emissions category. That is from: 4.D.1.1 Synthetic Fertilizers, 4.D.1.2 Animal Manure applied to Soils, 4.D.1.3 N-fixing crops, 4.D.1.4 Crop residue, 4.D.1.5 Cultivation of Histosols and 4.D.1.6 Other Direct Emissions. For each Member States and each subsector the estimates were based on either trend extrapolation or taking the previous year's value. Analysis of this detailed approach against subsequently reported emissions showed no appreciable gain in accuracy. This was also the case for the other categories: 4.D.2. Pasture, Range and Paddock Manure; 4.D.3. Indirect Emissions and 4.D.4. Other.

Emissions from Synthetic Fertilizers (4.D.1.1) typically contribute 25% of soil related emissions. While there is some Eurostat data for fertiliser use, there is only data for 16 Member States for 2012 and none for 2013. Based on totals for 2007 to 2009, the volume of reported artificial nitrogen fertiliser used by these 16 was about 85% of the EU total use. Although this data could not be used for proxy calculations, the trend in artificial nitrogen fertiliser use largely matches the time series for total EU-28 emissions from 4.D Agricultural Soils.

For meaningful trend extrapolation, time series data needs to be reasonably smooth so that the underlying trend is apparent. At the top level the trend for 4.D Agricultural Soils is fairly consistent for the years after the global financial crisis, with an average annual increase of 0.9% between 2009 and 2012. This method of extrapolating aggregate EU 4D emissions and allocate the change by proportion among the EU-28 was used this year (for the 2013 EEA proxy calculated in 2014) and last year for the 2012 proxy calculated in 2013.

Results for 2013

Table 41 shows 4D Agricultural Soils N₂O emissions for the EEA calculated proxy inventory along with selected time series for the EU and Member States as submitted to the UNFCCC.

Table 41 N2O emissions in Gg from 4.D Agricultural Soils

Source Category	4D	D. Agricultu	ral Soils							
Gas	N ₂ O									
Member				ir	ventory dat	a				Proxy
State	1990	1995	2000	2005	2008	2009	2010	2011	2012	2013
		Gg								
AT	11,1	12,0	10,3	9,5	10,2	10,0	9,5	10,0	9,9	9,9
BE	15,5	15,4	13,9	12,3	11,6	11,9	12,0	11,8	11,4	11,5
BG	27,2	12,3	10,5	10,7	11,1	10,8	11,5	11,4	12,6	12,7
CY	1,1	1,3	1,3	1,2	1,1	1,1	1,1	1,2	1,1	1,2
CZ	30,0	19,2	17,1	16,3	17,1	16,1	15,8	16,2	15,8	15,9
DE	153,8	133,7	141,0	133,4	135,4	129,1	126,6	134,7	132,0	133,1
DK	24,8	21,9	19,0	17,1	17,3	16,4	16,2	16,5	16,1	16,3
EE	5,7	2,5	2,1	2,0	2,5	2,2	2,3	2,3	2,4	2,4
ES	62,1	56,8	73,1	61,8	57,1	57,3	62,5	59,1	58,6	59,1
FI	13,0	11,9	11,3	11,3	11,8	11,2	11,7	11,5	11,3	11,4
FR	176,8	164,3	173,8	161,0	163,5	154,3	152,3	158,4	147,9	149,2
UK	108,7	107,1	102,6	96,5	88,5	87,3	89,6	89,1	87,4	88,1
GR	23,3	19,9	18,6	17,2	16,4	15,5	16,6	15,7	15,5	15,6
HR	8,2	6,3	6,8	7,5	7,5	7,1	6,8	7,2	6,7	6,8
HU	23,2	14,1	15,5	16,4	17,0	15,8	15,8	16,6	16,4	16,6
IE	23,5	25,2	24,8	22,8	21,3	21,2	22,1	20,5	20,8	21,0
IT	63,1	62,9	62,6	58,6	54,7	50,2	49,0	49,8	53,6	54,1
LT	16,4	6,8	8,2	9,4	9,5	9,6	9,6	9,8	10,0	10,1
LU	1,2	1,1	1,1	1,0	1,0	1,0	1,0	1,0	1,0	1,0
LV	9,7	3,6	3,5	4,1	4,3	4,4	4,6	4,6	4,9	4,9
MT	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
NL	34,4	33,7	27,0	22,6	20,9	19,9	19,9	19,1	18,4	18,6
PL	87,5	65,2	62,0	61,7	68,8	66,8	64,5	66,1	65,5	66,1
PT	11,2	10,9	12,1	9,6	9,6	9,5	9,6	9,5	9,5	9,6
RO	54,1	34,6	26,4	31,2	29,3	29,2	28,6	29,3	26,6	26,9
SE	16,5	15,6	15,2	14,4	14,6	14,1	14,3	14,3	14,0	14,1
SI	2,4	2,5	2,6	2,4	2,3	2,4	2,3	2,3	2,2	2,3
SK	11,8	6,3	5,6	5,3	5,5	5,4	5,6	5,5	5,7	5,7
EU-15	738,9	692,4	706,4	649,0	633,9	608,8	613,0	620,8	607,4	612,7
EU-28	1.016,5	867,4	868,1	817,3	810,0	779,8	781,8	793,3	777,5	784,2

5.3.3.4 Other source categories in the agricultural sector

No near-term data were identified which could be used to develop a real-time projection for the other source categories in the agricultural sector, or at least not for all parts necessary for the emission estimation. Therefore, simple approaches were chosen for all remaining agricultural source categories. Either a linear trend extrapolation was used if the past data showed a consistent linear trend. Where the past trend was fluctuating, the emissions from the latest year were kept constant. The detailed methodologies used are documented in the tables in Annex I.

5.3.4 Waste

5.3.4.1 6.A Solid Waste Disposal

Methods and data sources used

The most important source category in the waste sector is CH₄ emissions from source category 6.A. Solid Waste Disposal. For this source category, most Member States use higher tier methods, i.e. a first order decay approach that uses a number of activity data on certain types of waste deposited on landfills and a number of country-specific parameters. For the EU inventory

2013, among the EU-28 all Member States except Cyprus used higher tier methodologies for estimating emissions from this source category (EU NIR 2013). The first order decay approach is challenging for the proxy estimation because an estimation method would not only need to use updated activity data, but would also need to mirror the chosen model approach for CH₄ emissions from landfills in each Member States. The original idea in the feasibility study was the development of approximate first order decay models for each Member State based on submitted inventory data since 1990.²⁴ Such a model with specific results for each Member State was developed by the European Topic Centre on Resource and Waste Management; however results were checked for 2007 and were less accurate than the extrapolation approach used in 2007 because a number of parameters are harmonized in this model that reflect Member States estimates in a less accurate way.

In the absence of a detailed approach reflecting the first order decay assumptions, a simple approach was used to estimate CH₄ emissions from Solid Waste Disposal on land. A linear extrapolation of the trend of the previous four years was used if the past data tended to show a consistent linear trend. If the past trend was fluctuating, the emissions from the latest year were kept constant. The detailed approach for each Member State is provided in Table 103.

5.3.4.2 Other categories in the waste sector

The other source categories in the Waste sector are not very significant for total GHG emissions in the EU. Total emissions from 6.B. Wastewater Handling were 0.56 % of EU-15 total emissions in 2013 and total emissions from 6.C Waste Incineration contributed to 0.07 % to total EU-15 emissions in that year. For EU 27 the share from 6.B Wastewater Handling were 0.65% of EU-27 total emissions. 6.C Waste Incineration contributed to 0.07% to total EU-27 emissions in 2013.

Therefore, simple approaches were chosen for these source categories. Either a linear trend extrapolation was used if the past data tended to show a consistent linear trend. If the past trend was fluctuating, the emissions from the latest year were kept constant. This approach was used for CO_2 emissions from 6.A. Solid waste disposal on land, for N_2O and CH_4 emissions from 6.B. Wastewater handling and for CO_2 , CH_4 and N_2O emissions from 6.C Waste incineration as well as for emissions from 6.D Other.

5.3.5 Other source categories

For all other source categories, no 2013 activity data was available that could be combined with IEFs from GHG inventories. These categories were extrapolated from 2012 GHG inventories, either by trend extrapolation or by taking the constant values of 2012. Constant values were

²⁴ Matthes, F. C., Herold, A., Ziesing, H.J. 2007

used when past trends were inconsistent and strongly fluctuating; trend extrapolation was used when historic time series showed good correlations with a linear trend.

For some source categories, updated data was only partly available, but the inventory estimation methodology was too complex to be replicated in an approximated way, e.g. for N_2O emissions from soils.

Annex 5.3 provides a detailed overview of methods and data sources used for each source category and Member State.

5.4 Annex IV. Methods and data sources used for the proxy calculated by EEA

Table 42 Methods and data: CO2 emissions from 1.A Fuel combustion

Source C	Category 1A Fuel Combustion (S	ectoral Approach)	•
Member State	Projection Approach	Data Sources	Notes
AT	Emissions calculation based on activity data	Early national energy statistics (annual data)	trend to consumption data of previous year
BE	Emissions calculation based on activity data	Eurostat data from Monthly Oil and Gas Questionnaires and from Eurostat database for solid fuels	trend to consumption data of previous year
BG	Emissions calculation based on activity data	BP Statistical Review of World Energy, consumption of oil, gas and coal, June 2014	trend to consumption data of previous year
CY	Emissions calculation based on activity data	Summation of Proxy CRF 1A1, 1A2, 1A3, 1A4, 1A5	1A5 from previous year
CZ	Emissions calculation based on activity data	BP Statistical Review of World Energy, consumption of oil, gas and coal, June 2014	trend to consumption data of previous year
DE	Emissions calculation based on activity data	Eurostat data from Monthly Oil and Gas Questionnaires and from Eurostat database for solid fuels	trend to consumption data of previous year
DK	Emissions calculation based on activity data	Early national energy statistics (annual data)	trend to consumption data of previous year
EE	Emissions calculation based on activity data	Summation of Proxy CRF 1A1, 1A2, 1A3, 1A4, 1A5	1A5 from previous year
ES	Emissions calculation based on activity data	Early national energy statistics (annual data)	trend to consumption data of previous year
FI	Emissions calculation based on activity data	Early national energy statistics (annual data)	trend to consumption data of previous year
FR	Emissions calculation based on activity data	Summation of Proxy CRF 1A1, 1A2, 1A3, 1A4, 1A5	1A5 from previous year
UK	Emissions calculation based on activity data	Eurostat data from Monthly Oil and Gas Questionnaires and from Eurostat database for solid fuels	trend to consumption data of previous year
GR	Emissions calculation based on activity data	BP Statistical Review of World Energy, consumption of oil, gas and coal, June 2014	trend to consumption data of previous year
HR	Emissions calculation based on activity data	Early national energy statistics (annual data)	trend to consumption data of previous year
HU	Emissions calculation based on activity data	Eurostat data from Monthly Oil and Gas Questionnaires and from Eurostat database for solid fuels	trend to consumption data of previous year
IE	Emissions calculation based on activity data	Summation of Proxy CRF 1A1, 1A2, 1A3, 1A4, 1A5	1A5 from previous year
IT	Emissions calculation based on activity data	Summation of Proxy CRF 1A1, 1A2, 1A3, 1A4, 1A5	1A5 from previous year
LT	Emissions calculation based on activity data	Summation of Proxy CRF 1A1, 1A2, 1A3, 1A4, 1A5	1A5 from previous year
LU	Emissions calculation based on activity data	Eurostat data from Monthly Oil and Gas Questionnaires and from Eurostat database for solid fuels	trend to consumption data of previous year
LV	Emissions calculation based on activity data	Early national energy statistics (annual data)	trend to consumption data of previous year
MT	Emissions calculation based on activity data	Summation of Proxy CRF 1A1, 1A2, 1A3, 1A4, 1A5	1A5 from previous year
NL	Emissions calculation based on activity data	BP Statistical Review of World Energy, consumption of oil, gas and coal, June 2014	trend to consumption data of previous year
PL	Emissions calculation based on activity data	Eurostat data from Monthly Oil and Gas Questionnaires and from Eurostat database for solid fuels	trend to consumption data of previous year
PT	Emissions calculation based on activity data	BP Statistical Review of World Energy, consumption of oil, gas and coal, June 2014	trend to consumption data of previous year
RO	Emissions calculation based on activity data	Eurostat data from Monthly Oil and Gas Questionnaires and from Eurostat database for solid fuels	trend to consumption data of previous year
SE	Emissions calculation based on activity data	Early national energy statistics (annual data)	trend to consumption data of previous year
SI	Emissions calculation based on activity data	Early national energy statistics (annual data)	trend to consumption data of previous year
SK	Emissions calculation based on activity data	Early national energy statistics (annual data)	trend to consumption data of previous year

Table 43 Methods and data: CH4 and N2O emissions from 1.A Fuel combustion

Source Ca	ategory	1A	Fuel Combustion			,
Gas		CH4	N2O			1
Member State			Projection Approach		Data Sources	Notes
AT	Emission trends (d	dynamics)	calculated for CO2 in same sour	ce category	CO2 projection in this report	
BE	Emission trends (d	dynamics) (calculated for CO2 in same sour	ce category	CO2 projection in this report	
BG	Emission trends (d	dynamics)	calculated for CO2 in same sour	ce category	CO2 projection in this report	
CY	Emission trends (d	dynamics) (calculated for CO2 in same sour	ce category	CO2 projection in this report	
CZ	Emission trends (d	dynamics)	calculated for CO2 in same sour	ce category	CO2 projection in this report	
DE	Emission trends (d	dynamics)	calculated for CO2 in same sour	ce category	CO2 projection in this report	
DK	Emission trends (d	dynamics)	calculated for CO2 in same sour	ce category	CO2 projection in this report	
EE	Emission trends (d	dynamics)	calculated for CO2 in same sour	ce category	CO2 projection in this report	
ES	Emission trends (d	dynamics)	calculated for CO2 in same sour	ce category	CO2 projection in this report	
FI	Emission trends (d	dynamics)	calculated for CO2 in same sour	ce category	CO2 projection in this report	
FR	Emission trends (d	dynamics)	calculated for CO2 in same sour	ce category	CO2 projection in this report	
GB	Emission trends (d	dynamics)	calculated for CO2 in same sour	ce category	CO2 projection in this report	
GR	Emission trends (d	dynamics)	calculated for CO2 in same sour	ce category	CO2 projection in this report	
HR	Emission trends (d	dynamics)	calculated for CO2 in same sour	ce category	CO2 projection in this report	
HU	Emission trends (d	dynamics) (calculated for CO2 in same sour	ce category	CO2 projection in this report	
IE	Emission trends (d	dynamics) (calculated for CO2 in same sour	ce category	CO2 projection in this report	
IT	Emission trends (d	dynamics) (calculated for CO2 in same sour	ce category	CO2 projection in this report	
LT	Emission trends (d	dynamics)	calculated for CO2 in same sour	ce category	CO2 projection in this report	
LU	Emission trends (d	dynamics)	calculated for CO2 in same sour	ce category	CO2 projection in this report	
LV	Emission trends (d	dynamics) (calculated for CO2 in same sour	ce category	CO2 projection in this report	
MT	Emission trends (d	dynamics) (calculated for CO2 in same sour	ce category	CO2 projection in this report	
NL	Emission trends (d	dynamics)	calculated for CO2 in same sour	ce category	CO2 projection in this report	
PL	Emission trends (d	dynamics)	calculated for CO2 in same sour	ce category	CO2 projection in this report	
PT	Emission trends (d	dynamics)	calculated for CO2 in same sour	ce category	CO2 projection in this report	
RO	Emission trends (d	dynamics) (calculated for CO2 in same sour	ce category	CO2 projection in this report	
SE	Emission trends (d	dynamics)	calculated for CO2 in same sour	ce category	CO2 projection in this report	
SI	Emission trends (d	dynamics)	calculated for CO2 in same sour	ce category	CO2 projection in this report	
SK	Emission trends (d	dynamics)	calculated for CO2 in same sour	ce category	CO2 projection in this report	

Table 44 Methods and data: CO₂, CH₄ and N₂O emissions for 1.A.1 Energy industries

Source Catego	ry 1A1	1. Energy I	ndustries	
Gas	CO2	CH4	N2O	
Member	Projectio	n Approach		Data Sources
State	Frojectio	і Арріоасіі		Data Sources
AT	Total from other source cate	egories		Proxy-inventory source categories 1A1a, 1A1b and 1A1c
BE	Total from other source cate	egories		Proxy-inventory source categories 1A1a, 1A1b and 1A1c
BG	Total from other source cate	egories		Proxy-inventory source categories 1A1a, 1A1b and 1A1c
CY	Total from other source cate	egories		Proxy-inventory source categories 1A1a, 1A1b and 1A1c
CZ	Total from other source cate	egories		Proxy-inventory source categories 1A1a, 1A1b and 1A1c
DE	Total from other source cate	egories		Proxy-inventory source categories 1A1a, 1A1b and 1A1c
DK	Total from other source cate	egories		Proxy-inventory source categories 1A1a, 1A1b and 1A1c
EE	Total from other source cate	egories		Proxy-inventory source categories 1A1a, 1A1b and 1A1c
ES	Total from other source cate	egories		Proxy-inventory source categories 1A1a, 1A1b and 1A1c
FI	Total from other source cate	egories		Proxy-inventory source categories 1A1a, 1A1b and 1A1c
FR	Total from other source cate	egories		Proxy-inventory source categories 1A1a, 1A1b and 1A1c
UK	Total from other source cate	egories		Proxy-inventory source categories 1A1a, 1A1b and 1A1c
GR	Total from other source cate	egories		Proxy-inventory source categories 1A1a, 1A1b and 1A1c
HR	Total from other source cate	egories		Proxy-inventory source categories 1A1a, 1A1b and 1A1c
HU	Total from other source cate	egories		Proxy-inventory source categories 1A1a, 1A1b and 1A1c
IE	Total from other source cate	egories		Proxy-inventory source categories 1A1a, 1A1b and 1A1c
IT	Total from other source cate	egories		Proxy-inventory source categories 1A1a, 1A1b and 1A1c
LT	Total from other source cate	egories		Proxy-inventory source categories 1A1a, 1A1b and 1A1c
LU	Total from other source cate	egories		Proxy-inventory source categories 1A1a, 1A1b and 1A1c
LV	Total from other source cate	egories		Proxy-inventory source categories 1A1a, 1A1b and 1A1c
MT	Total from other source cate	egories		Proxy-inventory source categories 1A1a, 1A1b and 1A1c
NL	Total from other source cate	egories		Proxy-inventory source categories 1A1a, 1A1b and 1A1c
PL	Total from other source cate	egories		Proxy-inventory source categories 1A1a, 1A1b and 1A1c
PT	Total from other source cate	egories		Proxy-inventory source categories 1A1a, 1A1b and 1A1c
RO	Total from other source cate	egories		Proxy-inventory source categories 1A1a, 1A1b and 1A1c
SE	Total from other source cate	egories		Proxy-inventory source categories 1A1a, 1A1b and 1A1c
SI	Total from other source cate	egories		Proxy-inventory source categories 1A1a, 1A1b and 1A1c
SK	Total from other source cate	egories		Proxy-inventory source categories 1A1a, 1A1b and 1A1c

Table 45 Methods and data: CO2 emissions from 1A1a Public electricity and heat production

Source Ca Gas	ategory 1A1a a. Pub	lic Electricity and Heat Production	
Member State	Projection Approach	Data Sources	Notes
AT	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	CITL activity code 20
BE	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	identification of power sector by Öko- Institut's analysis
BG	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	CITL activity code 20
CY	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	identification of power sector by Öko- Institut's analysis
CZ	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	CITL activity code 20
DE	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	identification of power sector by Öko- Institut's analysis
DK	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	identification of power sector by Öko- Institut's analysis
EE	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	identification of power sector by Öko- Institut's analysis
ES	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	CITL activity code 20
FI	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	CITL activity code 20
FR	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	CITL activity code 20
UK	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	identification of power sector by Öko- Institut's analysis
GR	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	identification of power sector by Öko- Institut's analysis
HR	Emission trends (dynamics) from other sources	ENTSO-E data on electricity generation	Electricity production from fossil fuels
HU	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	CITL activity code 20
IE	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	CITL activity code 20
IT	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	identification of power sector by Öko- Institut's analysis
LT	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	identification of power sector by Öko- Institut's analysis
LU	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	identification of power sector by Öko- Institut's analysis
LV	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	CITL activity code 20
MT	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	identification of power sector by Öko- Institut's analysis
NL	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	identification of power sector by Öko- Institut's analysis
PL	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	identification of power sector by Öko- Institut's analysis
PT	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	identification of power sector by Öko- Institut's analysis
RO	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	identification of power sector by Öko- Institut's analysis
SE	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	identification of power sector by Öko- Institut's analysis
SI	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	identification of power sector by Öko- Institut's analysis
SK	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	CITL activity code 20

Table 46 Methods and data: CH4 emissions from 1A1a Public electricity and heat production

Source Ca	ategory 1A1a a. Public Electrici	ty and Heat Production	
Gas	CH4		
Member State	Projection Approach	Data Sources	Notes
AT	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
BE	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
BG	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2	
CY	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2	
CZ	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
DE	Data from previous years	UNFCCC 2014 submission	Extrapol. 2003-2014
DK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
EE	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
ES	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
FI	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
FR	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
UK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
GR	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2	
HR	Data from previous years	UNFCCC 2014 submission	
HU	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
IE	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
IT	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
LT	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
LU	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
LV	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
MT	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2	
NL	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2	
PL	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
PT	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
RO	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
SE	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
SI	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
SK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014

Table 47 Methods and data: N2O emissions from 1A1a Public electricity and heat production

Source Ca	tegory 1A1a a. Public Electricity	and Heat Production	
Gas	N2O		
Member State	Projection Approach	Data Sources	Notes
AT	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
BE	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
BG	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2	
CY	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2	
CZ	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2	
DE	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2	
DK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
EE	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2	
ES	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
FI	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
FR	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2	
UK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
GR	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2	
HR	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2	
HU	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2	
IE	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2	
IT	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
LT	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
LU	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
LV	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
MT	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2	
NL	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
PL	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2	
PT	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
RO	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2	
SE	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
SI	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2	
SK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014

Table 48 Methods and data: CO2 emissions from 1A1b Petroleum refining

Source C	ategory 1A1b b. Petroleum Refin	ing		
Gas	CO2			
Member	Projection Approach	Data Sources	Notes	
State	Projection Approach	Data Sources	Notes	
AT	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity Code 21	
BE	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity Code 21	
BG	Data from previous years	UNFCCC 2014 submission	Average 2012-2014	
CY	Data from previous years	UNFCCC 2014 submission		
CZ	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity Code 21	
DE	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity Code 21	
DK	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity Code 21	
EE	Data from previous years	UNFCCC 2014 submission		
ES	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity Code 21	
FI	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity Code 21	
FR	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity Code 21	
UK	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity Code 21	
GR	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity Code 21	
HR	Data from previous years	UNFCCC 2014 submission	Average 2012-2014	
HU	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity Code 21	
IE	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity Code 21	
IT	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity Code 21	
LT	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity Code 21	
LU	Data from previous years	UNFCCC 2014 submission		
LV	Data from previous years	UNFCCC 2014 submission		
MT	Data from previous years	UNFCCC 2014 submission		
NL	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity Code 21	
PL	Data from previous years	UNFCCC 2014 submission	Average 2012-2014	
PT	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity Code 21	
RO	Data from previous years	UNFCCC 2014 submission	Average 2012-2014	
SE	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity Code 21	
SI	Data from previous years	UNFCCC 2014 submission		
SK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014	

Table 49 Methods and data: CH4 emissions from 1A1b Petroleum refining

Source C	Source Category 1A1b b. Petroleum Refining					
Gas	CH4					
Member	Draination Approach	Data Sources	Notes			
State	Projection Approach	Data Sources	Notes			
AT	Data from previous years	UNFCCC 2014 submission	Average 2012-2014			
BE	Data from previous years	UNFCCC 2014 submission				
BG	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1b for CO2				
CY	Data from previous years	UNFCCC 2014 submission				
CZ	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1b for CO2				
DE	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1b for CO2				
DK	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1b for CO2				
EE	Data from previous years	UNFCCC 2014 submission				
ES	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1b for CO2				
FI	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1b for CO2				
FR	Data from previous years	UNFCCC 2014 submission	Average 2012-2014			
UK	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1b for CO2				
GR	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1b for CO2				
HR	Data from previous years	UNFCCC 2014 submission				
HU	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1b for CO2				
IE	Data from previous years	UNFCCC 2014 submission Average 2				
IT	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1b for CO2				
LT	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1b for CO2				
LU	Data from previous years	UNFCCC 2014 submission				
LV	Data from previous years	UNFCCC 2014 submission				
MT	Data from previous years	UNFCCC 2014 submission				
NL	Data from previous years	UNFCCC 2014 submission	Average 2012-2014			
PL	Data from previous years	UNFCCC 2014 submission	Average 2012-2014			
PT	Data from previous years	UNFCCC 2014 submission	Average 2012-2014			
RO	Data from previous years	UNFCCC 2014 submission	Average 2012-2014			
SE	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1b for CO2				
SI	Data from previous years	UNFCCC 2014 submission				
SK	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1b for CO2				

Table 50 Methods and data: N2O emissions from 1A1b Petroleum refining

Source Ca	Source Category 1A1b b. Petroleum Refining				
Gas	N2O				
Member	Projection Approach	Data Sources	Notes		
State	Projection Approach	Data Sources	Notes		
AT	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
BE	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
BG	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1b for CO2			
CY	Data from previous years	UNFCCC 2014 submission			
CZ	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
DE	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1b for CO2			
DK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
EE	Data from previous years	UNFCCC 2014 submission			
ES	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1b for CO2			
FI	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1b for CO2			
FR	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1b for CO2			
UK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
GR	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1b for CO2			
HR	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
HU	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1b for CO2			
IE	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
IT	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1b for CO2			
LT	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1b for CO2			
LU	Data from previous years	UNFCCC 2014 submission			
LV	Data from previous years	UNFCCC 2014 submission			
MT	Data from previous years	UNFCCC 2014 submission			
NL	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
PL	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
PT	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
RO	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
SE	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1b for CO2			
SI	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
SK	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1b for CO2			

Table 51 Methods and data sources used for CO2, CH4 and N2O emissions from 1A1c Manufacture of solid fuels and other energy industries

Source Ca	itegory 1A1c c. Manu	facture of Solid Fuels and Other Energy Industries		
Gas	CO2			
Member	Projection Approach	Data Sources		
State	1 Tojection Approach	Data Cources		
AT	Data from previous years	UNFCCC 2014 submission		
BE	Data from previous years	UNFCCC 2014 submission		
BG	Data from previous years	UNFCCC 2014 submission		
CY	Data from previous years	UNFCCC 2014 submission		
CZ	Data from previous years	UNFCCC 2014 submission		
DE	Data from previous years	UNFCCC 2014 submission		
DK	Data from previous years	UNFCCC 2014 submission		
EE	Data from previous years	UNFCCC 2014 submission		
ES	Data from previous years	UNFCCC 2014 submission		
FI	Data from previous years	UNFCCC 2014 submission		
FR	Data from previous years	ous years UNFCCC 2014 submission		
UK	Data from previous years	UNFCCC 2014 submission		
GR	Data from previous years	UNFCCC 2014 submission		
HR	Data from previous years	UNFCCC 2014 submission		
HU	Data from previous years	UNFCCC 2014 submission		
ΙE	Data from previous years	UNFCCC 2014 submission		
IT	Data from previous years	UNFCCC 2014 submission		
LT	Data from previous years	UNFCCC 2014 submission		
LU	Data from previous years	UNFCCC 2014 submission		
LV	Data from previous years	UNFCCC 2014 submission		
MT	Data from previous years	UNFCCC 2014 submission		
NL	Data from previous years	UNFCCC 2014 submission		
PL	Data from previous years	UNFCCC 2014 submission		
PT	Data from previous years	UNFCCC 2014 submission		
RO	Data from previous years	UNFCCC 2014 submission		
SE	Data from previous years	UNFCCC 2014 submission		
SI	Data from previous years	UNFCCC 2014 submission		
SK	Data from previous years	UNFCCC 2014 submission		

Table 52 Methods and data: CO2 emissions from 1.A.2 Manufacturing industries and construction

Source C Gas	ategory 1A2 CO2	2. Manufacturing Ir	dustries and Construction	
Member State	Projection Ap	proach	Data Sources	Notes
AT	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity codes 29, 30, 31, 32, 34, 35, 36
BE	Emission trends (dynamics) from other sources		CITL data (operator holding accounts) 2008-2013	Main activity codes 29, 30, 31, 32, 34, 35, 36
BG	Data from previous years		UNFCCC 2014 submission	Main activity codes 20 (w/o power), 22, 23, 24, 2 26, 27, 28, 29, 30, 31, 32, 34, 35, 36
CY	Data from previous years		UNFCCC 2014 submission	Average 2012-2014
CZ	Activity trends (dynamics) for	rom other sources	World Steel Association crude steel production (monthly data)	
DE	Activity trends (dynamics) for	rom other sources	World Steel Association blast furnace iron production (monthly data)	
DK	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity codes 20 (w/o power), 22, 23, 24, 2-26, 27, 28, 29, 30, 31, 32, 34, 35, 36
EE	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity codes 29, 30, 31, 32, 34, 35, 36
ES	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity codes 20 (w/o power), 22, 23, 24, 25, 26, 27, 28, 31, 32, 35, 36
FI	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity codes 20 (w/o power), 22, 23, 24, 2-26, 27, 28, 29, 30, 31, 32, 34, 35, 36
FR	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity codes 29, 30, 31, 32, 34, 35, 36
UK	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity codes 29, 30, 31, 32, 34, 35, 36
GR	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity codes 29, 30, 31, 32, 34, 35, 36
HR	Data from previous years		UNFCCC 2014 submission	Average 2012-2014
HU	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity codes 20 (w/o power), 22, 23, 24, 2 26, 27, 28, 31, 32, 35, 36
IE	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity codes 20 (w/o power), 22, 23, 24, 2 26, 27, 28, 31, 32, 35, 36
IT	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity codes 20 (w/o power), 22, 23, 24, 2 26, 27, 28, 29, 30, 31, 32, 34, 35, 36
LT	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity codes 29, 30, 31, 32, 34, 35, 36
LU	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity codes 20 (w/o power), 22, 23, 24, 2 26, 27, 28, 29, 30, 31, 32, 34, 35, 36
LV	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity codes 20 (w/o power), 22, 23, 24, 2 26, 27, 28, 29, 30, 31, 32, 34, 35, 36
MT	Data from previous years		UNFCCC 2014 submission	Average 2012-2014
NL	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity codes 20 (only iron), 22, 23, 24, 25, 26, 27, 28
PL	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity codes 20 (w/o power), 22, 23, 24, 2 26, 27, 28, 29, 30, 31, 32, 34, 35, 36
PT	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity codes 29, 30, 31, 32, 34, 35, 36
RO	Data from previous years		UNFCCC 2014 submission	Main activity codes 29, 30, 31, 32, 34, 35, 36
SE	Data from previous years		UNFCCC 2014 submission	Main activity codes 29, 30, 31, 32, 34, 35, 36
SI	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity codes 20 (w/o power), 22, 23, 24, 2 26, 27, 28, 29, 30, 31, 32, 34, 35, 36
SK	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity codes 29, 30, 31, 32, 34, 35, 36

Table 53 Methods and data: CH4 emissions from 1.A.2 Manufacturing industries and construction

Source Ca	Source Category 1A2 2. Manufacturing Industries and Construction				
Gas	CH4				
Member	Projection Approach	Data Sources	Notes		
State	,				
AT	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2			
BE	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
BG	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
CY	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
CZ	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
DE	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
DK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
EE	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
ES	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
FI	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
FR	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
UK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
GR	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
HR	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
HU	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
ΙE	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
IT	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
LT	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
LU	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
LV	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
MT	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
NL	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
PL	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
PT	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
RO	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
SE	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
SI	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
SK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		

Table 54 Methods and data: N2O emissions from 1.A.2 Manufacturing industries and construction

Source Ca	ategory 1A2	2. Manufacturing In	dustries and Construction	
Gas	N2O			
Member State	Projection Ap	proach	Data Sources	Notes
AT	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2	
BE	Data from previous years		UNFCCC 2014 submission	Average 2012-2014
BG	Data from previous years		UNFCCC 2014 submission	Average 2012-2014
CY	Data from previous years		UNFCCC 2014 submission	Average 2012-2014
CZ	Data from previous years		UNFCCC 2014 submission	Average 2012-2014
DE	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2	
DK	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2	
EE	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2	
ES	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2	
FI	Data from previous years		UNFCCC 2014 submission	Average 2012-2014
FR	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2	
UK	Data from previous years		UNFCCC 2014 submission	Average 2012-2014
GR	Data from previous years		UNFCCC 2014 submission	Average 2012-2014
HR	Data from previous years		UNFCCC 2014 submission	Average 2012-2014
HU	Data from previous years		UNFCCC 2014 submission	Average 2012-2014
IE	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2	
IT	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2	
LT	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2	
LU	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2	
LV	Data from previous years		UNFCCC 2014 submission	Average 2012-2014
MT	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2	
NL	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2	
PL	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2	
PT	Data from previous years		UNFCCC 2014 submission	Average 2012-2014
RO	Data from previous years		UNFCCC 2014 submission	Average 2012-2014
SE	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2	
SI	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2	
SK	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2	

Table 55 Methods and data: CO2 emissions from 1.A.3 Transport

Source C Gas	ategory 1A3 Trans	port	
Member State	Projection Approach	Data Sources	Notes
AT	Emissions calculation based on activity data	Eurostat monthly data on observed gross inland deliveries of motor gasoline, transport diesel and aviation fuels	
BE	Emissions calculation based on activity data	Eurostat monthly data on observed gross inland deliveries of motor gasoline, transport diesel and aviation fuels	
BG	Emissions calculation based on activity data	Eurostat monthly data on observed gross inland deliveries of motor gasoline, transport diesel and aviation fuels	gapfilling for missing values in December 2012 (data of following month used as approximation)
CY	Emissions calculation based on activity data	Eurostat monthly data on observed gross inland deliveries of motor gasoline, transport diesel and aviation fuels	gapfilling for missing values in December 2012 (data of following month used as approximation)
CZ	Emissions calculation based on activity data	Eurostat monthly data on observed gross inland deliveries of motor gasoline, transport diesel and aviation fuels	
DE	Emissions calculation based on activity data	Eurostat monthly data on observed gross inland deliveries of motor gasoline, transport diesel and aviation fuels	
DK	Emissions calculation based on activity data	Eurostat monthly data on observed gross inland deliveries of motor gasoline, transport diesel and aviation fuels	
EE	Emissions calculation based on activity data	Eurostat monthly data on observed gross inland deliveries of motor gasoline, transport diesel and aviation fuels	gapfilling for missing values in December 2012 (all fuels) and for zero values for aviation fuels in October 2012 (data of following month used as approximation)
ES	Emissions calculation based on activity data	Eurostat monthly data on observed gross inland deliveries of motor gasoline, transport diesel and aviation fuels	
FI	Emissions calculation based on activity data	Eurostat monthly data on observed gross inland deliveries of motor gasoline, transport diesel and aviation fuels	
FR	Emissions calculation based on activity data	Eurostat monthly data on observed gross inland deliveries of motor gasoline, transport diesel and aviation fuels	
UK	Emissions calculation based on activity data	Eurostat monthly data on observed gross inland deliveries of motor gasoline, transport diesel and aviation fuels	
GR	Emissions calculation based on activity data	Eurostat monthly data on observed gross inland deliveries of motor gasoline, transport diesel and aviation fuels	
HR	Emissions calculation based on activity data	Eurostat monthly data on observed gross inland deliveries of motor gasoline, transport diesel and aviation fuels	
HU	Emissions calculation based on activity data	Eurostat monthly data on observed gross inland deliveries of motor gasoline, transport diesel and aviation fuels	
IE	Emissions calculation based on activity data	Eurostat monthly data on observed gross inland deliveries of motor gasoline, transport diesel and aviation fuels	
IT	Emissions calculation based on activity data	Eurostat monthly data on observed gross inland deliveries of motor gasoline, transport diesel and aviation fuels	
LT	Emissions calculation based on activity data	Eurostat monthly data on observed gross inland deliveries of motor gasoline, transport diesel and aviation fuels	
LU	Emissions calculation based on activity data	Eurostat monthly data on observed gross inland deliveries of motor gasoline, transport diesel and aviation fuels	
LV	Emissions calculation based on activity data	Eurostat monthly data on observed gross inland deliveries of motor gasoline, transport diesel and aviation fuels	
MT	Emissions calculation based on activity data	Eurostat monthly data on observed gross inland deliveries of motor gasoline, transport diesel and aviation fuels	gapfilling for zero values in May - July 2012 for aviation fuels (data of following month used as approximation)
NL	Emissions calculation based on activity data	Eurostat monthly data on observed gross inland deliveries of motor gasoline, transport diesel and aviation fuels	,
PL	Emissions calculation based on activity data	Eurostat monthly data on observed gross inland deliveries of motor gasoline, transport diesel and aviation fuels	
PT	Emissions calculation based on activity data	Eurostat monthly data on observed gross inland deliveries of motor gasoline, transport diesel and aviation fuels	
RO	Emissions calculation based on activity data	Eurostat monthly data on observed gross inland deliveries of motor gasoline, transport diesel and aviation fuels	
SE	Emissions calculation based on activity data	Eurostat monthly data on observed gross inland deliveries of motor gasoline, transport diesel and aviation fuels	
SI	Emissions calculation based on activity data	Eurostat monthly data on observed gross inland deliveries of motor gasoline, transport diesel and aviation fuels	gapfilling for zero values in July 2012 for motor gasoline (data of following month used as approximation)
SK	Emissions calculation based on activity data	Eurostat monthly data on observed gross inland deliveries of motor gasoline, transport diesel and aviation fuels	acceptantiation

Table 56 Methods and data: CH₄ and N₂O emissions from 1.A.3 Transport

Source Ca	ategory	1A3	Transport			
Gas		CH4	N2O			
Member State		Proje	ection Approach		Data Sources	Notes
AT	Emission trends	(dynamics) c	alculated for CO2 in sar	ne source category	CO2 projection in this report	
BE	Emission trends	(dynamics) c	alculated for CO2 in sar	me source category	CO2 projection in this report	
BG	Emission trends	(dynamics) c	alculated for CO2 in sar	me source category	CO2 projection in this report	
CY	Emission trends	(dynamics) c	alculated for CO2 in sar	me source category	CO2 projection in this report	
CZ	Emission trends	(dynamics) c	alculated for CO2 in sar	me source category	CO2 projection in this report	
DE	Emission trends	(dynamics) c	alculated for CO2 in sar	me source category	CO2 projection in this report	
DK	Emission trends	(dynamics) c	alculated for CO2 in sar	me source category	CO2 projection in this report	
EE	Emission trends	(dynamics) c	alculated for CO2 in sar	me source category	CO2 projection in this report	
ES	Emission trends	(dynamics) c	alculated for CO2 in sar	me source category	CO2 projection in this report	
FI	Emission trends	(dynamics) c	alculated for CO2 in sar	me source category	CO2 projection in this report	
FR	Emission trends	(dynamics) c	alculated for CO2 in sar	me source category	CO2 projection in this report	
UK	Emission trends	(dynamics) c	alculated for CO2 in sar	me source category	CO2 projection in this report	
GR	Emission trends	(dynamics) c	alculated for CO2 in sar	me source category	CO2 projection in this report	
HR	Emission trends	(dynamics) c	alculated for CO2 in sar	me source category	CO2 projection in this report	
HU	Emission trends	(dynamics) c	alculated for CO2 in sar	me source category	CO2 projection in this report	
IE	Emission trends	(dynamics) c	alculated for CO2 in sar	me source category	CO2 projection in this report	
IT	Emission trends	(dynamics) c	alculated for CO2 in sar	me source category	CO2 projection in this report	
LT	Emission trends	(dynamics) c	alculated for CO2 in sar	me source category	CO2 projection in this report	
LU	Emission trends	(dynamics) c	alculated for CO2 in sar	me source category	CO2 projection in this report	
LV	Emission trends	(dynamics) c	alculated for CO2 in sar	me source category	CO2 projection in this report	
MT	Emission trends	(dynamics) c	alculated for CO2 in sar	me source category	CO2 projection in this report	
NL	Emission trends	(dynamics) c	alculated for CO2 in sar	me source category	CO2 projection in this report	
PL	Emission trends	(dynamics) c	alculated for CO2 in sar	me source category	CO2 projection in this report	
PT	Emission trends	(dynamics) c	alculated for CO2 in sar	me source category	CO2 projection in this report	
RO	Emission trends	(dynamics) c	alculated for CO2 in sar	me source category	CO2 projection in this report	
SE	Emission trends	(dynamics) c	alculated for CO2 in sar	me source category	CO2 projection in this report	
SI	Emission trends	(dynamics) c	alculated for CO2 in sar	me source category	CO2 projection in this report	
SK	Emission trends	(dynamics) c	alculated for CO2 in sar	me source category	CO2 projection in this report	

Table 57 Methods and data: CO₂ emissions from 1.A.4 Other sectors

Member		5.1.6	
State	Projection Approach	Data Sources	Notes
AT	Complex calculation with gas and oil consumption data	Eurostat (monthly data): Natural gas: Gross Inland Consumption Total fuel oil, Heating and other gas oil: Gross Inland Deliveries	 Indicator code 100100, product code 4100 Indicator code 100520, product code 3266 Indicator code 100520, product code 3270A
3E	Data from previous year	UNFCCC 2014 submission	
3G	Data from previous year	UNFCCC 2014 submission	
Y	Data from previous year	UNFCCC 2014 submission	
Z	Complex calculation with gas and oil consumption data	Eurostat (monthly data): • Natural gas: Gross Inland Consumption • Total fuel oil, Heating and other gas oil: Gross Inland Deliveries	 Indicator code 100100, product code 4100 Indicator code 100520, product code 3266 Indicator code 100520, product code 3270A
ÞΕ	Complex calculation with gas and oil consumption data	Eurostat (monthly data): Natural gas: Gross Inland Consumption Total fuel oil, Heating and other gas oil: Gross Inland Deliveries	 Indicator code 100100, product code 4100 Indicator code 100520, product code 3266 Indicator code 100520, product code 3270.6
ÞΚ	Complex calculation with gas and oil consumption data	Eurostat (monthly data): Natural gas: Gross Inland Consumption Total fuel oil, Heating and other gas oil: Gross Inland Deliveries	 Indicator code 100100, product code 4100 Indicator code 100520, product code 3266 Indicator code 100520, product code 3270/
E	Data from previous year	UNFCCC 2014 submission	
S	Data from previous year	UNFCCC 2014 submission	
1	Complex calculation with gas and oil consumption data	Eurostat (monthly data): Natural gas: Gross Inland Consumption Total fuel oil, Heating and other gas oil: Gross Inland Deliveries	 Indicator code 100100, product code 4100 Indicator code 100520, product code 3266 Indicator code 100520, product code 32706
FR	Complex calculation with gas and oil consumption data	Eurostat (monthly data): Natural gas: Gross Inland Consumption Total fuel oil, Heating and other gas oil: Gross Inland Deliveries	 Indicator code 100100, product code 4100 Indicator code 100520, product code 3266 Indicator code 100520, product code 3270/
JK	Data from previous year	UNFCCC 2014 submission	
€R	Data from previous year	UNFCCC 2014 submission	
HR	Data from previous year	UNFCCC 2014 submission	
HU	Complex calculation with gas and oil consumption data	Eurostat (monthly data): Natural gas: Gross Inland Consumption Total fuel oil, Heating and other gas oil: Gross Inland Deliveries	Indicator code 100100, product code 4100 Indicator code 100520, product code 3266 Indicator code 100520, product code 3270.6
E	Complex calculation with gas and oil consumption data	Eurostat (monthly data): Natural gas: Gross Inland Consumption Total fuel oil, Heating and other gas oil: Gross Inland Deliveries	 Indicator code 100100, product code 4100 Indicator code 100520, product code 3266 Indicator code 100520, product code 32706
Т	Data from previous year	UNFCCC 2014 submission	
.T	Data from previous year	UNFCCC 2014 submission	
_U	Complex calculation with gas and oil consumption data	Eurostat (monthly data): • Natural gas: Gross Inland Consumption • Total fuel oil, Heating and other gas oil: Gross Inland Deliveries	 Indicator code 100100, product code 4100 Indicator code 100520, product code 3266 Indicator code 100520, product code 32704
_V	Complex calculation with gas and oil consumption data	Eurostat (monthly data): Natural gas: Gross Inland Consumption Total fuel oil, Heating and other gas oil: Gross Inland Deliveries	 Indicator code 100100, product code 4100 Indicator code 100520, product code 3266 Indicator code 100520, product code 3270.6
ıΤ	Data from previous year	UNFCCC 2014 submission	
IL	Data from previous year	UNFCCC 2014 submission	
PL	Data from previous year	UNFCCC 2014 submission	
т	Complex calculation with gas and oil consumption data	Eurostat (monthly data): Natural gas: Gross Inland Consumption Total fuel oil, Heating and other gas oil: Gross Inland Deliveries	 Indicator code 100100, product code 4100 Indicator code 100520, product code 3266 Indicator code 100520, product code 3270/
RO	Data from previous year	UNFCCC 2014 submission	
SE	Complex calculation with gas and oil consumption data	Eurostat (monthly data): Natural gas: Gross Inland Consumption Total fuel oil, Heating and other gas oil: Gross Inland Deliveries	 Indicator code 100100, product code 4100 Indicator code 100520, product code 3266 Indicator code 100520, product code 3270/
SI	Complex calculation with gas and oil consumption data	Eurostat (monthly data): Natural gas: Gross Inland Consumption Total fuel oil, Heating and other gas oil: Gross Inland Deliveries	 Indicator code 100100, product code 4100 Indicator code 100520, product code 3266 Indicator code 100520, product code 3270A
SK	Data from previous year	UNFCCC 2014 submission	

Table 58 Methods and data: CH4 and N2O emissions from 1.A.4 Other sectors

Source C	ategory 1A4 Other Sectors		
Gas	CH4 N2O		
Member	Paris office Assessed	Data Carrera	Natas
State	Projection Approach	Data Sources	Notes
AT	Data from previous year	UNFCCC 2014 submission	Average
BE	Data from previous year	UNFCCC 2014 submission	2010-2012
BG	Data from previous year	UNFCCC 2014 submission	
CY	Data from previous year	UNFCCC 2014 submission	
CZ	Data from previous year	UNFCCC 2014 submission	
DE	Data from previous year	UNFCCC 2014 submission	
DK	Data from previous year	UNFCCC 2014 submission	
EE	Data from previous year	UNFCCC 2014 submission	
ES	Data from previous year	UNFCCC 2014 submission	
FI	Data from previous year	UNFCCC 2014 submission	
FR	Data from previous year	UNFCCC 2014 submission	
UK	Data from previous year	UNFCCC 2014 submission	
GR	Data from previous year	UNFCCC 2014 submission	
HR	Data from previous year	UNFCCC 2014 submission	
HU	Data from previous year	UNFCCC 2014 submission	
IE	Data from previous year	UNFCCC 2014 submission	
IT	Data from previous year	UNFCCC 2014 submission	
LT	Data from previous year	UNFCCC 2014 submission	
LU	Data from previous year	UNFCCC 2014 submission	
LV	Data from previous year	UNFCCC 2014 submission	
MT	Data from previous year	UNFCCC 2014 submission	
NL	Data from previous year	UNFCCC 2014 submission	
PL	Data from previous year	UNFCCC 2014 submission	
PT	Data from previous year	UNFCCC 2014 submission	
RO	Data from previous year	UNFCCC 2014 submission	
SE	Data from previous year	UNFCCC 2014 submission	
SI	Data from previous year	UNFCCC 2014 submission	
SK	Data from previous year	UNFCCC 2014 submission	

Table 59 Methods and data: CO2 emissions from 1.B.1 Fugitive emissions from solid fuels

	Source Category 1B1 1. Solid Fuels				
Gas Member	CO2	Data Sources	Notes		
State	Projection Approach	Data Sources	Notes		
AT	Data from previous years	UNFCCC 2014 submission			
BE	Data from previous years	UNFCCC 2014 submission			
BG	Data from previous years	UNFCCC 2014 submission			
CY	Data from previous years	UNFCCC 2014 submission			
CZ	Activity trends (dynamics) from other sources	Eurostat Primary Hard Coal Production (monthly data)	Indicator code 100100, product Code 2111		
DE	Data from previous years	UNFCCC 2014 submission	Average 2010-2012		
DK	Data from previous years	UNFCCC 2014 submission			
EE	Data from previous years	UNFCCC 2014 submission			
ES	Data from previous years	UNFCCC 2014 submission	Average 2010-2012		
FI	Data from previous years	UNFCCC 2014 submission			
FR	Data from previous years	UNFCCC 2014 submission			
UK	Activity trends (dynamics) from other sources	Eurostat Primary Hard Coal Production (monthly data)	Indicator code 100100, product Code 2111		
GR	Data from previous years	UNFCCC 2014 submission			
HR	Data from previous years	UNFCCC 2014 submission			
HU	Data from previous years	UNFCCC 2014 submission			
ΙΕ	Data from previous years	UNFCCC 2014 submission			
IT	Data from previous years	UNFCCC 2014 submission	Average 2010-2012		
LT	Data from previous years	UNFCCC 2014 submission			
LU	Data from previous years	UNFCCC 2014 submission			
LV	Data from previous years	UNFCCC 2014 submission			
MT	Data from previous years	UNFCCC 2014 submission			
NL	Data from previous years	UNFCCC 2014 submission	Average 2010-2012		
PL	Data from previous years	UNFCCC 2014 submission	Average 2010-2012		
PT	Data from previous years	UNFCCC 2014 submission	Average 2010-2012		
RO	Data from previous years	UNFCCC 2014 submission			
SE	Data from previous years	UNFCCC 2014 submission	Average 2010-2012		
SI	Data from previous years	UNFCCC 2014 submission	Average 2010-2012		
SK	Data from previous years	UNFCCC 2014 submission			

Table 60 Methods and data: CH4 emissions from 1.B.1 Fugitive emissions from solid fuels

	Source Category 1B1 1. Solid Fuels				
Gas Member	CH4				
State	Projection Approach	Data Sources	Notes		
АТ	Data from previous years	UNFCCC 2014 submission	Average 2010-2012		
BE	Data from previous years	UNFCCC 2014 submission	Average 2010-2012		
BG	Activity trends (dynamics) from other sources	Eurostat Primary Lignite Production (monthly data)	Indicator code 100100, product Code 2210		
CY	Data from previous years	UNFCCC 2014 submission			
CZ	Activity trends (dynamics) from other sources	Eurostat Primary Hard Coal Production (monthly data)	Indicator code 100100, product Code 2111		
DE	Data from previous years	UNFCCC 2014 submission	Average 2010-2012		
DK	Data from previous years	UNFCCC 2014 submission			
EE	Activity trends (dynamics) from other sources	UNFCCC 2014 submission			
ES	Data from previous years	UNFCCC 2014 submission	Average 2010-2012		
FI	Data from previous years	UNFCCC 2014 submission			
FR	Data from previous years	UNFCCC 2014 submission	Average 2010-2012		
UK	Activity trends (dynamics) from other sources Activity trends (dynamics) from	Eurostat Primary Hard Coal Production (monthly data) Eurostat Primary Lignite	Indicator code 100100, product Code 2111 Indicator code 100100,		
GR	other sources	Production (monthly data)	product Code 2210		
HR	Data from previous years	UNFCCC 2014 submission			
HU	Data from previous years	UNFCCC 2014 submission	Average 2010-2012		
ΙΕ	Data from previous years	UNFCCC 2014 submission			
IT	Data from previous years	UNFCCC 2014 submission	Average 2010-2012		
LT	Data from previous years	UNFCCC 2014 submission			
LU	Data from previous years	UNFCCC 2014 submission			
LV	Data from previous years	UNFCCC 2014 submission			
MT	Data from previous years	UNFCCC 2014 submission			
NL	Data from previous years	UNFCCC 2014 submission	Average 2010-2012		
PL	Activity trends (dynamics) from other sources	Eurostat Primary Hard Coal Production (monthly data)	Indicator code 100100, product Code 2111		
PT	Data from previous years	UNFCCC 2014 submission	Average 2010-2012		
RO	Activity trends (dynamics) from other sources	Eurostat Primary Lignite Production (monthly data)	Indicator code 100100, product Code 2210		
SE	Data from previous years	UNFCCC 2014 submission	Average 2010-2012		
SI	Activity trends (dynamics) from other sources	Eurostat Primary Lignite Production (monthly data)	Indicator code 100100, product Code 2210		
SK	Activity trends (dynamics) from other sources	Eurostat Primary Lignite Production (monthly data)	Indicator code 100100, product Code 2210		

Table 61 Methods and data: CO2 emissions from 1B2a Fugitive emissions from oil

Source Ca	Source Category 1B2a a. Oil Gas CO2				
Member State	Projection Approach	Data Sources	Notes		
AT	Activity trends (dynamics) from other sources	CITL data (operator holding accounts) 2008- 2013	Main activity Code 21		
BE	Activity trends (dynamics) from other sources	CITL data (operator holding accounts) 2008- 2013	Main activity Code 21		
BG	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
CY	Data from previous years	UNFCCC 2014 submission			
CZ	Activity trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity Code 21		
DE	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
DK	Activity trends (dynamics) from other sources	Eurostat Primary Crude Oil Production (monthly data)	Indicator code 100100, product code 3100		
EE	Data from previous years	UNFCCC 2014 submission			
ES	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
FI	Activity trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity Code 21		
FR	Activity trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity Code 21		
UK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
GR	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
HR	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
HU	Activity trends (dynamics) from other sources	Eurostat Primary Crude Oil Production (monthly data)	Indicator code 100100, product code 3100		
ΙE	Data from previous years	UNFCCC 2014 submission			
ІТ	Activity trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity Code 21		
LT	Activity trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	Main activity Code 21		
LU	Data from previous years	UNFCCC 2014 submission			
LV	Data from previous years	UNFCCC 2014 submission			
MT	Data from previous years	UNFCCC 2014 submission			
NL	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
PL	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
PT	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
RO	Activity trends (dynamics) from other sources	Eurostat Primary Crude Oil Production (monthly data)	Indicator code 100100, product code 3100		
SE	Activity trends (dynamics) from other sources	Eurostat Primary Crude Oil Production (monthly data)	Indicator code 100100, product code 3100		
SI	Data from previous years	UNFCCC 2014 submission			
SK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
	<u> </u>				

Table 62 Methods and data: CH4 emissions from 1B2a Fugitive emissions from oil

Source Car Gas	tegory 1B2a a. Oil CH4		
Member State	Projection Approach	Data Sources	Notes
AT	Activity trends (dynamics) from other sources	Eurostat Total Natural Gas Consumption (monthly data)	Indicator code 100900, product code 4100
BE	Activity trends (dynamics) from other sources	CITL data (operator holding accounts) 2008- 2013	Main activity Code 21
BG	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
CY	Data from previous years	UNFCCC 2014 submission	
CZ	Activity trends (dynamics) from other sources	CITL data (operator holding accounts) 2008- 2013	Main activity Code 21
DE	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
DK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
EE	Data from previous years	UNFCCC 2014 submission	
ES	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
FI	Activity trends (dynamics) from other sources	CITL data (operator holding accounts) 2008- 2013	Main activity Code 21
FR	Activity trends (dynamics) from other sources	Eurostat Primary Crude Oil Production (monthly data)	Indicator code 100100, product code 3100
UK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
GR	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
HR	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
HU	Activity trends (dynamics) from other sources	Eurostat Primary Crude Oil Production (monthly data)	Indicator code 100100, product code 3100
IE	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
ІТ	Activity trends (dynamics) from other sources	Eurostat Total Natural Gas Production (monthly data)	Indicator code 100100, product code 4100
LT	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
LU	Data from previous years	UNFCCC 2014 submission	
LV	Data from previous years	UNFCCC 2014 submission	
МТ	Data from previous years	UNFCCC 2014 submission	
NL	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
PL	Activity trends (dynamics) from other sources	Eurostat Total Natural Gas Consumption (monthly data)	Indicator code 100900, product code 4100
PT	Activity trends (dynamics) from other sources	CITL data (operator holding accounts) 2008- 2013	Main activity Code 21
RO	Activity trends (dynamics) from other sources	Eurostat Primary Crude Oil Production (monthly data)	Indicator code 100100, product code 3100
SE	Data from previous years	CITL data (operator holding accounts) 2008- 2013	Main activity Code 21
SI	Data from previous years	UNFCCC 2014 submission	
SK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014

Table 63 Methods and data: CO2 emissions from 1B2b Fugitive emissions from gas

Source Ca	• •	as	
Gas Member	CO2		
State	Projection Approach	Data Sources	Notes
AT	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
BE	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
BG	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
CY	Data from previous years	UNFCCC 2014 submission	
CZ	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
DE	Activity trends (dynamics) from other sources	Eurostat Total Natural Gas Production (monthly data)	Indicator code 100100, product code 4100
DK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
EE	Data from previous years	UNFCCC 2014 submission	
ES	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
FI	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
FR	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
UK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
GR	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
HR	Data from previous years	UNFCCC 2014 submission	
HU	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
IE	Data from previous years	UNFCCC 2014 submission	
IT	Activity trends (dynamics) from other sources	Eurostat Total Natural Gas Consumption (monthly data)	Indicator code 100900, product code 4100
LT	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
LU	Activity trends (dynamics) from other sources	Eurostat Total Natural Gas Consumption (monthly data)	Indicator code 100900, product code 4100
LV	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
MT	Data from previous years	UNFCCC 2014 submission	
NL	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
PL	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
PT	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
RO	Activity trends (dynamics) from other sources	Eurostat Total Natural Gas Production (monthly data)	Indicator code 100100, product code 4100
SE	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
SI	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
SK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014

Table 64 Methods and data: CH4 emissions from 1B2b Fugitive emissions from gas

Source Cat	tegory 1B2b b. Natural Gas CH4		
Member State	Projection Approach	Data Sources	Notes
AT	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
BE	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
BG	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
CY	Data from previous years	UNFCCC 2014 submission	
CZ	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
DE	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
DK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
EE	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
ES	Activity trends (dynamics) from other sources	Eurostat Total Natural Gas Consumption (monthly data)	Indicator code 100900, product code 4100
FI	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
FR	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
UK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
GR	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
HR	Activity trends (dynamics) from other sources	Eurostat Total Natural Gas Consumption (monthly data)	Indicator code 100900, product code 4100
HU	Activity trends (dynamics) from other sources	Eurostat Total Natural Gas Production (monthly data)	Indicator code 100100, product code 4100
IE	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
IT	Activity trends (dynamics) from other sources	Eurostat Total Natural Gas Consumption (monthly data)	Indicator code 100900, product code 4100
LT	Data from previous years	UNFCCC 2014 submission	
LU	Activity trends (dynamics) from other sources	Eurostat Total Natural Gas Consumption (monthly data)	Indicator code 100900, product code 4100
LV	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
MT	Data from previous years	UNFCCC 2014 submission	
NL	Activity trends (dynamics) from other sources	Eurostat Total Natural Gas Production (monthly data)	Indicator code 100100, product code 4100
PL	Activity trends (dynamics) from other sources	Eurostat Total Natural Gas Consumption (monthly data)	Indicator code 100900, product code 4100
PT	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
RO	Activity trends (dynamics) from other sources	Eurostat Total Natural Gas Consumption (monthly data)	Indicator code 100900, product code 4100
SE	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
SI	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
SK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014

Table 65 Methods and data: CO2 emissions from 1B2c Venting

Source Ca	tegory 1B2c c. Ventir	ng	
Gas	CO2		
Member State	Projection Approach	Data Sources	Notes
AT	Data from previous years	UNFCCC 2014 submission	
BE	Data from previous years	UNFCCC 2014 submission	
BG	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
CY	Data from previous years	UNFCCC 2014 submission	
CZ	Activity trends (dynamics) from other sources	Eurostat Crude Oil production Production (monthly data)	Indicator code 100100, product code 3100
DE	Data from previous years	UNFCCC 2014 submission	
DK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
EE	Data from previous years	UNFCCC 2014 submission	
DK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
FI	Data from previous years	UNFCCC 2014 submission	
FR	Activity trends (dynamics) from other sources	Eurostat Crude Oil production Production (monthly data)	Indicator code 100100, product code 3100
UK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
GR	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
HR	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
HU	Activity trends (dynamics) from other sources	Eurostat Total Natural Gas Production (monthly data)	Indicator code 100100, product code 4100
IE	Data from previous years	UNFCCC 2014 submission	
IΤ	Activity trends (dynamics) from other sources	Eurostat Crude Oil production Production (monthly data)	Indicator code 100100, product code 3100
LT	Activity trends (dynamics) from other sources	Eurostat Crude Oil production Production (monthly data)	Indicator code 100100, product code 3100
LU	Data from previous years	UNFCCC 2014 submission	
LV	Data from previous years	UNFCCC 2014 submission	
MT	Data from previous years	UNFCCC 2014 submission	
NL	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
PL	Activity trends (dynamics) from other sources	Eurostat Crude Oil production Production (monthly data)	Indicator code 100100, product code 3100
PT	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
RO	Activity trends (dynamics) from other sources	Eurostat Total Natural Gas Production (monthly data)	Indicator code 100100, product code 4100
SE	Data from previous years	UNFCCC 2014 submission	
SI	Data from previous years	UNFCCC 2014 submission	
SK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014

Table 66 Methods and data: CH4 emissions from 1B2c Venting

Source Ca	ategory 1B2c c. Ventir	ng	
Gas	CH4		
Member State	Projection Approach	Data Sources	Notes
AT	Data from previous years	UNFCCC 2014 submission	
BE	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
BG	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
CY	Data from previous years	UNFCCC 2014 submission	
CZ	Activity trends (dynamics) from other sources	Eurostat Crude Oil production Production (monthly data)	Indicator code 100100, product code 3100
DE	Data from previous years	UNFCCC 2014 submission	
DK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
EE	Data from previous years	UNFCCC 2014 submission	
ES	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
FI	Data from previous years	UNFCCC 2014 submission	
FR	Activity trends (dynamics) from other sources	Eurostat Crude Oil production Production (monthly data)	Indicator code 100100, product code 3100
UK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
GR	Emission trends (dynamics) from other sources	CITL data (operator holding account) 2008-2013	Main activity code 21
HR	Activity trends (dynamics) from other sources	Eurostat Total Natural Gas Production (monthly data)	Indicator code 100100, product code 4100
HU	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
ΙE	Data from previous years	UNFCCC 2014 submission	
IT	Activity trends (dynamics) from other sources	Eurostat Crude Oil production Production (monthly data)	Indicator code 100100, product code 3100
LT	Activity trends (dynamics) from other sources	Eurostat Crude Oil production Production (monthly data)	Indicator code 100100, product code 3100
LU	Data from previous years	UNFCCC 2014 submission	
LV	Data from previous years	UNFCCC 2014 submission	
MT	Data from previous years	UNFCCC 2014 submission	
NL	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
PL	Data from previous years	UNFCCC 2014 submission	
PT	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
RO	Activity trends (dynamics) from other sources	Eurostat Crude Oil production Production (monthly data)	Indicator code 100100, product code 3100
SE	Data from previous years	UNFCCC 2014 submission	
SI	Data from previous years	UNFCCC 2014 submission	
SK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014

Table 67 Methods and data: CO2 emissions from 1B2c Flaring

Source Ca	Source Category 1B2c c. flaring				
Gas	Gas CO2				
Member State	Projection Approach	Data Sources	Notes		
AT	Data from previous years	UNFCCC 2014 submission			
BE	Emission trends (dynamics) from other sources	CITL data (operator holding account) 2008-2013	Main activity code 21		
BG	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
CY	Data from previous years	UNFCCC 2014 submission			
CZ	Activity trends (dynamics) from other sources	Eurostat Crude Oil production Production (monthly data)	Indicator code 100100, product code 3100		
DE	Activity trends (dynamics) from other sources	Eurostat Crude Oil production Production (monthly data)	Indicator code 100100, product code 3100		
DK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
EE	Data from previous years	UNFCCC 2014 submission	Ü		
ES	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
FI	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
FR	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
UK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
GR	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
HR	Data from previous years	UNFCCC 2014 submission			
HU	Activity trends (dynamics) from other sources	Eurostat Crude Oil production Production (monthly data)	Indicator code 100100, product code 3100		
ΙE	Data from previous years	UNFCCC 2014 submission			
IT	Activity trends (dynamics) from other sources	Eurostat Crude Oil production Production (monthly data)	Indicator code 100100, product code 3100		
LT	Activity trends (dynamics) from other sources	Eurostat Crude Oil production Production (monthly data)	Indicator code 100100, product code 3100		
LU	Data from previous years	UNFCCC 2014 submission			
LV	Data from previous years	UNFCCC 2014 submission			
MT	Data from previous years	UNFCCC 2014 submission			
NL	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
PL	Data from previous years	UNFCCC 2014 submission			
PT	Data from previous years	UNFCCC 2014 submission			
RO	Activity trends (dynamics) from other sources	Eurostat Crude Oil production Production (monthly data)	Indicator code 100100, product code 3100		
SE	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
SI	Data from previous years	UNFCCC 2014 submission	-		
SK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		

Table 68 Methods and data: CH4 emissions from 1B2c Flaring

Source Ca	Source Category 1B2c c. flaring				
Gas	Gas CH4				
Member	Projection Approach	Data Sources	Notes		
State	r rojection Approach	Data Sources	Notes		
AT	Data from previous years	UNFCCC 2014 submission			
BE	Data from previous years	UNFCCC 2014 submission			
BG	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
CY	Data from previous years	UNFCCC 2014 submission			
CZ	Activity trends (dynamics) from other sources	Eurostat Crude Oil production Production (monthly data)	Indicator code 100100, product code 3100		
DE	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
DK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
EE	Data from previous years	UNFCCC 2014 submission			
ES	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
FI	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
FR	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
UK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
GR	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
HR	Data from previous years	UNFCCC 2014 submission			
HU	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
IE	Data from previous years	UNFCCC 2014 submission			
ΙΤ	Activity trends (dynamics) from other sources	Eurostat Total Natural Gas Production (monthly data)	Indicator code 100100, product code 4100		
LT	Activity trends (dynamics) from other sources	Eurostat Crude Oil production Production (monthly data)	Indicator code 100100, product code 3100		
LU	Data from previous years	UNFCCC 2014 submission			
LV	Data from previous years	UNFCCC 2014 submission			
MT	Data from previous years	UNFCCC 2014 submission			
NL	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
PL	Data from previous years	UNFCCC 2014 submission			
PT	Data from previous years	UNFCCC 2014 submission			
ΙΤ	Activity trends (dynamics) from other sources	Eurostat Crude Oil production Production (monthly data)	Indicator code 100100, product code 3100		
SE	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		
SI	Data from previous years	UNFCCC 2014 submission			
SK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014		

Table 69 Methods and data: CO2 emissions from 2.A.1 Cement Production

Source Ca	• ,	oduction	
Gas			
Member State	Projection Approach	Data Sources	Notes
	Emission trends (dynamics) from other	CITL data (operator holding	CITL data Main activity codes 29, 30, 34 + scaling factor
AT	sources	accounts) 2008-2013	based on comparison inventory data - CITL data for 2005-2012
BE	Emission trends (dynamics) from other	CITL data (operator holding	CITL data Main activity codes 29, 30, 34 + scaling factor
22	sources Emission trends (dynamics) from other	accounts) 2008-2013 CITL data (operator holding	based on comparison inventory data - CITL data for 2005-2012 CITL data Main activity codes 29, 30, 34 + scaling factor
BG	sources	accounts) 2008-2013	based on comparison inventory data - CITL data for 2005-2012
CY	Emission trends (dynamics) from other	CITL data (operator holding	CITL data Main activity codes 29, 30, 34 + scaling factor
Ci	sources	accounts) 2008-2013	based on comparison inventory data - CITL data for 2005-2012
CZ	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	CITL data Main activity codes 29, 30, 34 + scaling factor based on comparison inventory data - CITL data for 2005-2012
DE	Emission trends (dynamics) from other	CITL data (operator holding	CITL data Main activity codes 29, 30, 34 + scaling factor
DE	sources	accounts) 2008-2013	based on comparison inventory data - CITL data for 2005-2012
DK	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	CITL data Main activity codes 29, 30, 34 + scaling factor based on comparison inventory data - CITL data for 2005-2012
	Emission trends (dynamics) from other	CITL data (operator holding	CITL data Main activity codes 29, 30, 34 + scaling factor
EE	sources	accounts) 2008-2013	based on comparison inventory data - CITL data for 2005-2012
ES	Emission trends (dynamics) from other	CITL data (operator holding	CITL data Main activity codes 29, 30, 34 + scaling factor
-	sources Emission tronds (dynamics) from other	accounts) 2008-2013	based on comparison inventory data - CITL data for 2005-2012 CITL data Main activity codes 29, 30, 34 + scaling factor
FI	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	based on comparison inventory data - CITL data for 2005-2012
FR	Emission trends (dynamics) from other	CITL data (operator holding	CITL data Main activity codes 29, 30, 34 + scaling factor
FK	sources	accounts) 2008-2013	based on comparison inventory data - CITL data for 2005-2012
UK	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	CITL data Main activity codes 29, 30, 34 + scaling factor based on comparison inventory data - CITL data for 2005-2012
	Emission trends (dynamics) from other	CITL data (operator holding	CITL data Main activity codes 29, 30, 34 + scaling factor
GR	sources	accounts) 2008-2013	based on comparison inventory data - CITL data for 2005-2012
HR	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
HU	Emission trends (dynamics) from other	CITL data (operator holding	CITL data Main activity codes 29, 30, 34 + scaling factor
110	sources	accounts) 2008-2013	based on comparison inventory data - CITL data for 2005-2012
IE	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	CITL data Main activity codes 29, 30, 34 + scaling factor based on comparison inventory data - CITL data for 2005-2012
п	Emission trends (dynamics) from other	CITL data (operator holding	CITL data Main activity codes 29, 30, 34 + scaling factor
"	sources	accounts) 2008-2013	based on comparison inventory data - CITL data for 2005-2012
LT	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	CITL data Main activity codes 29, 30, 34 + scaling factor based on comparison inventory data - CITL data for 2005-2012
	Emission trends (dynamics) from other	CITL data (operator holding	CITL data Main activity codes 29, 30, 34 + scaling factor
LU	sources	accounts) 2008-2013	based on comparison inventory data - CITL data for 2005-2012
LV	Emission trends (dynamics) from other	CITL data (operator holding	CITL data Main activity codes 29, 30, 34 + scaling factor
	sources	accounts) 2008-2013	based on comparison inventory data - CITL data for 2005-2012
MT	Data from previous year	UNFCCC 2013 Submission	Value of 2012
NL	Emission trends (dynamics) from other	CITL data (operator holding	CITL data Main activity codes 29, 30, 34 + scaling factor
	sources Emission trends (dynamics) from other	accounts) 2008-2013 CITL data (operator holding	based on comparison inventory data - CITL data for 2005-2012 CITL data Main activity codes 29, 30, 34 + scaling factor
PL	sources	accounts) 2008-2013	based on comparison inventory data - CITL data for 2005-2012
PT	Emission trends (dynamics) from other	CITL data (operator holding	CITL data Main activity codes 29, 30, 34 + scaling factor
•	sources Emission trends (dynamics) from other	accounts) 2008-2013	based on comparison inventory data - CITL data for 2005-2012 CITL data Main activity codes 29, 30, 34 + scaling factor
RO	sources	CITL data (operator holding accounts) 2008-2013	based on comparison inventory data - CITL data for 2005-2012
SE	Emission trends (dynamics) from other	CITL data (operator holding	CITL data Main activity codes 29, 30, 34 + scaling factor
JL	sources	accounts) 2008-2013	based on comparison inventory data - CITL data for 2005-2012
SI	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	CITL data Main activity codes 29, 30, 34 + scaling factor based on comparison inventory data - CITL data for 2005-2012
	Emission trends (dynamics) from other	CITL data (operator holding	CITL data Main activity codes 29, 30, 34 + scaling factor
SK	sources	accounts) 2008-2013	based on comparison inventory data - CITL data for 2005-2012

Table 70 Methods and data: CO2 emissions from 2.A.2 Lime Production

Source Ca	• ,	ıction	
Gas			
Member	Projection Approach	Data Sources	Notes
State	Emission trends (dynamics) from other	CITL data (operator holding	CITL data Main activity codes 29, 30, 34 + scaling factor
AT	sources	accounts) 2008-2013	based on comparison inventory data - CITL data for 2005-2012
BE	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	CITL data Main activity codes 29, 30, 34 + scaling factor based on comparison inventory data - CITL data for 2005-2012
	Emission trends (dynamics) from other	CITL data (operator holding	CITL data Main activity codes 29, 30, 34 + scaling factor
BG	sources	accounts) 2008-2013	based on comparison inventory data - CITL data for 2005-2012
CY	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	CITL data Main activity codes 29, 30, 34 + scaling factor based on comparison inventory data - CITL data for 2005-2012
cz	Emission trends (dynamics) from other	CITL data (operator holding	CITL data Main activity codes 29, 30, 34 + scaling factor
	sources Emission trends (dynamics) from other	accounts) 2008-2013 CITL data (operator holding	based on comparison inventory data - CITL data for 2005-2012 CITL data Main activity codes 29, 30, 34 + scaling factor
DE	sources	accounts) 2008-2013	based on comparison inventory data - CITL data for 2005-2012
DK	Emission trends (dynamics) from other	CITL data (operator holding	CITL data Main activity codes 29, 30, 34 + scaling factor
	sources	accounts) 2008-2013	based on comparison inventory data - CITL data for 2005-2012
EE	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	CITL data Main activity codes 29, 30, 34 + scaling factor based on comparison inventory data - CITL data for 2005-2012
	Emission trends (dynamics) from other	CITL data (operator holding	CITL data Main activity codes 29, 30, 34 + scaling factor
ES	sources	accounts) 2008-2013	based on comparison inventory data - CITL data for 2005-2012
FI	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	CITL data Main activity codes 29, 30, 34 + scaling factor based on comparison inventory data - CITL data for 2005-2012
	Emission trends (dynamics) from other	CITL data (operator holding	CITL data Main activity codes 29, 30, 34 + scaling factor
FR	sources	accounts) 2008-2013	based on comparison inventory data - CITL data for 2005-2012
UK	Emission trends (dynamics) from other	CITL data (operator holding	CITL data Main activity codes 29, 30, 34 + scaling factor
OK	sources	accounts) 2008-2013	based on comparison inventory data - CITL data for 2005-2012
GR	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	CITL data Main activity codes 29, 30, 34 + scaling factor based on comparison inventory data - CITL data for 2005-2012
HR	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
HU	Emission trends (dynamics) from other	CITL data (operator holding	CITL data Main activity codes 29, 30, 34 + scaling factor
	sources Emission trends (dynamics) from other	accounts) 2008-2013 CITL data (operator holding	based on comparison inventory data - CITL data for 2005-2012 CITL data Main activity codes 29, 30, 34 + scaling factor
IE	sources	accounts) 2008-2013	based on comparison inventory data - CITL data for 2005-2012
п	Emission trends (dynamics) from other	CITL data (operator holding	CITL data Main activity codes 29, 30, 34 + scaling factor
"	sources	accounts) 2008-2013	based on comparison inventory data - CITL data for 2005-2012
LT	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	CITL data Main activity codes 29, 30, 34 + scaling factor based on comparison inventory data - CITL data for 2005-2012
	Emission trends (dynamics) from other	CITL data (operator holding	CITL data Main activity codes 29, 30, 34 + scaling factor
LU	sources	accounts) 2008-2013	based on comparison inventory data - CITL data for 2005-2012
LV	Emission trends (dynamics) from other	CITL data (operator holding	CITL data Main activity codes 29, 30, 34 + scaling factor
	sources	accounts) 2008-2013	based on comparison inventory data - CITL data for 2005-2012
MT	Data from previous year	UNFCCC 2013 Submission	Value of 2012
NL	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	CITL data Main activity codes 29, 30, 34 + scaling factor based on comparison inventory data - CITL data for 2005-2012
PL	Emission trends (dynamics) from other	CITL data (operator holding	CITL data Main activity codes 29, 30, 34 + scaling factor
FL	sources	accounts) 2008-2013	based on comparison inventory data - CITL data for 2005-2012
PT	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	CITL data Main activity codes 29, 30, 34 + scaling factor based on comparison inventory data - CITL data for 2005-2012
RO	Emission trends (dynamics) from other	CITL data (operator holding	CITL data Main activity codes 29, 30, 34 + scaling factor
	sources	accounts) 2008-2013	based on comparison inventory data - CITL data for 2005-2012
SE	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	CITL data Main activity codes 29, 30, 34 + scaling factor based on comparison inventory data - CITL data for 2005-2012
SI	Emission trends (dynamics) from other	CITL data (operator holding	CITL data Main activity codes 29, 30, 34 + scaling factor
	sources Emission tronds (dynamics) from other	accounts) 2008-2013	based on comparison inventory data - CITL data for 2005-2012 CITL data Main activity codes 29, 30, 34 + scaling factor
SK	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	CITL data Main activity codes 29, 30, 34 + scaling factor based on comparison inventory data - CITL data for 2005-2012

Table 71 Methods and data: CH4 emissions from 2.A Mineral products

Source Ca	Source Category 2A Mineral Products		
Gas	CH4		
Member	Projection Approach	Data Sources	Notes
State	1 Tojection Approach	Data Cources	Notes
AT			
BE			
BG			
CY			
CZ	Data from previous years	UNFCCC 2014 submission	Value of 2012
DE			
DK			
EE ES			
FI			
FR			
UK	Data from previous years	UNFCCC 2014 submission	Value of 2012
GR	Data Ironi previous years	UNFCCC 2014 Submission	Value of 2012
HR			
HU			
IE			
IT			
LT			
LU			
LV			
MT			
NL			
PL			
PT	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
RO			'
SE			
SI			
SK			

Table 72 Methods and data: CO₂ emissions from 2.B.1 Ammonia Production

Source Category 2B1 Ami		onia Production	
Gas	CO2		
Member State	Projection Approach	Data Sources	Notes
AT	Data from previous years	UNFCCC 2014 submission	Value of 2012
BE	Data from previous years	UNFCCC 2014 submission	Value of 2012
BG	Data from previous years	UNFCCC 2014 submission	Value of 2012
CY			
CZ	Data from previous years	UNFCCC 2014 submission	Value of 2012
DE	Data from previous years	UNFCCC 2014 submission	Value of 2012
DK			
EE	Data from previous years	UNFCCC 2014 submission	Value of 2012
ES	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
FI			
FR	Data from previous years	UNFCCC 2014 submission	Value of 2012
UK	Data from previous years	UNFCCC 2014 submission	Value of 2012
GR	Data from previous years	UNFCCC 2014 submission	Value of 2012
HR	Data from previous year	UNFCCC 2014 Submission	Value of 2012
HU	Data from previous years	UNFCCC 2014 submission	Value of 2012
ΙE			
IT	Data from previous years	UNFCCC 2014 submission	Value of 2012
LT	Data from previous years	UNFCCC 2014 submission	Value of 2012
LU			
LV			
MT			
NL	Data from previous years	UNFCCC 2014 submission	Value of 2012
PL	Data from previous years	UNFCCC 2014 submission	Value of 2012
PT	-		
RO	Data from previous years	UNFCCC 2014 submission	Value of 2012
SE			
SI			
SK	Data from previous years	UNFCCC 2014 submission	Value of 2012

Table 73 Methods and data: N₂O emissions from 2.B.2 Nitric Acid Production

Source C	Category 2B2 Nitric	Acid Production	
Gas	N2O		
Member	Projection Approach	Data Sources	Notes
State	1 Tojection Approach	Data Gources	1
AT	Data from previous years	UNFCCC 2014 submission	Value of 2012
BE	Data from previous years	UNFCCC 2014 submission	Value of 2012
BG	Data from previous years	UNFCCC 2014 submission	Value of 2012
CY			
CZ	Data from previous years	UNFCCC 2014 submission	Value of 2012
DE	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
DK			
EE			
ES	Data from previous years	UNFCCC 2014 submission	Value of 2012
FI	Data from previous years	UNFCCC 2014 submission	Value of 2012
FR	Data from previous years	UNFCCC 2014 submission	Value of 2012
UK	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
GR	Data from previous years	UNFCCC 2014 submission	Value of 2012
HR	Data from previous year	UNFCCC 2014 Submission	Value of 2012
HU	Data from previous years	UNFCCC 2014 submission	Value of 2012
ΙE			
IT	Data from previous years	UNFCCC 2014 submission	Value of 2012
LT	Data from previous years	UNFCCC 2014 submission	Value of 2012
LU			
LV			
MT			
NL	Data from previous years	UNFCCC 2014 submission	Value of 2012
PL	Data from previous years	UNFCCC 2014 submission	Value of 2012
PT	Data from previous years	UNFCCC 2014 submission	Value of 2012
RO	Data from previous years	UNFCCC 2014 submission	Value of 2012
SE	Data from previous years	UNFCCC 2014 submission	Value of 2012
SI			
SK	Data from previous years	UNFCCC 2014 submission	Value of 2012

Table 74 Methods and data: N₂O emissions from 2.B.3 Adipic Acid Production

Source Ca	Source Category 2B3 Adipic Ac		d Production	
Gas	N2O			
Member	Projection Approac	sh.	Data Sources	Notes
State	Projection Approac	, 11	Data Sources	Notes
AT				
BE				
BG CY				
CZ	D		INITO00 0044 1 1 1	V 1 (0040
DE	Data from previous years		UNFCCC 2014 submission	Value of 2012
DK				
EE ES				
ES FI				
FR	Data from province vegra		UNFCCC 2014 submission	Value of 2012
UK	Data from previous years		UNFCCC 2014 Submission	value of 2012
GR				
HR				
HU				
IE				
ΙΤ	Data from previous years		UNFCCC 2014 submission	Value of 2012
 LT	Data nom provious yours		014 000 2014 Submission	Value of 2012
LU				
LV				
MT				
NL				
PL				
PT				
RO				
SE				
SI				
SK				

Table 75 Methods and data: CH4 emissions from 2.C Metal production

Source Ca	Source Category 2.C Metal Production				
Gas	CH4				
Member	Duele etten August ab	Data Sources	Neter		
State	Projection Approach	Data Sources	Notes		
AT	Data from previous years	UNFCCC 2014 submission	Value of 2012		
BE	Data from previous years	UNFCCC 2014 submission	Value of 2012		
BG					
CY					
CZ	Data from previous years	UNFCCC 2014 submission	Value of 2012		
DE	Data from previous years	UNFCCC 2014 submission	Value of 2012		
DK					
EE					
ES	Data from previous years	UNFCCC 2014 submission	Value of 2012		
FI	Data from previous years	UNFCCC 2014 submission	Value of 2012		
FR	Data from previous years	UNFCCC 2014 submission	Value of 2012		
UK	Data from previous years	UNFCCC 2014 submission	Value of 2012		
GR	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation		
HR					
HU	Data from previous years	UNFCCC 2014 submission	Value of 2012		
IE					
IT	Data from previous years	UNFCCC 2014 submission	Value of 2012		
LT					
LU					
LV	Data from previous years	UNFCCC 2014 submission	Value of 2012		
MT					
NL					
PL	Data from previous years	UNFCCC 2014 submission	Value of 2012		
PT					
RO					
SE	Data from previous years	UNFCCC 2014 submission	Value of 2012		
SI					
SK	Data from previous years	UNFCCC 2014 submission	Value of 2012		

Table 76 Methods and data: CO₂ emissions from 2.C Metal production

Source Category 2C		letal Production	
Gas	CO2		
Member State	Projection Approach	Data Sources	Notes
AT	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
BE	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
BG	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
CY	Data from previous years	CRF 2C	
CZ	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
DE	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
DK	Data from previous years	CRF 2C	
EE	Data from previous years	CRF 2C	
ES	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
FI	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
FR	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
UK	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
GR	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
HR	Data from previous years	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
HU	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
IE	Data from previous years	CRF 2C	
IT	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
LT	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
LU	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
LV	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
MT	Data from previous years	CRF 2C	
NL	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
PL	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
PT	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
RO	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
SE	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
SI	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
SK	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year

Table 77 Methods and data: N₂O emissions from 2.C Metal production

Source C	Source Category 2.C *2.C Metal Production				
Gas	N2O				
Member	Projection Approach	Data Sources	Notes		
State	Projection Approach	Data Sources	Notes		
AT					
BE					
BG					
CY					
CZ					
DE	Data from previous years	UNFCCC 2014 submission	Value of 2012		
DK					
EE					
ES	Data from previous years	UNFCCC 2014 submission	Value of 2012		
FI					
FR					
UK	Data from previous years	UNFCCC 2014 submission	Value of 2012		
GR					
HR					
HU					
IE					
IT					
LT					
LU					
LV					
MT					
NL					
PL					
PT					
RO					
SE					
SI					
SK					

Table 78 Methods and data: CO₂ emissions from 2.C.1 Iron and steel production

Source Gas	Category 2C1 1. Iron and S	teel Production	
Member State	Projection Approach	Data Sources	Notes
AT	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	CITL categories iron and bf-gas
BE	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	CITL categories coke, ore,iron, bf-gas
BG	Activity trends (dynamics) from other sources	World Steel Association blast furnace iron production (monthly data)	
CY	Data from previous years	UNFCCC 2014 submission	
CZ	Activity trends (dynamics) from other sources	World Steel Association crude steel production (monthly data)	
DE	Activity trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	CITL categories coke, ore,iron, bf-gas
DK	Data from previous years	UNFCCC 2014 submission	
EE	Data from previous years	UNFCCC 2014 submission	
ES	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	CITL categories iron
FI	Activity trends (dynamics) from other sources	World Steel Association blast furnace iron production (monthly data)	
FR	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
UK	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
GR	Activity trends (dynamics) from other sources	World Steel Association blast furnace iron production (monthly data)	
HR	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
HU	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
ΙE	Data from previous years	UNFCCC 2014 submission	
п	Activity trends (dynamics) from other sources	World Steel Association blast furnace iron production (monthly data)	
LT	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
LU	Activity trends (dynamics) from other sources	World Steel Association blast furnace iron production (monthly data)	
LV	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
MT	Data from previous years	UNFCCC 2014 submission	
NL	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
PL	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
PT	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	CITL categories iron
RO	Data from previous years	UNFCCC 2014 submission	Average 2012-2014
SE	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	CITL categories iron
SI	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-2013	CITL categories iron
SK	Activity trends (dynamics) from other sources	World Steel Association blast furnace iron production (monthly data)	

Table 79 Methods and data: CO₂ emissions from 2.D Other production

Source C	ategory 2.D	.D Other Production	
Gas	CO2		
Member	Projection Approach	Data Sources	Notes
State	Projection Approact	Data Sources	Notes
AT			
BE			
BG			
CY			
CZ			
DE			
DK	Data from previous years	UNFCCC 2014 submission	Value of 2012
EE			
ES			
FI			
FR			
UK			
GR			
HR			
HU			
ΙΕ			
IT			
LT	Data from previous years	UNFCCC 2014 submission	Value of 2012
LU			
LV			
MT			
NL	Data from previous years	UNFCCC 2014 submission	Value of 2012
PL	Data from previous years	UNFCCC 2014 submission	Value of 2012
PT	Data from previous years	UNFCCC 2014 submission	Value of 2012
RO SE			
SE SI			
-			
SK			

Table 80 Methods and data: SF6 emissions

Source Ca	purce Category 2 2. Industrial Processes			
Gas	SF6			
Member State	Projection Approach	Data Sources	Notes	
AT	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
BE	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
BG	Data from previous years	UNFCCC 2014 submission	Value of 2012	
CY	Data from previous years	UNFCCC 2014 submission	Value of 2012	
CZ	Data from previous years	UNFCCC 2014 submission	Value of 2012	
DE	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
DK	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
EE	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
ES	Data from previous years	UNFCCC 2014 submission	Value of 2012	
FI	Data from previous years	UNFCCC 2014 submission	Value of 2012	
FR	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
UK	Data from previous years	UNFCCC 2014 submission	Value of 2012	
GR	Data from previous years	UNFCCC 2014 submission	Value of 2012	
HR	Data from previous years	UNFCCC 2013 submission	Value of 2012	
HU	Data from previous years	UNFCCC 2014 submission	Value of 2012	
IE	Data from previous years	UNFCCC 2014 submission	Value of 2012	
IT	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
LT	Data from previous years	UNFCCC 2014 submission	Value of 2012	
LU	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
LV	Data from previous years	UNFCCC 2014 submission	Value of 2012	
MT	Data from previous years	UNFCCC 2014 submission	Value of 2012	
NL	Data from previous years	UNFCCC 2014 submission	Value of 2012	
PL	Data from previous years	UNFCCC 2014 submission	Value of 2012	
PT	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
RO	Data from previous years	UNFCCC 2014 submission	Value of 2012	
SE	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
SI	Data from previous years	UNFCCC 2014 submission	Value of 2012	
SK	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	

Table 81 Methods and data: HFC emissions

Source C	Source Category 2 2. Industrial Processes			
Gas	HFC			
Member	Projection Approach	Data Sources	Notes	
State	Projection Approach	Data Sources	Notes	
AT	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
BE	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
BG	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
CY	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
CZ	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
DE	Data from previous years	UNFCCC 2014 submission	Value of 2012	
DK	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
EE	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
ES	Data from previous years	UNFCCC 2014 submission	Value of 2012	
FI	Data from previous years	UNFCCC 2014 submission	Value of 2012	
FR	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
UK	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
GR	Data from previous years	UNFCCC 2014 submission	Value of 2012	
HR	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
HU	Data from previous years	UNFCCC 2014 submission	Value of 2012	
ΙE	Data from previous years	UNFCCC 2014 submission	Value of 2012	
IT	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
LT	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
LU	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
LV	Data from previous years	UNFCCC 2014 submission	Value of 2012	
MT	Data from previous years	UNFCCC 2014 submission	Value of 2012	
NL	Data from previous years	UNFCCC 2014 submission	Value of 2012	
PL	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
PT	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
RO	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
SE	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
SI	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
SK	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	

Table 82 Methods and data: PFC emissions

Source Category 2 2. Industrial Processes					
Gas	Gas PFC				
Member	Projection Approach	Data Sources	Notes		
State	Projection Approach	Data Sources	Notes		
AT	Data from previous years	UNFCCC 2014 submission	Value of 2012		
BE	Data from previous years	UNFCCC 2014 submission	Value of 2012		
BG	Data from previous years	UNFCCC 2014 submission	Value of 2012		
CY					
CZ	Data from previous years	UNFCCC 2014 submission	Value of 2012		
DE	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation		
DK	Data from previous years	UNFCCC 2014 submission	Value of 2012		
EE					
ES	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation		
FI	Data from previous years	UNFCCC 2014 submission	Value of 2012		
FR	Data from previous years	UNFCCC 2014 submission	Value of 2012		
UK	Data from previous years	UNFCCC 2014 submission	Value of 2012		
GR	Data from previous years	UNFCCC 2014 submission	Value of 2012		
HR	Data from previous years	UNFCCC 2014 submission	Value of 2012		
HU	Data from previous years	UNFCCC 2014 submission	Value of 2012		
ΙE	Data from previous years	UNFCCC 2014 submission	Value of 2012		
IT	Data from previous years	UNFCCC 2014 submission	Value of 2012		
LT					
LU	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation		
LV					
MT	Data from previous years	UNFCCC 2014 submission	Value of 2012		
NL	Data from previous years	UNFCCC 2014 submission	Value of 2012		
PL	Data from previous years	UNFCCC 2014 submission	Value of 2012		
PT					
RO	Data from previous years	UNFCCC 2014 submission	Value of 2012		
SE	Data from previous years	UNFCCC 2014 submission	Value of 2012		
SI	Data from previous years	UNFCCC 2014 submission	Value of 2012		
SK	Data from previous years	UNFCCC 2014 submission	Value of 2012		

Table 83 Methods and data: CO2 emissions from 2.G Other

Source Ca		er	
Gas	CO2		
Member	Projection Approach	Data Sources	Notes
State	. торошент дригенен	24.4 004.000	
AT			
BE			
BG			
CY			
CZ			
DE			
DK	Data from previous years	UNFCCC 2014 submission	Value of 2012
EE			
ES			
FI			
FR			
UK			
GR			
HR			
HU	Data from previous years	UNFCCC 2014 submission	Value of 2012
IE			
IT			
LT			
LU			
LV			
MT			
NL	Data from previous years	UNFCCC 2014 submission	Value of 2012
PL	Data from previous years	UNFCCC 2014 submission	Value of 2012
PT			
RO			
SE			
SI			
SK			

Table 84 Methods and data: CH4 emissions from 2.G Other

Source C			
Gas	CH4		
Member	Projection Approach	Data Sources	Notes
State	тојесноп дррговен	Data Cources	Notes
AT			
BE			
BG			
CY			
CZ			
DE			
DK			
EE			
ES			
FI			
FR			
UK			
GR			
HR			
HU			
ΙE			
IT			
LT			
LU			
LV			
MT			
NL	Data from previous years	UNFCCC 2014 submission	Value of 2012
PL			
PT			
RO			
SE			
SI			
SK			

Table 85 Methods and data: N₂O emissions from 2.G Other

Source Category 2.G 2.G Other				
Gas	N2O			
Member	Projection Approach	Data Sources	Notes	
State	. тојосног грргодон		110100	
AT				
BE				
BG				
CY				
CZ				
DE				
DK				
EE				
ES				
FI				
FR				
UK				
GR				
HR				
HU				
ΙE				
ΙΤ				
LT				
LU				
LV				
MT				
NL	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
PL			·	
PT				
RO				
SE				
SI				
SK				

Table 86 Methods and data: CO2 emissions from 3 Solvent and other product use

Source C	Source Category 3 3. Solvent and Other Product Use					
Gas	Gas CO2					
Member State	Projection Approach	Data Sources	Notes			
AT	Data from previous years	UNFCCC 2014 submission	Value of 2012			
BE						
BG	Data from previous years	UNFCCC 2014 submission	Value of 2012			
CY	Data from previous years	UNFCCC 2014 submission	Value of 2012			
CZ	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation			
DE	Data from previous years	UNFCCC 2014 submission	Value of 2012			
DK	Data from previous years	UNFCCC 2014 submission	Value of 2012			
EE	Data from previous years	UNFCCC 2014 submission	Value of 2012			
ES	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation			
FI	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation			
FR	Data from previous years	UNFCCC 2014 submission	Value of 2012			
UK						
GR	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation			
HR	Data from previous years	UNFCCC 2014 submission	Value of 2012			
HU	Data from previous years	UNFCCC 2014 submission	Value of 2012			
IE	Data from previous years	UNFCCC 2014 submission	Value of 2012			
IT	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation			
LT	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation			
LU	Data from previous years	UNFCCC 2014 submission	Value of 2012			
LV	Data from previous years	UNFCCC 2014 submission	Value of 2012			
MT						
NL	Data from previous years	UNFCCC 2014 submission	Value of 2012			
PL	Data from previous years	UNFCCC 2014 submission	Value of 2012			
PT	Data from previous years	UNFCCC 2014 submission	Value of 2012			
RO	Data from previous years	UNFCCC 2014 submission	Value of 2012			
SE	Data from previous years	UNFCCC 2014 submission	Value of 2012			
SI						
SK	Data from previous years	UNFCCC 2014 submission	Value of 2012			

Table 87 Methods and data: N_2O emissions from 3 Solvent and other product used

Source (Category 3 3. Solvent a	nd Other Product Use			
Gas N2O					
Member	Projection Approach	Data Sources	Notes		
State	Projection Approach	Data Sources	Notes		
AT	Data from previous years	UNFCCC 2014 submission	Value of 2012		
BE	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation		
BG	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation		
CY	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation		
CZ	Data from previous years	UNFCCC 2014 submission	Value of 2012		
DE	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation		
DK	Data from previous years	UNFCCC 2014 submission	Value of 2012		
EE	Data from previous years	UNFCCC 2014 submission	Value of 2012		
ES	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation		
FI	Data from previous years	UNFCCC 2014 submission	Value of 2012		
FR	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation		
UK					
GR	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation		
HR	Data from previous years	UNFCCC 2014 submission	Value of 2012		
HU	Data from previous years	UNFCCC 2014 submission	Value of 2012		
IE					
IT	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation		
LT	Data from previous years	UNFCCC 2014 submission	Value of 2012		
LU	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation		
LV	Data from previous years	UNFCCC 2014 submission	Value of 2012		
MT	Data from previous years	UNFCCC 2014 submission	Value of 2012		
NL	Data from previous years	UNFCCC 2014 submission	Value of 2012		
PL	Data from previous years	UNFCCC 2014 submission	Value of 2012		
PT	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation		
RO					
SE	Data from previous years	UNFCCC 2014 submission	Value of 2012		
SI	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation		
SK	Data from previous years	UNFCCC 2014 submission	Value of 2012		

Table 88 Methods and data: CH4 emissions from 4.A. Enteric fermentation and from 4.B Manure management

	CH4 Dairy cows, Live bovine animals, Sheep, Goats, Swine		
Member State	Projection Approach	Data Sources	Notes
AT			Live bovine animals, Dairy Cows, Sheep, Goats, Swine: Eurostat December survey.
BE			Eurostat December survey: Live bovine animals, Dairy cows, Swine: trend change. Sheep and Goats repeat emissions value from last inventory year.
BG			Dairy cows, Live bovine animals, Sheep, Goats, Swine: Eurostat December survey.
CY			Dairy cows, Live bovine animals, Goats, Swine: Eurostat December survey. Sheep: UNFCCC AD, repeat value from last inventory year.
CZ			Dairy cows, Live bovine animals, Swine: Eurostat December survey. Sheep, Goats: UNFCCC AD, repeat value from last inventory year.
DE			Dairy cows, Live bovine animals, Sheep, Goats: Eurostat December survey; Swine: Eurostat December survey plus adjustment factor.
DK			Dairy cows, Swine: Eurostat June survey; Live bovine animals: Eurostat December survey; Sheep, Goats: UNFCCC AD, repeat value from last inventory year.
EE			Dairy cows, Live bovine animals, Swine: Eurostat December survey; Sheep, Goats: UNFCCC AD, repeat value from last inventory year.
ES			Dairy cows: Eurostat June survey; Live bovine animals, Sheep, Goats, Swine Eurostat December survey
FI			Dairy cows, Live bovine animals, Swine, Sheep, Goats: Eurostat December survey with emissions extrapolation by AD trend change.
FR			Dairy cows, Sheep, Goats, Live bovine animals, Swine: Eurostat December survey, plus adjustment factor for Sheep and Goats.
UK			Dairy cows, Live bovine animals, Swine: Eurostat June survey; Sheep: Eurostat December survey plus adjustment factor; Goats: UNFCCC AD, repeat value from last inventory year.
GR		Livestock activity data (Live bovine animals,	Dairy cows, Live bovine animals, Goats, Sheep Eurostat December survey; Swine Eurostat December survey plus adjustment factor;
HR	Emissions calculation	Dairy Cows, Sheep,	Dairy cows, Live bovine animals, Sheep, Swine, Goats: Eurostat December survey.
HU	based on activity data	Goats, Swine) from Eurostat, IEF from UNFCCC 2012 inventories	Dairy cows, Live bovine animals, Sheep, Goats (plus adjustment factor), Swine: Eurostat December survey
IE			Dairy cows: Eurostat December survey (plus adjustment factor); Live bovine animals, Swine, Sheep, Goats: Eurostat June survey
IT			Dairy cows, Live bovine animals, Swine, Sheep, Goats: Eurostat December
LT			survey with emissions extrapolation by AD trend change. Dairy cows, Live bovine animals (plus adjustment factor), Goats, Sheep (plu adjustment factor), Swine: Eurostat December survey.
LU			Dairy cows (plus adjustment factor), Live bovine animals, Swine (plus adjustment factor): Eurostat December survey. Sheep, Goats: UNFCCC AD repeat value from last inventory year.
LV			Dairy cows, Live bovine animals, Swine: Eurostat December.Sheep, Goats: UNFCCC AD, repeat value from last inventory year.
MT			Dairy cows, Live bovine animals, Sheep, Goats, Swine: Eurostat December survey
NL			Dairy cows, Swine: Eurostat June survey; Live bovine animals, Sheep: Eurostat December survey; Goats: Eurostat December survey plus adjustment factor.
PL			Dairy cows: Eurostat June survey plus adjustment factor; Live bovine animals, Goats, Swine: Eurostat December survey; Sheep: UNFCCC AD, repeat value from last inventory year.
PT			Dairy cows, Live bovine animals, Sheep, Swine, Goats: Eurostat December
RO			survey. Dairy cows, Live bovine animals, Sheep, Swine (plus adjustment factor), Goats: Furnetat December survey.
SE			Goats: Eurostat December survey Dairy cows, Live bovine animals, Swine: Eurostat June survey; Sheep: Eurostat December survey plus adjustment factor; Goats: UNFCCC CH4 emissions.
SI			Dairy cows, Live bowne animals, Swine: Eurostat December survey; Sheep, Goats: Eurostat December survey with extrapolation for 2010
SK			Dairy cows, Live bovine animals: Eurostat December survey plus adjustmen factor; Swine, Sheep, Goats: Eurostat December survey

Table 89 Methods and data: CH4 emissions from 4.A Enteric Fermentation, Horses

Source Category 4.A A. Enteric Fermentation; Horses					
Gas CH4					
Member	Dunio etian Annue et	Data Sources	Notes		
State	Projection Approach	Data Sources	Notes		
AT	Data from previous years	UNFCCC 2014 submission	Value of 2012		
BE	Data from previous years	UNFCCC 2014 submission	Value of 2012		
BG	Data from previous years	UNFCCC 2014 submission	Value of 2012		
CY	Data from previous years	UNFCCC 2014 submission	Value of 2012		
CZ	Data from previous years	UNFCCC 2014 submission	Value of 2012		
DE	Data from previous years	UNFCCC 2014 submission	Value of 2012		
DK	Data from previous years	UNFCCC 2014 submission	Value of 2012		
EE	Data from previous years	UNFCCC 2014 submission	Value of 2012		
ES	Data from previous years	UNFCCC 2014 submission	Value of 2012		
FI	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation		
FR	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation		
UK	Data from previous years	UNFCCC 2014 submission	Value of 2012		
GR	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation		
HR	Data from previous years	UNFCCC 2014 submission	Value of 2012		
HU	Data from previous years	UNFCCC 2014 submission	Value of 2012		
IE	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation		
IT	Data from previous years	UNFCCC 2014 submission	Value of 2012		
LT	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation		
LU	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation		
LV	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation		
MT	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation		
NL	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation		
PL	Data from previous years	UNFCCC 2014 submission	Value of 2012		
PT	Data from previous years	UNFCCC 2014 submission	Value of 2012		
RO	Data from previous years	UNFCCC 2014 submission	Value of 2012		
SE	Data from previous years	UNFCCC 2014 submission	Value of 2012		
SI	Data from previous years	UNFCCC 2014 submission	Value of 2012		
SK	Data from previous years	UNFCCC 2014 submission	Value of 2012		

Table 90 Methods and data: CH4 emissions from 4.B Manure Management, Horses

Source Catego	ory 4.B B. Manur	e Management; Horses	
Gas	CH4		
Member	Projection Approach	Data Sources	Notes
State	Projection Approach	Data Sources	Notes
AT	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
BE	Data from previous years	UNFCCC 2014 submission	Value of 2012
BG	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
CY	Data from previous years	UNFCCC 2014 submission	Value of 2012
CZ	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
DE	Data from previous years	UNFCCC 2014 submission	Value of 2012
DK	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
EE	Data from previous years	UNFCCC 2014 submission	Value of 2012
ES	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
FI	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
FR	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
UK	Data from previous years	UNFCCC 2014 submission	Value of 2012
GR	Data from previous years	UNFCCC 2014 submission	Value of 2012
HR	Data from previous years	UNFCCC 2014 submission	Value of 2012
HU	Data from previous years	UNFCCC 2014 submission	Value of 2012
IE	Data from previous years	UNFCCC 2014 submission	Value of 2012
IT	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
LT	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
LU	Data from previous years	UNFCCC 2014 submission	Value of 2012
LV	Data from previous years	UNFCCC 2014 submission	Value of 2012
MT	Data from previous years	UNFCCC 2014 submission	Value of 2012
NL	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
PL	Data from previous years	UNFCCC 2014 submission	Value of 2012
PT	Data from previous years	UNFCCC 2014 submission	Value of 2012
RO	Data from previous years	UNFCCC 2014 submission	Value of 2012
SE	Data from previous years	UNFCCC 2014 submission	Value of 2012
SI	Data from previous years	UNFCCC 2014 submission	Value of 2012
SK	Data from previous years	UNFCCC 2014 submission	Value of 2012

Table 91 Methods and data: CH4 emissions from 4.A Enteric Fermentation, Mules and Asses

Source Catego	ory 4.A A. Enteric Fer	mentation; Mules and Asses	
Gas	CH4		
Member	Projection Approach	Data Sources	Notes
State	Projection Approach	Data Sources	Mores
AT			
BE	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
BG	Data from previous years	UNFCCC 2014 submission	Value of 2012
CY			
CZ			
DE	Data from previous years	UNFCCC 2014 submission	Value of 2012
DK			
EE			
ES	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
FI			
FR	Data from previous years	UNFCCC 2014 submission	Value of 2012
UK			
GR	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
HR	Data from previous years	UNFCCC 2014 submission	Value of 2012
HU	Data from previous years	UNFCCC 2014 submission	Value of 2012
ΙE	Data from previous years	UNFCCC 2014 submission	Value of 2012
IT	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
LT			
LU	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
LV			
MT			
NL			
PL			
PT	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
RO	Data from previous years	UNFCCC 2014 submission	Value of 2012
SE			
SI			
SK			

Table 92 Methods and data: CH4 emissions from 4.B Manure Management, Mules and Asses

Source Catego	ory 4.B	B. Manure Ma	nagement, Mules and Asses	
Gas CH4				
Member	Projection Appro	ach	Data Sources	Notes
State	Projection Appro	acii	Data Sources	Notes
AT				
BE	Extrapolation from previous	years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
BG	Data from previous years		UNFCCC 2014 submission	Value of 2012
CY				
CZ				
DE	Data from previous years		UNFCCC 2014 submission	Value of 2012
DK				
EE				
ES	Data from previous years		UNFCCC 2014 submission	Value of 2012
FI				
FR	Data from previous years		UNFCCC 2014 submission	Value of 2012
UK				
GR	Extrapolation from previous	years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
HR	Extrapolation from previous	years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
HU	Extrapolation from previous	years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
IE	Data from previous years		UNFCCC 2014 submission	Value of 2012
IT	Extrapolation from previous	years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
LT				
LU	Extrapolation from previous	years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
LV				
MT				
NL				
PL				
PT	Extrapolation from previous	years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
RO	Data from previous years		UNFCCC 2014 submission	Value of 2012
SE				
SI				
SK				

Table 93 Methods and data: CH4 emissions from 4.A Enteric Fermentation, Poultry

Source Categor	ry 4.A	A. Enteric Fermentation; Poultry	
Gas	CH4		
Member	B	ach Data Sources	Notes
State	Projection Appro	ach Data Sources	Notes
AT	Data from previous years	UNFCCC 2014 submission	Value of 2012
BE			
BG			
CY			
CZ			
DE			
DK	Data from previous years	UNFCCC 2014 submission	Value of 2012
EE			
ES			
FI			
FR			
UK			
GR	Data from previous years	UNFCCC 2014 submission	Value of 2012
HR	Data from previous years	UNFCCC 2014 submission	Value of 2012
HU	Data from previous years	UNFCCC 2014 submission	Value of 2012
IE			
IΤ			
LT			
LU	Data from previous years	UNFCCC 2014 submission	Value of 2012
LV			
MT	Data from previous years	UNFCCC 2014 submission	Value of 2012
NL			
PL			
PT			
RO			
SE			
SI			
SK			

Table 94 Methods and data: CH4 emissions from 4.B Manure Management, Poultry

Source Categ	gory 4.B B. Manure	Management; Poultry	
Gas	CH4		
Member	Projection Approach	Data Sources	Notes
State	Projection Approach	Data Sources	Notes
AT	Data from previous years	UNFCCC 2014 submission	Value of 2012
BE	Data from previous years	UNFCCC 2014 submission	Value of 2012
BG	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
CY	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
CZ	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
DE	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
DK	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
EE	Data from previous years	UNFCCC 2014 submission	Value of 2012
ES	Data from previous years	UNFCCC 2014 submission	Value of 2012
FI	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
FR	Data from previous years	UNFCCC 2014 submission	Value of 2012
UK	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
GR	Data from previous years	UNFCCC 2014 submission	Value of 2012
HR	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
HU	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
IE	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
IT	Data from previous years	UNFCCC 2014 submission	Value of 2012
LT	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
LU	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
LV	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
MT	Data from previous years	UNFCCC 2014 submission	Value of 2012
NL	Data from previous years	UNFCCC 2014 submission	Value of 2012
PL	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
PT	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
RO	Data from previous years	UNFCCC 2014 submission	Value of 2012
SE	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
SI	Data from previous years	UNFCCC 2014 submission	Value of 2012
SK	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation

Table 95 Methods and data: CH4 emissions from 4.A Enteric Fermentation, Other

Source Category 4.A A. Enteric Fermentation; Other				
Gas	CH4			
Member	Projection Assurance	Data Sources	Notes	
State	Projection Approach	Data Sources	Notes	
AT	Data from previous years	UNFCCC 2014 submission	Value of 2012	
BE				
BG				
CY				
CZ				
DE				
DK	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
EE	Data from previous years	UNFCCC 2014 submission	Value of 2012	
ES				
FI	Data from previous years	UNFCCC 2014 submission	Value of 2012	
FR				
UK	Data from previous years	UNFCCC 2014 submission	Value of 2012	
GR				
HR	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
HU	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
IE				
IT	Data from previous years	UNFCCC 2014 submission	Value of 2012	
LT	Data from previous years	UNFCCC 2014 submission	Value of 2012	
LU	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
LV				
MT	Data from previous years	UNFCCC 2014 submission	Value of 2012	
NL				
PL				
PT	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
RO				
SE	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
SI				
SK				

Table 96 Methods and data: CH4 emissions from 4.B Manure Management, Other

Source Category 4.B B. Manure Management; Other				
Gas	CH4			
Member	Projection Approach	Data Sources	Notes	
State	r rojedion Approach	Data Courses	Hotes	
AT	Data from previous years	UNFCCC 2014 submission	Value of 2012	
BE				
BG				
CY				
CZ				
DE				
DK	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
EE	Data from previous years	UNFCCC 2014 submission	Value of 2012	
ES	Data from previous years	UNFCCC 2014 submission	Value of 2012	
FI	Data from previous years	UNFCCC 2014 submission	Value of 2012	
FR				
UK	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
GR				
HR	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
HU	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
IE				
IT	Data from previous years	UNFCCC 2014 submission	Value of 2012	
LT	Data from previous years	UNFCCC 2014 submission	Value of 2012	
LU	Data from previous years	UNFCCC 2014 submission	Value of 2012	
LV				
MT	Data from previous years	UNFCCC 2014 submission	Value of 2012	
NL	Data from previous years	UNFCCC 2014 submission	Value of 2012	
PL				
PT	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
RO				
SE	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
SI				
SK				

Table 97 Methods and data: N2O emissions from 4.B Manure management

Source Ca	ategory 4.B B. Manure Manage	ement	
Gas	N2O		
Member	Desiration Annuals	Data Sources	Note -
State	Projection Approach	Data Sources	Notes
AT	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
BE	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
BG	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
CY	Data from previous years	UNFCCC 2014 submission	Value of 2012
CZ	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
DE	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
DK	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
EE	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
ES	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
FI	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
FR	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
UK	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
GR	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
HR	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
HU	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
ΙE	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
IT	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
LT	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
LU	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
LV	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
MT	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
NL	Data from previous years	UNFCCC 2014 submission	Value of 2012
PL	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
PT	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
RO	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
SE	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
SI	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
SK	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation

Table 98 Methods and data: CH4 emissions from 4.C Rice cultivation

Source Ca	4.C C. Rice cultivation		,
Member State	Projection Approach	Data Sources	Notes
АТ			
BE			
BG	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
CY			
CZ			
DE			
DK			
EE			
ES	Data from previous years	UNFCCC 2014 submission	Value of 2012
FI			
FR	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
UK			
GR	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
HR	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
HU	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
ΙΕ			
IT	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
LT			
LU			
LV			
MT			
NL			
PL			
PT	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
RO	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
SE			
SI			
SK			

Table 99 Methods and data: CH4 emissions from 4.D Agricultural soils

Source Ca	tegory 4.D D. Agricultural Soil	s	
Gas	CH4		
Member	Projection Approach	Data Sources	Notes
State			
AT	Data from previous years	UNFCCC 2014 submission	Value of 2012
BE			
BG			
CY			
CZ			
DE			
DK			
EE			
ES			
FI			
FR			
UK			
GR HR			
HU			
IE			
IT IT			
LT			
LU			
LV			
MT			
NL			
PL			
PT			
RO			
SE			
SI			
SK			

Table 100 Methods and data: N2O emissions from 4.D Agricultural soils

Source Category	4.D. D. Agricultu	ıral Soils	
Gas	N2O		
Member State	Projection Approach	Data Sources	Notes
AT			by MS fraction of EU-28
BE			by MS fraction of EU-28
BG			by MS fraction of EU-28
CY			by MS fraction of EU-28
CZ			by MS fraction of EU-28
DE			by MS fraction of EU-28
DK			by MS fraction of EU-28
EE			by MS fraction of EU-28
ES			by MS fraction of EU-28
FI			by MS fraction of EU-28
FR			by MS fraction of EU-28
UK			by MS fraction of EU-28
GR			by MS fraction of EU-28
HR			by MS fraction of EU-28
HU			by MS fraction of EU-28
IE			by MS fraction of EU-28
IT			by MS fraction of EU-28
LT			by MS fraction of EU-28
LU			by MS fraction of EU-28
LV			by MS fraction of EU-28
MT			by MS fraction of EU-28
NL			by MS fraction of EU-28
PL			by MS fraction of EU-28
PT			by MS fraction of EU-28
RO			by MS fraction of EU-28
SE			by MS fraction of EU-28
SI			by MS fraction of EU-28
SK			by MS fraction of EU-28

Table 101 Methods and data: CH4 emissions from 4.F Field burning of agricultural residues

Source C	Category 4.F F. Field Burning	of Agricultural Residues	
Gas	CH4		
Member	Projection Approach	Data Sources	Notes
State	Projection Approach	Data Sources	Notes
AT	Data from previous years	UNFCCC 2014 submission	Value of 2012
BE			
BG	Data from previous years	UNFCCC 2014 submission	Value of 2012
CY	Data from previous years	UNFCCC 2014 submission	Value of 2012
CZ			
DE			
DK	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
EE			
ES	Data from previous years	UNFCCC 2014 submission	Value of 2012
FI	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
FR			
UK			
GR	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
HR			
HU			
IE			
IT	Data from previous years	UNFCCC 2014 submission	Value of 2012
LT			
LU			
LV			
MT			
NL			
PL	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation
PT	Data from previous years	UNFCCC 2014 submission	Value of 2012
RO	Data from previous years	UNFCCC 2014 submission	Value of 2012
SE			
SI			
SK			

Table 102 Methods and data: N2O emissions from 4.F Field burning of agricultural residues

Source C	Source Category 4.F F. Field Burning of Agricultural Residues			
Gas	N2O			
Member	Draination Approach	Data Sources	Notes	
State	Projection Approach	Data Sources	Notes	
AT	Data from previous years	UNFCCC 2014 submission	Value of 2012	
BE				
BG	Data from previous years	UNFCCC 2014 submission	Value of 2012	
CY	Data from previous years	UNFCCC 2014 submission	Value of 2012	
CZ				
DE				
DK	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
EE				
ES	Data from previous years	UNFCCC 2014 submission	Value of 2012	
FI	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
FR	Data from previous years	UNFCCC 2014 submission	Value of 2012	
UK				
GR	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
HR				
HU				
ΙE				
ΙΤ	Extrapolation from previous years	UNFCCC 2014 submission	linear trend projection via minimum square deviation	
LT				
LU				
LV				
MT				
NL				
PL	Data from previous years	UNFCCC 2014 submission	Value of 2012	
PT	Data from previous years	UNFCCC 2014 submission	Value of 2012	
RO	Data from previous years	UNFCCC 2014 submission	Value of 2012	
SE				
SI				
SK				

Table 103 Methods and data: CH4 emissions from 6.A Solid waste disposal on land

Source Ca	tegory 6A A. Solid W	aste Disposal on Land	
Gas	CH4		
Member	Projection Approach	Data Sources	Notes
State	1 Toje odon Approach	Bata Gourges	Notes
AT	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)
BE	Data from previous years	UNFCCC 2014 submission	Value from previous year
BG	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)
CY	Extrapolation from previous years	UNFCCC 2014 submission	Value from previous year
CZ	Extrapolation from previous years	UNFCCC 2014 submission	Value from previous year
DE	Data from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)
DK	Extrapolation from previous years	UNFCCC 2014 submission	Value from previous year
EE	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)
ES	Data from previous years	UNFCCC 2014 submission	Value from previous year
FI	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)
FR	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)
UK	Data from previous years	UNFCCC 2014 submission	Value from previous year
GR	Data from previous years	UNFCCC 2014 submission	Value from previous year
HR	Data from previous years	UNFCCC 2014 submission	Value from previous year
HU	Data from previous years	UNFCCC 2014 submission	Value from previous year
IE	Data from previous years	UNFCCC 2014 submission	Value from previous year
IT	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)
LT	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)
LU	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)
LV	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)
MT	Data from previous years	UNFCCC 2014 submission	Value from previous year
NL	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)
PL	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)
PT	Data from previous years	UNFCCC 2014 submission	Value from previous year
RO	Data from previous years	UNFCCC 2014 submission	Value from previous year
SE	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)
SI	Data from previous years	UNFCCC 2014 submission	Value from previous year
SK	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)

Table 104 Methods and data: CH4 emissions from 6.B Wastewater handling

Source Category 6B B. Waste Water Handling			
Gas	CH4		
Member State	Projection Approach	Data Sources	Notes
AT	Data from previous years	UNFCCC 2014 submission	Value from previous year
BE	Data from previous years	UNFCCC 2014 submission	Value from previous year
BG	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)
CY	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)
CZ	Data from previous years	UNFCCC 2014 submission	Value from previous year
DE	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)
DK	Data from previous years	UNFCCC 2014 submission	Value from previous year
EE	Data from previous years	UNFCCC 2014 submission	Value from previous year
ES	Data from previous years	UNFCCC 2014 submission	Value from previous year
FI	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)
FR	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)
UK	Data from previous years	UNFCCC 2014 submission	Value from previous year
GR	Data from previous years	UNFCCC 2014 submission	Value from previous year
HR	Data from previous years	UNFCCC 2014 submission	Value from previous year
HU	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)
IE	Data from previous years	UNFCCC 2014 submission	Value from previous year
IT	Data from previous years	UNFCCC 2014 submission	Value from previous year
LT	Data from previous years	UNFCCC 2014 submission	Value from previous year
LU	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)
LV	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)
MT	Data from previous years	UNFCCC 2014 submission	Value from previous year
NL	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)
PL	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)
PT	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)
RO	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)
SE	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)
SI	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)
SK	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)

Table 105 Methods and data: N2O emissions from 6.B Wastewater handling

Source Ca	Source Category 6B B. Waste Water Handling			
Gas	N2O			
Member	Projection Approach	Data Sources	Notes	
State	,			
AT	Data from previous years	UNFCCC 2014 submission	Value from previous year	
BE	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)	
BG	Data from previous years	UNFCCC 2014 submission	Value from previous year	
CY	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)	
CZ	Data from previous years	UNFCCC 2014 submission	Value from previous year	
DE	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)	
DK	Data from previous years	UNFCCC 2014 submission	Value from previous year	
EE	Data from previous years	UNFCCC 2014 submission	Value from previous year	
ES	Data from previous years	UNFCCC 2014 submission	Value from previous year	
FI	Data from previous years	UNFCCC 2014 submission	Value from previous year	
FR	Data from previous years	UNFCCC 2014 submission	Value from previous year	
UK	Data from previous years	UNFCCC 2014 submission	Value from previous year	
GR	Data from previous years	UNFCCC 2014 submission	Value from previous year	
HR	Data from previous years	UNFCCC 2014 submission	Value from previous year	
HU	Data from previous years	UNFCCC 2014 submission	Value from previous year	
ΙE	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)	
IT	Data from previous years	UNFCCC 2014 submission	Value from previous year	
LT	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)	
LU	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)	
LV	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)	
MT	Data from previous years	UNFCCC 2014 submission	Value from previous year	
NL	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)	
PL	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)	
PT	Data from previous years	UNFCCC 2014 submission	Value from previous year	
RO	Data from previous years	UNFCCC 2014 submission	Value from previous year	
SE	Data from previous years	UNFCCC 2014 submission	Value from previous year	
SI	Data from previous years	UNFCCC 2014 submission	Value from previous year	
SK	Data from previous years	UNFCCC 2014 submission	Value from previous year	

Table 106 Methods and data: CO₂ emissions from 6.C Waste incineration

Source C	ategory 6C C. Was	e Incineration	
Gas	CO2		
Member	Projection Approach	Data Sources	Notes
State	r rojection Approach	Data Sources	Notes
AT	Data from previous years	UNFCCC 2014 submission	Value from previous year
BE	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)
BG	Data from previous years	UNFCCC 2014 submission	Value from previous year
CY			
CZ	Data from previous years	UNFCCC 2014 submission	Value from previous year
DE			
DK			
EE	Data from previous years		Value from previous year
ES	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)
FI			
FR	Data from previous years	UNFCCC 2014 submission	Value from previous year
UK	Data from previous years	UNFCCC 2014 submission	Value from previous year
GR	Data from previous years	UNFCCC 2014 submission	Value from previous year
HR	Data from previous years	UNFCCC 2014 submission	Value from previous year
HU	Data from previous years	UNFCCC 2014 submission	Value from previous year
IE	Data from previous years		Value from previous year
IT	Data from previous years	UNFCCC 2014 submission	Value from previous year
LT	Data from previous years	UNFCCC 2014 submission	Value from previous year
LU			
LV	Data from previous years	UNFCCC 2014 submission	Value from previous year
MT	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)
NL			
PL	Data from previous years	UNFCCC 2014 submission	Value from previous year
PT	Data from previous years	UNFCCC 2014 submission	Value from previous year
RO	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)
SE	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)
SI	Data from previous years	UNFCCC 2014 submission	Value from previous year
SK	Extrapolation from previous years	UNFCCC 2014 submission	Linear trend projection (minimum square deviation)

Table 107 Methods and data: CH4 emissions from 6.C Waste incineration

Source C	Source Category 6C C. Waste Incineration			
Gas	CH4			
Member State	Projection Approach	Data Sources	Notes	
AT	Data from previous years	UNFCCC 2013 submission	Value from previous year	
BE	Data from previous years	UNFCCC 2013 submission	Value from previous year	
BG				
CY				
CZ	Data from previous years	UNFCCC 2013 submission	Value from previous year	
DE				
DK	Data from previous years	UNFCCC 2013 submission	Value from previous year	
EE				
ES	Data from previous years	UNFCCC 2013 submission	Value from previous year	
FI		1115000 0040 1 · ·		
FR	Extrapolation from previous years	UNFCCC 2013 submission	Linear trend projection (minimum square deviation)	
UK GR	Data from previous years Data from previous years	UNFCCC 2013 submission UNFCCC 2013 submission	Value from previous year Value from previous year	
HR	Data Irom previous years	UNFCCC 2013 Submission	value Ironi previous year	
HU	Extrapolation from previous years	UNFCCC 2013 submission	Linear trend projection (minimum square deviation)	
IE	Data from previous years	UNFCCC 2013 submission	Value from previous year	
ΙΤ	Data from previous years	UNFCCC 2013 submission	Value from previous year	
LT	zata nom pronouc youro	0.11 000 2010 00D111001011	Talad Ildili providad year	
LU				
LV				
MT	Data from previous years	UNFCCC 2013 submission	Value from previous year	
NL				
PL				
PT	Data from previous years	UNFCCC 2013 submission	Value from previous year	
RO				
SE	Extrapolation from previous years	UNFCCC 2013 submission	Linear trend projection (minimum square deviation)	
SI				
SK		<u> </u>		

Table 108 Methods and data: N2O emissions from 6.C Waste incineration

Source Ca	Source Category 6C C. Waste Incineration				
Gas	Gas N2O				
Member State	Projection Approach	Data Sources	Notes		
AT	Data from previous years	UNFCCC 2013 submission	Value from previous year		
BE	Data from previous years	UNFCCC 2013 submission	Value from previous year		
BG	Data from previous years	UNFCCC 2013 submission	Value from previous year		
CY					
CZ	Data from previous years	UNFCCC 2013 submission	Value from previous year		
DE					
DK	Extrapolation from previous years	UNFCCC 2013 submission	Linear trend projection (minimum square deviation)		
EE	Data from previous years	UNFCCC 2013 submission	Value from previous year		
ES	Extrapolation from previous years	UNFCCC 2013 submission	Linear trend projection (minimum square deviation)		
FI					
FR	Extrapolation from previous years	UNFCCC 2013 submission	Linear trend projection (minimum square deviation)		
UK	Data from previous years	UNFCCC 2013 submission	Value from previous year		
GR	Data from previous years	UNFCCC 2013 submission	Value from previous year		
HR					
HU	Data from previous years	UNFCCC 2013 submission	Value from previous year		
IE	Data from previous years	UNFCCC 2013 submission	Value from previous year		
IT	Data from previous years	UNFCCC 2013 submission	Value from previous year		
LT	Data from previous years	UNFCCC 2013 submission	Value from previous year		
LU					
LV	Extrapolation from previous years	UNFCCC 2013 submission	Linear trend projection (minimum square deviation)		
MT	Extrapolation from previous years	UNFCCC 2013 submission	Linear trend projection (minimum square deviation)		
NL					
PL	Extrapolation from previous years	UNFCCC 2013 submission	Linear trend projection (minimum square deviation)		
PT	Data from previous years	UNFCCC 2013 submission	Value from previous year		
RO	Data from previous years	UNFCCC 2013 submission	Value from previous year		
SE	Extrapolation from previous years	UNFCCC 2013 submission	Linear trend projection (minimum square deviation)		
SI	Data from previous years	UNFCCC 2013 submission	Value from previous year		
SK	Extrapolation from previous years	UNFCCC 2013 submission	Linear trend projection (minimum square deviation)		

Table 109 Methods and data: CO2 emissions from 6.D Other

Source Catego	ry 6D D. Other		
Gas	CO2		
Member	Projection Approach	Data Sources	Notes
State	Projection Approach	Data Sources	Notes
AT			
BE			
BG			
CY			
CZ			
DE			
DK	Extrapolation from previous years	UNFCCC 2013 submission	Linear trend projection (minimum square deviation)
EE			
ES			
FI			
FR			
UK			
GR			
HR			
HU			
IE			
IT			
LT			
LU			
LV			
MT			
NL			
PL			
PT			
RO			
SE			
SI			
SK			

Table 110 Methods and data: CH4 emissions from 6.D Other

Source Category 6D D. Other				
Gas	CH4			
Member	Desiration Assessed	Data Sources	Nata	
State	Projection Approach	Data Sources	Notes	
AT	Data from previous years	UNFCCC 2013 submission	Value from previous year	
BE	Data from previous years	UNFCCC 2013 submission	Value from previous year	
BG	Data from previous years	UNFCCC 2013 submission	Value from previous year	
CY				
CZ				
DE	Extrapolation from previous years	UNFCCC 2013 submission	Linear trend projection (minimum square deviation)	
DK	Extrapolation from previous years	UNFCCC 2013 submission	Linear trend projection (minimum square deviation)	
EE	Extrapolation from previous years	UNFCCC 2013 submission	Linear trend projection (minimum square deviation)	
ES	Data from previous years	UNFCCC 2013 submission	Value from previous year	
FI	Data from previous years	UNFCCC 2013 submission	Value from previous year	
FR	Extrapolation from previous years	UNFCCC 2013 submission	Linear trend projection (minimum square deviation)	
UK				
GR	Data from previous years	UNFCCC 2013 submission	Value from previous year	
HR				
HU	Data from previous years	UNFCCC 2013 submission	Value from previous year	
IE				
IT	Extrapolation from previous years	UNFCCC 2013 submission	Linear trend projection (minimum square deviation)	
LT				
LU	Data from previous years	UNFCCC 2013 submission	Value from previous year	
LV	Data from previous years	UNFCCC 2013 submission	Value from previous year	
MT	Data from previous years	UNFCCC 2013 submission	Value from previous year	
NL	Data from previous years	UNFCCC 2013 submission	Value from previous year	
PL				
PT				
RO				
SE				
SI				
SK	Data from previous years	UNFCCC 2013 submission	Value from previous year	

Table 111 Methods and data: N₂O emissions from 6.D Other

Source Ca	tegory 6D D. Other			
Gas N2O				
Member	Projection Approach	Data Sources	Notes	
State	Projection Approach	Data Sources	Notes	
AT	Extrapolation from previous years	UNFCCC 2013 submission	Linear trend projection (minimum square deviation)	
BE				
BG	Data from previous years	UNFCCC 2013 submission	Value from previous year	
CY				
CZ				
DE	Extrapolation from previous years	UNFCCC 2013 submission	Linear trend projection (minimum square deviation)	
DK	Extrapolation from previous years	UNFCCC 2013 submission	Linear trend projection (minimum square deviation)	
EE	Extrapolation from previous years	UNFCCC 2013 submission	Linear trend projection (minimum square deviation)	
ES	Extrapolation from previous years	UNFCCC 2013 submission	Linear trend projection (minimum square deviation)	
FI	Data from previous years	UNFCCC 2013 submission	Value from previous year	
FR	Extrapolation from previous years	UNFCCC 2013 submission	Linear trend projection (minimum square deviation)	
UK				
GR	Data from previous years	UNFCCC 2013 submission	Value from previous year	
HR				
HU	Data from previous years	UNFCCC 2013 submission	Value from previous year	
IE				
IT				
LT				
LU	Data from previous years	UNFCCC 2013 submission	Value from previous year	
LV	Data from previous years	UNFCCC 2013 submission	Value from previous year	
MT				
NL	Data from previous years	UNFCCC 2013 submission	Value from previous year	
PL				
PT				
RO				
SE				
SI	Data from previous years	UNFCCC 2013 submission	Value from previous year	
SK	Data from previous years	UNFCCC 2013 submission	Value from previous year	