Air quality in Europe — 2015 report
Air quality in Europe — 2015 report
Caveat

Due to the on-going implementation of a new system for reporting European air quality data, please note that not all data officially reported by countries are necessarily included in this report.
6 Benzo[a]pyrene .. 33
 6.1 European air quality standards and reference levels for benzo[a]pyrene 33
 6.2 Status in concentrations ... 33
 6.2.1 Exceedances of the target value ... 33
7 Other pollutants: sulphur dioxide, carbon monoxide, toxic metals and benzene...... 36
 7.1 European air quality standards and World Health Organization guidelines 36
 7.2 Status in concentrations ... 37
 7.2.1 Sulphur dioxide .. 37
 7.2.2 Carbon monoxide .. 37
 7.2.3 Toxic metals .. 38
 7.2.4 Benzene .. 38
8 Population exposure to air pollutants in European urban areas 39
 8.1 Particulate matter .. 39
 8.2 Ozone .. 39
 8.3 Nitrogen dioxide .. 40
 8.4 Benzo[a]pyrene .. 40
 8.5 Sulphur dioxide .. 40
 8.6 Carbon monoxide .. 41
 8.7 Toxic metals (arsenic, cadmium, lead and nickel) ... 41
 8.8 Benzene .. 41
9 Health impacts of exposure to fine particulate matter, ozone and nitrogen dioxide ... 42
 9.1 Health impacts of current exposure to fine particulate matter, ozone
 and nitrogen dioxide .. 42
 9.2 Estimated health gains attributable to attainment of fine particulate matter
 and nitrogen dioxide guidelines or limit values .. 44
10 Health impacts of exposure to benzo[a]pyrene ... 46
11 Impacts of air pollution on ecosystems .. 49
 11.1 Vegetation damage by ground-level ozone ... 49
 11.2 Eutrophication ... 51
 11.3 Acidification .. 52
 11.4 Environmental impacts of toxic metals ... 53
 11.5 Ecosystem exposure to nitrogen oxides and sulphur dioxide 53

References .. 54
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg/m³</td>
<td>Microgram(s) per cubic metre</td>
</tr>
<tr>
<td>AEI</td>
<td>Average exposure indicator</td>
</tr>
<tr>
<td>AOT40</td>
<td>Accumulated exposure over a threshold of 40 parts per billion. This represents the sum of the differences between hourly concentrations greater than 80 µg/m³ (= 40 parts per billion) and 80 µg/m³ accumulated over all hourly values measured between 8.00 and 20.00 Central European Time</td>
</tr>
<tr>
<td>AQG</td>
<td>Air Quality Guideline</td>
</tr>
<tr>
<td>As</td>
<td>Arsenic</td>
</tr>
<tr>
<td>BaP</td>
<td>Benzo[a]pyrene</td>
</tr>
<tr>
<td>BC</td>
<td>Black carbon</td>
</tr>
<tr>
<td>C₆H₆</td>
<td>Benzene</td>
</tr>
<tr>
<td>Cd</td>
<td>Cadmium</td>
</tr>
<tr>
<td>CH₄</td>
<td>Methane</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon monoxide</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>EAP</td>
<td>Environment Action Programme</td>
</tr>
<tr>
<td>EC</td>
<td>European Commission</td>
</tr>
<tr>
<td>EEA</td>
<td>European Environment Agency</td>
</tr>
<tr>
<td>ETC/ACM</td>
<td>European Topic Centre on Air Pollution and Climate Change Mitigation</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>Gg</td>
<td>Gigagrams</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse gas</td>
</tr>
<tr>
<td>Hg</td>
<td>Mercury</td>
</tr>
<tr>
<td>IARC</td>
<td>International Agency for Research on Cancer</td>
</tr>
<tr>
<td>LAT</td>
<td>Lower assessment threshold</td>
</tr>
<tr>
<td>LRTAP</td>
<td>Long-range Transboundary Air Pollution</td>
</tr>
<tr>
<td>ng/m³</td>
<td>Nanogram(s) per cubic metre</td>
</tr>
<tr>
<td>NH₃</td>
<td>Ammonia</td>
</tr>
<tr>
<td>Ni</td>
<td>Nickel</td>
</tr>
<tr>
<td>NMVOC</td>
<td>Non-methane volatile organic compound</td>
</tr>
<tr>
<td>NO</td>
<td>Nitrogen monoxide</td>
</tr>
<tr>
<td>NO₂</td>
<td>Nitrogen dioxide</td>
</tr>
<tr>
<td>NOₓ</td>
<td>Nitrogen oxides</td>
</tr>
<tr>
<td>O₃</td>
<td>Ozone</td>
</tr>
<tr>
<td>PAH</td>
<td>Polycyclic aromatic hydrocarbon</td>
</tr>
<tr>
<td>Pb</td>
<td>Lead</td>
</tr>
<tr>
<td>PM</td>
<td>Particulate matter</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>Particulate matter with a diameter of 10 µm or less</td>
</tr>
<tr>
<td>PM₂.₅</td>
<td>Particulate matter with a diameter of 2.5 µm or less</td>
</tr>
<tr>
<td>ppb</td>
<td>Parts per billion</td>
</tr>
<tr>
<td>RL</td>
<td>Reference level</td>
</tr>
<tr>
<td>SO₂</td>
<td>Sulphur dioxide</td>
</tr>
<tr>
<td>SO₃</td>
<td>Sulphur oxides</td>
</tr>
<tr>
<td>TSAP</td>
<td>Thematic Strategy on Air Pollution</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
</tr>
<tr>
<td>UNECE</td>
<td>United Nations Economic Commission for Europe</td>
</tr>
<tr>
<td>VOC</td>
<td>Volatile organic compound</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>YLL</td>
<td>Years of life lost</td>
</tr>
</tbody>
</table>
Acknowledgements

This report was prepared for the European Environment Agency (EEA) by its European Topic Centre on Air pollution and Climate Change Mitigation (ETC/ACM).

The lead author of the report was Cristina Guerreiro (Norwegian Institute for Air Research). The co-authors were Frank de Leeuw (Rijksinstituut voor Volksgezondheid en Milieu (Netherlands National Institute for Public Health and the Environment)), Valentin Foltescu and Alberto González Ortiz (EEA), and Jan Horálek (Český hydrometeorologický ústav (Czech Hydrometeorological Institute)). The ETC/ACM reviewer was Xavier Querol (Consejo Superior de Investigaciones Científicas (Spanish Council for Scientific Research)).

The EEA project managers were Alberto González Ortiz and Valentin Foltescu. The EEA acknowledges comments received on the draft report from the European Environment Information and Observation Network national reference centres, the European Commission and the World Health Organization (WHO). These comments have been included in the final version of the report as far as possible.

Thanks are also due to Jean-Paul Hettelingh (Coordination Centre for Effects at Rijksinstituut voor Volksgezondheid en Milieu), for providing the EEA with the background data for the critical load information presented in this report.
Executive summary

Air pollution is both an environmental and a social problem, as it leads to a multitude of adverse effects on human health, ecosystems, the built environment and the climate. Air pollution poses the single largest environmental health risk in Europe today. Air pollutants are emitted from anthropogenic and natural sources; they may be transported or formed over long distances; and they may affect large areas. Some air pollutants persist in the environment for long periods of time and they may accumulate in the environment and in the food chain, affecting humans and animals not only via air intake, but also via water and food intake. Air pollution is, therefore, a complex problem that poses multiple challenges in terms of management and mitigation. Effective action to reduce the impacts of air pollution requires a good understanding of the sources that cause it, as well as up-to-date knowledge of air quality status and its impact on humans and on ecosystems.

The current report presents an overview and analysis of air quality in Europe, with a focus on the latest year for which there are available and processed data, namely 2013. It reviews the progress made towards meeting the requirements of the Air Quality Directives (EU, 2004; EU, 2008). It also gives an overview of the latest findings and estimates on population exposure to the air pollutants with the greatest impacts on health in Europe, as well as an overview of the effects of air pollution on human health and on ecosystems. The evaluation of the status of air quality is based on ambient air measurements, in conjunction with data on anthropogenic emissions and their trends. The analysis covers up to 39 European countries (1).

The present analysis indicates that air quality policies have delivered many improvements. Reduced emissions have improved air quality in Europe, and, for a number of pollutants, exceedances of European standards are rare. However, substantial challenges remain and considerable impacts on human health and on the environment persist. A large proportion of European populations and ecosystems are still exposed to air pollution in exceedance of European standards and WHO Air Quality Guidelines (AQGs).

Effective air quality policies require action and cooperation on global, European, national and local levels, which must reach across most economic sectors and engage the public. Holistic solutions must be found that involve technological development, structural changes, including the optimisation of infrastructures and urban planning, and behavioural changes. These will be necessary to achieve protection of the natural capital and to support economic prosperity and human well-being and social development, all of which are part of the EU’s 2050 vision (2).

Europe’s air quality today

Particulate matter

The EU limit and target values for particulate matter (PM) continued to be exceeded in large parts of Europe in 2013. The EU daily limit value for PM with a diameter of 10 µm or less (PM$_{10}$) was exceeded in 22 of the 28 EU Member States, and the target value for PM with a diameter of 2.5 µm or less (PM$_{2.5}$) was exceeded in 7 Member States. A total of 17% of the EU-28 urban population was exposed to PM$_{10}$ levels above the daily limit value and approximately 61% was exposed to concentrations exceeding the stricter WHO AQG value for PM$_{10}$ in 2013. Regarding PM$_{2.5}$, 9% of the urban population in the EU-28 was exposed to PM$_{2.5}$ levels above the EU target value (which changes to a limit value from 2015 onwards) and approximately 87% was exposed to concentrations exceeding the stricter WHO AQG value for PM$_{2.5}$ in 2013 (Table ES.1).

(1) The EEA-33 member countries comprise the EU-28 Member States (Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Poland, Portugal, Romania, Slovenia, Slovakia, Spain, Sweden and the United Kingdom), plus the remaining five EEA member countries (Iceland, Liechtenstein, Norway, Switzerland and Turkey). The EEA cooperating countries are Albania, Bosnia and Herzegovina, the former Yugoslav Republic of Macedonia, Kosovo, under the UN Security Council Resolution 1244/99, Montenegro and Serbia.

(2) The 2050 vision is set out in the EU’s 7th Environment Action Programme (EU, 2013).
Executive summary

Ozone

The EU ozone (O_3) target value for the protection of human health was exceeded in 18 of the 28 EU Member States in 2013. Conformity with the WHO AQG value for O_3 was observed in less than 3% of all stations in Europe in 2013. Some 15% of the EU-28 urban population lives in areas in which the EU O_3 target value threshold for protecting human health was exceeded in 2013. The EU urban population exposed to O_3 levels exceeding the WHO AQG was significantly higher, comprising 98% of the total urban population in 2013 (Table ES.1).

Nitrogen dioxide

The annual limit value for nitrogen dioxide (NO_2) was widely exceeded across Europe in 2013, with 93% of all exceedances occurring close to roads. A total of 19 of the 28 EU Member States recorded exceedances of this limit value at one or more stations. Of the EU-28 urban population, 9% lives in areas in which the annual EU limit value and the WHO AQG for NO_2 were exceeded in 2013 (Table ES.1).

Benzo[a]pyrene, an indicator for polycyclic aromatic hydrocarbons

Exposure to benzo[a]pyrene (BaP) pollution is quite significant and widespread, in particular in central and eastern Europe. Approximately half of the BaP measurement stations in Europe were in exceedance of the EU target value in 2013, mostly in urban areas. About 20% of the total European population was exposed to BaP annual mean concentrations above the European target value in 2012 and about 88% lives in areas with concentrations above the estimated reference level (1). Considering only urban populations, in 2013 25% of the EU-28 urban population was exposed to BaP concentrations above the target value, and as much as 91% was exposed to BaP concentrations above the estimated reference level (Table ES.1).

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>EU reference value</th>
<th>Exposure estimate</th>
<th>WHO AQG</th>
<th>Exposure estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM_{2.5}</td>
<td>Year (25)</td>
<td>9-14</td>
<td>Year (10)</td>
<td>87-93</td>
</tr>
<tr>
<td>PM_{10}</td>
<td>Day (50)</td>
<td>17-30</td>
<td>Year (20)</td>
<td>61-83</td>
</tr>
<tr>
<td>O_3</td>
<td>8-hour (120)</td>
<td>14-15</td>
<td>8-hour (100)</td>
<td>97-98</td>
</tr>
<tr>
<td>NO_2</td>
<td>Year (40)</td>
<td>8-12</td>
<td>Year (40)</td>
<td>8-12</td>
</tr>
<tr>
<td>BaP</td>
<td>Year (1 ng/m^3)</td>
<td>25-28</td>
<td>Year (RL, 0.12 ng/m^3)</td>
<td>85-91</td>
</tr>
<tr>
<td>SO_2</td>
<td>Day (125)</td>
<td><1</td>
<td>Day (20)</td>
<td>36-37</td>
</tr>
</tbody>
</table>

Key: < 5% 5–50% 50–75% > 75%

Notes: The estimated range in exposures refers to a recent three year period (2011–2013, except for SO_2 WHO AQG, 2011–2012) and includes variations due to meteorology, as dispersion and atmospheric conditions differ from year to year.

The reference concentrations include EU limit or target levels, WHO air quality guidelines (AQG) and estimated reference levels.

The reference concentrations in brackets are in μg/m^3 except for BaP in ng/m^3.

For some pollutants EU legislation allows a limited number of exceedances. This aspect is considered in the compilation of exposure in relation to EU air quality limit and target values. The comparison is made for the most stringent EU limit or target values set for the protection of human health. For PM_{2.5} the most stringent limit value is for 24-hour mean concentration and for NO_2 it is the annual mean limit value.

As the WHO has not set AQG for BaP, the reference level in the table was estimated assuming WHO unit risk for lung cancer for PAH mixtures, and an acceptable risk of additional lifetime cancer risk of approximately 1 x 10^{-5} (ETC/ACM, 2011).

Source: Based on EEA, 2015d.

(1) This level was estimated assuming WHO unit risk for lung cancer for polycyclic aromatic hydrocarbon mixtures, and an acceptable risk of additional lifetime cancer risk of approximately 1 x 10^{-5} (ETC/ACM, 2011).
Other pollutants: sulphur dioxide, carbon monoxide, toxic metals and benzene

The EU-28 urban population was exposed to only a few exceedances of the sulphur dioxide (SO\textsubscript{2}) EU daily limit value in 2013. However, 37% of the EU-28 urban population was exposed to SO\textsubscript{2} levels exceeding the WHO AQG in 2012.

Exposure of the European population to carbon monoxide (CO) concentrations above the EU limit value and WHO AQG is very limited, localised and sporadic. No reporting stations in either the EU-28 or EEA-33 groups of countries registered exceedances of the CO limit value in 2013.

Concentrations of arsenic (As), cadmium (Cd), lead (Pb) and nickel (Ni) in air are generally low in Europe, with few exceedances of limit or target values. However, these pollutants contribute to the deposition and accumulation of toxic metal levels in soils, sediments and organisms.

Exceedances of the limit value for benzene (C\textsubscript{6}H\textsubscript{6}) were likewise limited to very few locations in Europe in 2013.

Impacts of air pollution on health

Air pollution continues to have significant impacts on the health of Europeans, particularly in urban areas. It also has considerable economic impacts, cutting lives short, increasing medical costs and reducing productivity through working days lost across the economy.

Europe’s most problematic pollutants in terms of harm to human health are PM, ground-level \textsubscript{O}\textsubscript{3} and NO\textsubscript{x}. In addition, BaP (an indicator for polycyclic aromatic hydrocarbons (PAHs)) causes adverse health effects, particularly in eastern Europe.

Estimates of the health impacts attributable to exposure to air pollution indicate that PM\textsubscript{2.5} concentrations in 2012 were responsible for about 432 000 premature deaths originating from long-term exposure in Europe (over 40 countries; see Table 9.2), of which around 403 000 were in the EU-28. In the same year, the estimated impact of exposure to NO\textsubscript{2} (long-term exposure) and \textsubscript{O}\textsubscript{3} (short-term exposure) concentrations on the population in the same 40 European countries was around 75 000 and 17 000 premature deaths, respectively, and around 72 000 and 16 000 premature deaths, respectively, in the EU-28.

Sources of air pollution

Transport, industry, power plants, agriculture, households and waste management all contribute to Europe’s air pollution. Emissions of the main air pollutants in Europe have declined since 1990, resulting in generally improved air quality across the region. However, certain sectors have not sufficiently reduced their emissions in order to meet air quality standards or have even increased emissions of some pollutants. For example, emissions of nitrogen oxides (NO\textsubscript{x}) from road transport have not sufficiently decreased to meet air quality standards in many urban areas. Furthermore, emissions of PM\textsubscript{2.5} and BaP from coal and biomass combustion in households and from commercial and institutional buildings have risen in the EU in the past decade. These sources are now the main contributors to total PM and BaP emissions in the EU.

Although European air quality is projected to improve in future with a full implementation of existing legislation, further efforts to reduce emissions of air pollutants are necessary to assure full compliance with EU air quality standards set for the protection of human health and the environment. For example, non-exhaust emissions of PM from transport (i.e. tyre, road and brake wear) are important and are currently not regulated.

Exposure and impacts on European ecosystems

Air pollution continues to damage vegetation and ecosystems. It leads to several important environmental impacts, which affect vegetation directly, as well as the quality of water and soil and the ecosystem services they support. The most harmful air pollutants in terms of damage to ecosystems are \textsubscript{O}\textsubscript{3}, ammonia (NH\textsubscript{3}) and NO\textsubscript{x}.

Europe’s sustained ground-level \textsubscript{O}\textsubscript{3} concentrations damage agricultural crops, forests and plants by reducing their growth rates. The EU target value for protection of vegetation from \textsubscript{O}\textsubscript{3} has been exceeded in about 27% of the EU-28 agricultural land area in 2012, mostly in southern and central Europe. The long-term objective for the protection of vegetation from \textsubscript{O}\textsubscript{3} was exceeded in 86% of the total EU-28 agricultural area, and the United Nations Economic Commission for Europe (UNECE) Convention on Long-range Transboundary Air Pollution (LRTAP) critical level for the protection of forests was exceeded in 67% of the total EU-28 forest area in 2012.

NO\textsubscript{x}, SO\textsubscript{2} and NH\textsubscript{3} contribute to the acidification of soil, lakes and rivers, causing the loss of animal and plant life and biodiversity. Improvements in reducing ecosystem exposure to excess levels of acidification have been
Executive summary

Box ES.1 The EU Clean Air Policy Package

In late 2013, the European Commission (EC) proposed a new Clean Air Policy Package. This package updates existing legislation controlling harmful emissions from industry, traffic, energy plants and agriculture, with a view to reducing their impact on human health and the environment. The package has a number of components, including:

- a new clean air programme for Europe, with measures to ensure that existing targets are met in the short term, and new air quality objectives for the period up to 2030; the package also includes support measures to help cut air pollution, with a focus on improving air quality in cities, supporting research and innovation and promoting international cooperation;

- a proposal for a revised National Emissions Ceilings Directive with stricter national emission ceilings for six main pollutants, and provisions for black carbon, which will also help to mitigate climate change;

- a proposal, now adopted, for a new directive to reduce pollution from medium-sized combustion installations of between 1 thermal megawatt (MWth) and 50 MWth, such as energy plants for street blocks or large buildings, and small industrial installations.

If agreed, and assuming full implementation by 2030, compared with business as usual (i.e. implementation of current legislation), the new Clean Air Policy Package is estimated to:

- prevent 58 000 premature deaths;
- save 123 000 km² of ecosystems from nitrogen pollution;
- save 56 000 km² of protected Natura 2000 areas from nitrogen pollution;
- save 19 000 km² of forest ecosystems from acidification.

The health benefits expected from the package will result in savings of between EUR 40 billion and EUR 140 billion in reduced damage costs alone, and will provide about EUR 3 billion in direct benefits as a result of higher workforce productivity, lower healthcare costs, higher crop yields and less damage to buildings. It is also expected that the new Clean Air Policy Package will have a positive net impact on economic growth in Europe: fewer workdays lost will increase productivity and competitiveness and generate new jobs (EC, 2013b).

made in past decades, largely as a result of declining SO₂ emissions. An estimated 7% of the total EU-28 ecosystem area and 5% of the Natura 2000 (*) area were at risk of acidification in 2010. This represents a reduction of 30% and 40%, respectively, from 2005 levels.

Apart from causing acidification, NH₃ and NOₓ emissions also disrupt land and water ecosystems by introducing excessive amounts of nutrient nitrogen. This leads to eutrophication, an oversupply of nutrients that can lead to changes in species diversity and to invasions of new species. It is estimated that around 63% of European ecosystem areas, and 73% of the area covered by Natura 2000-protected sites, remained exposed to air-pollution levels exceeding eutrophication limits in 2010.

(*) Natura 2000 is an EU-wide network of nature protection areas (EEA, 2012a) established under the 1992 Habitats Directive (EU, 1992). The aim of the network is to ensure the long-term survival of Europe’s most valuable and threatened species and habitats.
1 Introduction

Air pollution is a very important environmental and social issue and, at the same time, it is a complex problem posing multiple challenges in terms of management and mitigation. Air pollutants are emitted from anthropogenic and natural sources; they may be either emitted directly or formed in the atmosphere; they have a number of impacts on health, ecosystems, the built environment and the climate; they may be transported or formed over long distances; and they may affect large areas. Effective action to reduce the impacts of air pollution requires a good understanding of its causes, how pollutants are transported and transformed in the atmosphere, and how they impact on humans, ecosystems and the climate. Effective air quality policies call for action and cooperation on global, European, national and local levels, which extends across most economic sectors and which engages the public. Holistic solutions involving technological development, structural changes, including the optimisation of infrastructures and urban planning, and behavioural changes must be found.

1.1 Human health

Air pollution is the single largest environmental health risk in Europe; recent estimates suggest that the disease burden resulting from air pollution is substantial (Lim et al., 2012; WHO, 2014a). Heart disease and stroke are the most common reasons for premature death attributable to air pollution and are responsible for 80% of cases of premature death; lung diseases and lung cancer follow (WHO, 2014a). In addition to causing premature death, air pollution increases the incidence of a wide range of diseases (e.g. respiratory and cardiovascular diseases and cancer), with both long- and short-term health effects. Air pollution as a whole, as well as PM as a separate component of air pollution mixtures, have recently been classified as carcinogenic (IARC, 2013).

The effect of air pollution on health also has considerable economic impacts, cutting lives short, increasing medical costs and reducing productivity.
through working days lost across the economy. The proportion of the population affected by less severe health impacts is much larger than the proportion of the population affected by more serious health impacts (e.g. those leading to premature deaths). In spite of this, it is the severe outcomes (such as increased risk of mortality and reduced life expectancy) that are most often considered in epidemiological studies and health-risk analyses, because there are usually better data available for the severe effects (EEA, 2013a).

As regards the associated costs of air pollution in Europe, the European Commission estimates that total health-related external costs in 2010 were in the range of EUR 330–940 billion per year, including direct economic damages of EUR 15 billion from lost work days, EUR 4 billion from healthcare costs, EUR 3 billion from crop yield loss and EUR 1 billion from damage to buildings (EC, 2013a).

1.2 Ecosystems

Air pollution has several important environmental impacts and may directly affect vegetation, as well as the quality of water and soil and the ecosystem services that they support. For example, ground-level O3 damages agricultural crops, forests and plants by reducing their growth rates. The European Commission estimates the cost of crop yield loss for 2010 to be around EUR 3 billion (EC, 2013a). Other pollutants, such as nitrogen oxides (a family of gases collectively known as NOx), SO2 and ammonia (NH3) contribute to the acidification of soil, lakes and rivers, causing the loss of animal and plant life. In addition to causing acidification, NH3 and NOx emissions also disrupt land and water ecosystems by introducing excessive amounts of nutrient nitrogen. This leads to eutrophication, which is an oversupply of nutrients that can lead to changes in species diversity and to invasions of new species.

1.3 Climate change

Several air pollutants are also climate forcers, which have a potential impact on the planet’s climate and global warming in the short term (i.e. decades). Tropospheric O3 and black carbon (BC), a constituent of PM, are examples of air pollutants that are short-lived climate forcers and that contribute directly to global warming. Other PM components, such as organic carbon, ammonium (NH4+), sulphate (SO42–) and nitrate (NO3–), have a cooling effect.

Measures to cut BC emissions, along with those of other pollutants that cause tropospheric O3 formation, such as methane (CH4) (itself a greenhouse gas (GHG)), will help to reduce health and ecosystem impacts and the extent of global climate warming. Air quality and climate change should therefore be tackled together by policies and measures that have been developed through an integrated approach.

1.4 The built environment and cultural heritage

Air pollution can also damage materials and buildings, including Europe’s most culturally significant buildings. The impact of air pollution on cultural heritage materials is a serious concern because it can lead to the loss of parts of our history and culture. Damage includes corrosion, biodegradation and soiling. Emissions of air pollutants are deposited and build up over the years on the surfaces of buildings. The walls, windows and roofs, made mainly of stone, bricks, cement, glass, wood and ceramic, become discoloured and suffer material loss, structural failure and soiling. Of particular importance is soiling caused by particles and corrosion caused by acidifying compounds (mostly sulphur and nitrogen oxides, SOx and NOx, as well as carbon dioxide (CO2)). The costs of damage to buildings were estimated to be around EUR 1 billion in 2010 (EC, 2013a).

1.5 Air policy

European air pollution is a well-established environmental policy area; over a number of decades, policies in this area have resulted in decreased emissions of air pollutants and have led to noticeable improvements in air quality.

Current EU air pollution policy is underpinned by the 2005 Thematic Strategy on Air Pollution (TSAP) (EC, 2005) which aims to achieve improvements in 2020 relative to the situation in 2000, with concrete objectives concerning impacts on human health and the environment. The TSAP also established which European legislation and measures are needed to ensure progress towards the long-term goal of the Sixth Environment Action Programme (EAP) (i.e. the EAP that ran from 2002 to 2012), to attain ‘levels of air quality that do not give rise to significant negative impacts on, and risks to human health and the environment’. This goal has recently been reinforced in the Seventh EAP (which will run until 2020). To move towards achieving the TSAP objectives, EU air pollution legislation has followed a twin-track approach of implementing both air quality standards and emission mitigation controls.

The main policy instruments on air pollution within the EU include the Air Quality Directives (EU, 2004;
EU, 2008) and the National Emission Ceilings Directive (EU, 2001). Source-specific legislation also focuses on industrial emissions, road and off-road vehicle emissions, fuel quality standards, etc. Beyond the EU, emissions are also addressed under the 1979 UNECE LRTAP Convention, the Marine Pollution Convention and other international conventions. In addition, several legal instruments are used to reduce environmental impacts from different activities or to promote environmentally friendly behaviour, and these also contribute indirectly to minimising air pollution (EEA, 2014b).

In late 2013, the European Commission proposed a new Clean Air Policy Package for Europe, which aims to ensure compliance with existing legislation by 2020 and to further improve Europe’s air quality by 2030 and thereafter (EC, 2013b). The package proposes strengthening the implementation of existing legislation, introducing stricter national emission-reduction commitments and reducing emissions from medium-size combustion plants (see Box ES.1).

It is clear that minimising air pollution and its impacts requires coordinated action at international, European, national, regional and local levels. The national and sub-national authorities are very important in implementing EU legislation. Moreover, these authorities are often responsible for encouraging and adopting local measures to further protect their populations and the environment.

1.6 Outline of this report

This report presents an updated overview and analysis of air quality in Europe and is focused on the state in 2013 and the development over the past 10 years, since 2004. The evaluation of the status of air quality is based on ambient air measurements, in conjunction with anthropogenic emissions and their trends. Parts of the assessment also rely on air quality modelling. In addition, the report includes an overview of the latest findings and estimates of the effects of air pollution on health, and its impacts on ecosystems.

The report reviews progress towards meeting the requirements of the two Air Quality Directives presently in force (EU, 2004; EU, 2008) and the long-term objectives of achieving levels of air pollution that do not lead to unacceptable harm to human health and the environment, as presented in the latest two European EAPs (EU, 2002; EU, 2013).
2 Sources and emissions of air pollutants

Air pollutants may be categorised as either primary air pollutants (i.e. pollutants directly emitted to the atmosphere) or secondary air pollutants, that is, pollutants formed in the atmosphere from the so-called precursor gases (e.g. secondary PM, O₃ and secondary NO₂). Air pollutants can also be classified as natural and anthropogenic as a function of the origin of their emissions or precursors.

2.1 Sources of regulated pollutants

Particulate matter (PM) is both directly emitted to the atmosphere (primary PM) and formed in the atmosphere (secondary PM). The chief precursor gases for secondary PM are SO₂, NOₓ (a family of gases that includes nitrogen monoxide (NO) and NO₃), NH₃ and volatile organic compounds (VOCs; a class of chemical compounds whose molecules contain carbon). The main precursor gases NH₃, SO₂ and NOₓ react in the atmosphere to form ammonium, sulphate and nitrate compounds. These compounds form new particles in the air or condense onto pre-existing ones and form so-called secondary inorganic aerosols. Certain VOCs are oxidised to form less volatile compounds, which form secondary organic aerosols.

Primary PM originates from both natural and anthropogenic sources. Natural sources include sea salt, naturally suspended dust, pollen and volcanic ash. Anthropogenic sources, which are predominant in urban areas, include fuel combustion in thermal power generation, incineration, domestic heating for households and fuel combustion for vehicles, as well as vehicle (tyre and brake) and road wear and other types of anthropogenic dust.

Black carbon (BC) is one of the constituents of fine PM and has a warming effect. BC is a product of incomplete combustion of organic carbon as emitted from traffic, fossil fuels and biomass burning, and industry.

Ground-level (tropospheric) ozone (O₃) is not directly emitted into the atmosphere. Instead, it is formed from complex chemical reactions following emissions of precursor gases such as NOₓ and non-methane VOCs (NMVOCs) of both natural (biogenic) and anthropogenic origin. At the continental scale, CH₄ and CO also play a part in O₃ formation.

The major sources of nitrogen oxides (NOₓ) are combustion processes (e.g. in fossil-fuelled vehicles and power plants). Most NO₂ is formed by the oxidation of emissions of NO. NO accounts for the majority of NOₓ emissions, although smaller amounts of NO₂ emissions are directly emitted as NO₂. This applies for most combustion sources except for newer diesel vehicles, which may emit as much as 55% of their NOₓ as NO₂ (Grice et al., 2009), because their exhaust after-treatment systems increase oxidation of NO, which leads to higher direct NO₂ emissions.

Benzo[a]pyrene (BaP) is emitted from the incomplete combustion of various fuels. The main sources of BaP in Europe are domestic home-heating, in particular wood- and coal-burning, waste-burning, coke and steel production, and road traffic. Other sources include outdoor fires and rubber-tyre wear.

Sulphur oxides (SOₓ), a family of gases that includes SO₂ and sulphur trioxide (SO₃), are mainly emitted from the combustion of fuels containing sulphur. The main anthropogenic emissions of SO₂ derive from domestic heating, stationary power generation and transport. Volcanoes are the biggest natural source of SO₂.

Carbon monoxide (CO) and benzene (C₆H₆) are gases emitted as a result of the incomplete combustion of fossil fuels and biofuels. Road transport was once a major source of CO emissions, but the introduction of catalytic converters reduced these emissions significantly.

C₆H₆ is an additive to petrol, and most of its emissions come from traffic in Europe. These C₆H₆ emissions have declined sharply since the introduction of the Fuel Quality Directive (EU, 2009). In general, contributions to C₆H₆ emissions made by domestic heating are small (about 5% of total emissions), but in areas in which wood burning accounts for more than half of domestic energy needs, it can be a substantial local source of C₆H₆. Other sources include oil refining, as well as the handling, distribution and storage of petrol.
Methane (CH$_4$) is a precursor of tropospheric O$_3$ and also has a warming effect on climate. It is emitted mainly from agriculture, waste management and energy production.

Anthropogenic emissions of metals originate mainly from the combustion of fossil fuels, metal production and waste incineration. The main emissions of arsenic (As) come from metal smelters and the combustion of fuels. Cadmium (Cd) is emitted from non-ferrous metal production, stationary fossil-fuel combustion, waste incineration, iron and steel production and cement production. Nickel (Ni) is emitted from the combustion of fuel oil (e.g. from heating, shipping or power generation). Ni mining and primary production, incineration of waste and sewage sludge, steel manufacture, electroplating and coal combustion. Lead (Pb) is emitted from fossil-fuel combustion, waste incineration and the production of non-ferrous metals, iron, steel and cement. The largest anthropogenic source of mercury (Hg) emissions to air on a global scale is the combustion of coal and other fossil fuels. Other sources include metal production, cement production, waste disposal and cremation, as well as gold production.

2.2 Total emissions of air pollutants

All the primary and precursor emissions contributing to ambient air concentrations of PM, O$_3$ and NO$_x$ have decreased over the past decade (2004–2013) as a whole in the EU-28 (Figure 2.1 top (5)) and EEA-33 countries. The smallest reduction was for NH$_3$ (6%) and the largest was for SO$_x$ (58%). The exception is the total emissions of NH$_3$ in the EEA-33 countries, which increased by 7% in the same period (6).

Regarding the remaining pollutants (heavy metals and BaP), parties under the LRTAP Convention are invited to report emissions data for PAHs (including BaP); this means that reporting of these pollutants is not mandatory as for the rest, but rather is undertaken on a voluntary basis. Emissions of BaP in the EU-28 have increased by 10% (18 tonnes/year) between 2004 and 2013 (Figure 2.1 bottom), whereas the increase in the EEA-33 countries’ emissions was 9% (17 tonnes/year) in the same period. The fact that Austria, Belgium, Finland, Greece and Italy did not report their emissions for any of the years leaves a gap for the assessment of both the status and trends of BaP emissions. The reporting countries that contribute the most to BaP emissions in the EU are Poland, Romania, and Germany, all of whose emissions have increased in the past decade.

Figure 2.1 (bottom) shows a decrease in the emissions of As, Cd, Ni, Pb and Hg reported by the EU Member States between 2004 and 2013. The greatest reduction both in EU-28 and EEA-33 countries was for Ni emissions (52%) and the smallest was for emissions of As (18%).

C$_6$H$_6$ emissions are not included as an individual pollutant in European emissions inventories covering VOCs, meaning that its emissions are not recorded. In any case, and as mentioned above, C$_6$H$_6$ emissions have dropped since the introduction of the revised Fuel Quality Directive (EU, 2009).

2.3 Sectoral emissions of air pollutants

The main source sectors contributing to emissions of air pollutants in Europe are transport, energy, industry, the commercial, institutional and households sector, agriculture and waste. Figure 2.2 shows the development of the emissions of primary PM with a diameter of 10 μm or less (PM$_{10}$) and PM with a diameter of 2.5 μm or less (PM$_{2.5}$), NO$_x$, SO$_x$, NH$_3$, NMVOCs, CO and BC from these sectors between 2004 and 2013. Similarly, Figure 2.3 shows the development in emissions of BaP and the toxic metals As, Cd, Ni, Pb and Hg.

The transport sector has considerably reduced its emissions of air pollutants in Europe over the past decade, as Figures 2.2 and 2.3 show, with the exception of BaP emissions, which have increased by 9% in the EU-28 and the EEA-33 countries from 2004 to 2013. The highest emission reductions from transport between 2004 and 2013 were registered for SO$_x$ (67% in the EU-28 and 74% in the EEA-33) and for NMVOCs (59% in the EU-28 and 60% in the EEA-33). The reductions in emissions of As and Hg were the least pronounced in the EU-28.

The transport sector is the largest contributor to NO$_x$ emissions, accounting for 46% of total EU-28 emissions (and 47% of EEA-33 emissions) in 2013. However, NO$_x$ emissions, and in particular NO$_2$ emissions, from road transport have not been reduced as much as expected with the introduction of the vehicle emissions standards (the so called Euro standards) since 1991, since emissions in real-life driving conditions are often higher, especially for diesel vehicles, than those measured during the approval test (see Box 5.1). Transport also remains a very important source of GHGs within the EU; in 2012, GHG emissions from transport were 21% above their 1990 levels (EEA, 2014c).
Figure 2.1 Development in EU-28 emissions of SO\textsubscript{X}, NO\textsubscript{X}, NH\textsubscript{3}, PM\textsubscript{10}, PM\textsubscript{2.5}, NMVOCs, CO, CH\textsubscript{4} and BC (top) and of As, Cd, Ni, Pb, Hg, and BaP (bottom), 2004–2013 (% of 2004 levels)

Note: CH\textsubscript{4} emissions are total emissions (Integrated Pollution Prevention and Control sectors 1–7) excluding sector 5. Land use, land-use change and forestry, and data are only available until 2012. The present emission inventories include only anthropogenic VOCs emissions. Under the Gothenburg Protocol of the LRTAP Convention, parties are encouraged to report emissions of BC, one of the constituents of PM. It means that reporting on BC emissions has been made on a voluntary basis and has not been made for every country.

Source: Based on EEA, 2015e.
Figure 2.2 Development in EU-28 emissions from main source sectors of SO\textsubscript{x}, NO\textsubscript{x}, NH\textsubscript{3}, PM\textsubscript{10}, PM\textsubscript{2.5}, NMVOCs, CO and BC, 2004–2013 (% of 2004 levels)

Source: Based on EEA, 2015e.
Sources and emissions of air pollutants

Figure 2.3 Development in EU28 emissions from main source sectors of As, Cd, Ni, Pb, Hg and BaP, 2004–2013 (% of 2004 levels)

Source: Based on EEA, 2015e.
Transport also contributed to 13% and 15% of the total PM$_{10}$ and PM$_{2.5}$ primary emissions, respectively, in the EU Member States in 2013. Non-exhaust emissions from road traffic (which are not included in Figure 2.2) contribute to total road-traffic emissions. Non-exhaust emissions are estimated to equal about 50% of the exhaust emissions of primary PM$_{10}$ and about 22% of the exhaust emissions of primary PM$_{2.5}$ (ETC/ACC, 2009). It has been shown that even with zero tail-pipe emissions, traffic will continue to contribute to PM emissions through non-exhaust emissions (Dahl et al., 2006; Kumar et al., 2013). It is estimated that nearly 90% of total PM emissions from road traffic will come from non-exhaust sources by 2020 (Rexeis and Hausberger, 2009). In addition, emissions from international shipping within European seas may contribute an additional 15% of the total PM$_{2.5}$ emissions and as much as an additional 50% of total NO$_x$ and 75% of total SO$_x$ emissions in the EU-28 (estimated for the year 2010) (EEA, 2013c).

The commercial, institutional and households fuel combustion sector dominates the emissions of primary PM$_{2.5}$ and PM$_{10}$, BaP and CO, contributing to 43% and to 58% of the total primary PM$_{10}$ and PM$_{2.5}$ emissions, respectively, and to 73% and 47% of the total BaP and CO emissions, respectively, in the EU-28 in 2013. Reported BaP emissions have increased by 16% from 2004 to 2013 in the EU-28, and by 14% in the EEA-33 countries. In addition, this sector has increased its emissions of PM$_{10}$, PM$_{2.5}$, CO, Pb and As.

The use of household wood and other biomass combustion for heating is growing in some countries, owing to government incentives/subsidies, rising costs of other energy sources, or an increased public perception that it is a ‘green’ option. Biomass is being promoted as a renewable fuel that can assist with climate change mitigation and contribute to energy security. In Sweden, for example, the use of biomass for district heating has grown from just a few per cent in the 1980s to nearly 50% of the district heating energy mix in 2010, due, in part, to the introduction of a carbon tax in 2001 (OECD/IEA, 2013). Some households have reverted to heating with solid fuels in response to economic hardship. This has happened recently in Greece and Ireland, for instance.

Industry considerably reduced its air pollutant emissions between 2004 and 2013, with the exception of BaP emissions. It is still the largest source sector of Pb, As, Cd, NMVOC and Ni emissions. In 2013 industry contributed to 52% and 51% of NMVOCs total emissions in EU-28 and EEA-33 countries respectively, 40% and 40% of Ni, 56% and 56% of Cd, 60% and 59% of Pb and 57% and 57% of As. It is also the second-largest source of primary PM, SO$_x$ and Hg emissions, contributing to 22% of PM$_{10}$, 25% of SO$_x$, 16% of PM$_{2.5}$ and 41% of Hg total emissions in the EU-28 in 2013. The emissions of BaP have varied considerably in the period but have increased by 29% from 2004 to 2013. Even if industry contributes to only 5% of the total BaP emissions in the EU-28 in 2013, its emissions may contribute greatly to BaP air concentrations and population exposure locally, that is, in the vicinity of the industrial sources.

As for industry, energy production and distribution has made considerable reductions in its emissions. It is, however, the biggest contributor to SO$_x$ and Hg emissions, representing 56% and 42% of total SO$_x$ and Hg EU-28 emissions in 2013, respectively. The energy sector is the second most significant emitter of Ni and NO$_x$, contributing to 37% and 21%, respectively, of its total emissions in the EU-28 in 2013. From 2004 to 2013 the energy sector cut its emissions of all pollutants, with the only exception being primary PM$_{10}$ in the EU-28.

Agriculture is the main sector in which emissions of air pollutants have least decreased. The agricultural sector is by far the greatest emitter of NH$_3$ and was responsible for 93% of total NH$_3$ emissions in the EU-28 in 2013. Its NH$_3$ emissions have decreased by only 6% from 2004 to 2013. European policies have cut PM precursor gas emissions, with the exception of NH$_3$ from agriculture. Agriculture is now the third most important source of PM$_{10}$ primary emissions in the EU-28, after the ‘Commercial, institutional and household fuel combustion’ and industry sectors. Its contribution to PM$_{10}$ total emissions in the EU-28 was 14% in 2013. Agriculture was also the sector responsible for the greatest CH$_4$ emissions in the EU-28 in 2012, emitting 50% of total emissions.

The contribution of the waste sector to the total emissions of air pollutants is relatively small, with the exception of CH$_4$. Waste management is the second highest emitter of CH$_4$ after agriculture, accounting for 31% of the total CH$_4$ emissions in the EU-28 in 2012. It has cut its CH$_4$ emissions by 23% from 2003 to 2012.
3 Particulate matter

3.1 European air quality standards and World Health Organization guidelines for particulate matter

The Ambient Air Quality Directive (EU, 2008) sets limit values for both short-term (24-hour) and long-term (annual) PM$_{10}$ concentrations, whereas values for only long-term PM$_{2.5}$ concentration have been set (Table 3.1). The short-term limit value for PM$_{10}$ (i.e. not more than 35 days per year with a daily average concentration exceeding 50 μg/m3) is the limit value for PM$_{10}$ that is most often exceeded in Europe. It corresponds to the 90.4 percentile of daily PM$_{10}$ concentrations in one year. The annual PM$_{10}$ limit value is set at 40 μg/m3. The deadline for Member States to meet the PM$_{10}$ limit values was 1 January 2005. The deadline for meeting the target value for PM$_{2.5}$ (25 μg/m3) was 1 January 2010, and the deadline for meeting the exposure concentration obligation for PM$_{2.5}$ (20 μg/m3) is 2015.

The Air Quality Guidelines (AQGs) set by WHO are stricter than the EU air quality standards for PM (Table 3.1). The recommended AQGs should be considered as an acceptable and achievable objective to minimise health effects. Their aim is to achieve the lowest concentrations possible, as no threshold for PM has been identified below which no damage to health is observed (WHO, 2014b). The PM$_{2.5}$ annual mean guideline corresponds to the lowest levels beyond which total, cardiopulmonary and lung cancer mortality have been shown to increase (with > 95% confidence) in response to long-term exposure to PM$_{2.5}$ (WHO, 2006a).

Table 3.1 Air quality limit and target values, and other environmental objectives, for PM$_{10}$ and PM$_{2.5}$ as given in the EU Ambient Air Quality Directive and WHO AQGs

<table>
<thead>
<tr>
<th>Size fraction</th>
<th>Averaging period</th>
<th>Objective and legal nature and concentration</th>
<th>Comments</th>
<th>WHO AQG</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM$_{10}$</td>
<td>1 day</td>
<td>Limit value: 50 μg/m3</td>
<td>Not to be exceeded on more than 35 days per year</td>
<td>50 μg/m3 (*)</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>Calendar year</td>
<td>Limit value: 40 μg/m3</td>
<td></td>
<td>20 μg/m3</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>1 day</td>
<td>Target value: 25 μg/m3</td>
<td></td>
<td>25 μg/m3 (*)</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>Calendar year</td>
<td>Limit value: 25 μg/m3 (b)</td>
<td>To be met by 1 January 2015 (until then, margin of tolerance)</td>
<td>10 μg/m3</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>Calendar year</td>
<td>Exposure concentration obligation (b) 20 μg/m3</td>
<td></td>
<td>2015</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>Exposure reduction target (b) 0-20% reduction in exposure (depending on the average exposure indicator in the reference year) to be met by 2020</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: (a) 99th percentile (3 days/year).
(b) Based on a three-year average.

3.2 Status in concentrations

3.2.1 Exceedances of limit and target values

The EU limit value for PM$_{10}$ (applying from 2005) continues to be exceeded in large parts of Europe in 2013 according to the data of the European air quality database (Air Quality e-reporting database, EEA, 2015a). Map 3.1 shows concentrations of PM$_{10}$ in relation to the daily limit value, which is more stringent than the annual limit value and, therefore, more frequently exceeded. This daily limit value for PM$_{10}$ was widely exceeded in Bulgaria, Italy, Poland, Slovakia and the Balkan region but also in several urban regions across Europe, including in the Nordic countries.

Figure 3.1 shows the attainment of the PM$_{10}$ daily limit value in 2013 for all EU Member States. It indicates that exceedance of the daily limit value was observed in 22 Member States at one or more stations. Only Denmark, Estonia, Finland, Ireland, Luxembourg and the United Kingdom did not record exceedances of this limit value in 2013. The exceedances occurred in 95% of the cases in urban or suburban areas.

In 2013, the PM$_{2.5}$ concentrations were higher than the target value (annual mean, applicable from 2010, which will be the limit value for PM$_{2.5}$ from 2015) at several stations in Bulgaria, the Czech Republic, Italy and Poland, as well as one station in France, the former Yugoslav Republic of Macedonia, Kosovo under the UN Security Council Resolution 1244/99, Romania, and Slovakia (see the dark red and red dots in Map 3.2). Figure 3.2 shows that exceedance of the target value threshold for PM$_{2.5}$ was observed in seven Member States at one or more stations in

Map 3.1 Concentrations of PM$_{10}$ in 2013

Notes: The map shows the 90.4 percentile of the data records in one year, representing the 36th highest value in a complete series. It is related to the PM$_{10}$ daily limit value, allowing 35 exceedances over 1 year of the 50 μg/m3 threshold. The red and dark-red dots indicate stations with exceedances of this daily limit value. Only stations with > 75% of valid data have been included in the map.

Source: Based on Air Quality e-reporting database (EEA, 2015a).
Figure 3.1 Attainment situation for PM$_{10}$ in 2013 in the EU-28

Notes: The graph is based, for each Member State, on the 90.4 percentile of daily mean concentration values corresponding to the 36th highest daily mean. For each country, the lowest, highest and median percentile 90.4 values (in µg/m3) at the stations are given. The rectangles mark the 25 and 75 percentiles. At 25% of the stations, levels are below the lower percentile; at 25% of the stations, concentrations are above the upper percentile. The daily limit value set by EU legislation is marked by the red line.

Source: Based on Air Quality e-reporting database (EEA, 2015a).

Figure 3.2 Attainment situation for PM$_{2.5}$ in 2013 in the EU-28

Notes: The graph is based on annual mean concentration values. For each country, the lowest, highest and median values (in µg/m3) at the stations are given. The rectangles give the 25 and 75 percentiles. At 25% of the stations, levels are below the lower percentile; at 25% of the stations, concentrations are above the upper percentile. The target value set by EU legislation is marked by the red line. The WHO AQG is marked by the green line.

Source: Based on Air Quality e-reporting database (EEA, 2015a).
2013, mostly in eastern Europe. The exceedances also occurred primarily (92% of cases) in urban or suburban areas. The average exposure indicator (AEI) for PM$_{2.5}$ discussed in Chapter 8 (see Figure 8.1).

The analysis of exceedances is based on measurements at fixed sampling points (1) fulfilling the criterion of > 75% data coverage. It does not account for the fact that the Ambient Air Quality Directive (EU, 2008) provides the Member States with the possibility of subtracting the contribution of natural sources and winter road sanding/salting when limits are exceeded (EEA, 2012b).

The stricter value of the WHO AQG for annual mean PM$_{10}$ was exceeded at 67% of the stations and in 27 European countries, out of all countries that reported PM$_{10}$ data for 2013. The WHO guideline for annual mean PM$_{10}$ (see the light green, yellow, orange, red and dark red dots in Map 3.2) was exceeded in 28 of the EEA-33 countries at 81% of the stations.

(1) Fixed sampling points in Europe are situated at four types of sites: traffic-related locations; urban and suburban background (non-traffic, non-industrial) locations; industrial locations (or other less defined locations); and rural background sites.
The rural background concentration of PM represents the PM level in rural areas without direct influence from close anthropogenic sources. It is, therefore, primarily the result of primary or secondary PM transported over larger distances or from natural sources, rather than the result of the contribution from local anthropogenic sources. Although rural background levels of PM are considerably lower than urban and suburban levels, they may be elevated in some European regions and they constitute a substantial part of the PM concentrations measured in cities. The origin and composition of PM in rural background areas must, therefore, be taken into account in air quality and health risk assessment and management.

The rural background concentration levels of PM vary across Europe. Exceedances of the daily PM$_{10}$ limit value and the PM$_{2.5}$ target value in the rural background in 2013 occurred in several stations in the Czech Republic and in Italy. Poland also registered exceedances of the PM$_{10}$ limit value in several rural background stations, whereas Romania and Slovenia registered one exceedance of the PM$_{2.5}$ target value and PM$_{10}$ limit value, respectively, in their rural background stations.

3.2.2 Relationship of emissions to ambient particulate matter concentrations

Of all main emission sectors, only transport and industry reduced their emissions of primary PM between 2004 and 2013 (see Figure 2.2). The commercial, institutional and household fuel combustion sector is by far the most important sector, contributing to 43% and 58% of the total EU-28 primary PM$_{10}$ and PM$_{2.5}$ emissions in 2013, respectively. It may contribute to keeping PM concentrations elevated in both rural and urban areas, despite emission reductions in other sectors.

The contributions from the different emission sources to ambient air concentrations depend not only on the amount of pollutant emitted, but also on the proximity to the source, emission conditions (such as height and temperature), and other factors, such as dispersion conditions and topography. Emission sectors with low emission heights, such as traffic and household emissions, generally make a larger contribution to surface concentrations than emissions from high stacks.

With the exception of NH$_3$, the reductions in emissions of the PM precursors (NO$_x$, SO$_x$, and NMVOCs) were much larger than the reductions in primary PM from 2004 to 2013 in the EU-28 (see Figure 2.1). Drops in anthropogenic emissions of primary PM and PM precursors have not led to equivalent drops in concentrations of PM. This can be explained in part by uncertainties in the reported emissions of primary PM from the commercial, institutional and household fuel combustion sector. Furthermore, and as discussed in EEA (2013b), intercontinental transport of PM and its precursor gases from outside Europe may also influence European ambient PM levels, pushing up PM concentration levels, in spite of falling emissions in Europe. In addition, natural sources contribute to background PM concentrations and their contribution is not affected by mitigation efforts on anthropogenic emissions.
4 Ozone

4.1 European air quality standards and World Health Organization guidelines for ozone

European air quality standards and WHO guidelines for O₃ are shown in Table 4.1. The Ambient Air Quality Directive (EU, 2008) sets out targets for the protection of human health and for the protection of vegetation.

For health protection, a maximum daily 8-hour mean threshold is specified (120 µg/m³). The target value, applied by EU Member States from 1 January 2010, is that the threshold should not be exceeded at a monitoring station on more than 25 days per year (corresponding to the 93.2 percentile), determined as a 3-year average starting from 2010. The long-term objective is no exceedance of the threshold level at all. For health protection, there are also two other types of thresholds: ‘public information’ and ‘alert’ thresholds. When the public information threshold is breached, the authorities in that country are obliged to notify their citizens, using a public information notice. When the alert threshold is exceeded for three consecutive hours, the country affected is required to draw up a short-term action plan in accordance with specific provisions established in the Ambient Air Quality Directive (EU, 2008).

The WHO AQG for O₃ is a daily maximum 8-hour mean concentration of 100 µg/m³ (WHO, 2006a), as shown in Table 4.1. This recommended limit was reduced from the previous level of 120 µg/m³, based on recent conclusive associations between daily mortality and lower O₃ concentrations (WHO, 2014b).

The Ambient Air Quality Directive (EU, 2008) also sets targets for the protection of vegetation from high O₃ concentrations accumulated during the growing season (defined as May to July). The vegetation protection value is specified as ‘accumulated exposure over threshold’ (AOT40). This is calculated as the sum of the differences between hourly concentrations > 80 µg/m³ (= 40 ppb) and 80 µg/m³ accumulated over all hourly values measured during the daylight period of the most intense growing season (May to July). The target value for 2010 was 18 000 (µg/m³).h, determined as a 5-year average. The long-term objective is 6 000 (µg/m³).h, as shown in Table 4.1.

<table>
<thead>
<tr>
<th>Averaging period</th>
<th>EU Air Quality Directive</th>
<th>WHO AQG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum daily 8-hour mean</td>
<td>Human health target value</td>
<td>120 µg/m³, not to be exceeded on more than 25 days per year averaged over 3 years</td>
</tr>
<tr>
<td></td>
<td>Human health long-term objective</td>
<td>120 µg/m³</td>
</tr>
<tr>
<td>AOT40 accumulated over May to July</td>
<td>Vegetation target value</td>
<td>18 000 (µg/m³).h averaged over 5 years</td>
</tr>
<tr>
<td>AOT40 accumulated over May to July</td>
<td>Vegetation long-term objective</td>
<td>6 000 (µg/m³).h</td>
</tr>
<tr>
<td>1 hour</td>
<td>Information threshold</td>
<td>180 µg/m³</td>
</tr>
<tr>
<td>1 hour</td>
<td>Alert threshold</td>
<td>240 µg/m³</td>
</tr>
</tbody>
</table>

Note: AOT40, accumulated O₃ exposure over a threshold of 40 ppb. It is the sum of the differences between hourly concentrations > 80 µg/m³ (= 40 ppb) and 80 µg/m³ accumulated over all hourly values measured between 8.00 and 20.00 Central European Time.

In addition to the EU target value, the UNECE LRTAP Convention (UNECE, 1979) defines a critical level for the protection of forests. This level is related to the AOT40 during the months April to September and is set at 10 000 (μg/m3).h.

4.2 Status in concentrations

Given that the formation of O$_3$ requires sunlight, O$_3$ concentrations show a clear increase as one moves from the northern parts to the southern parts of Europe, with the highest concentrations in some Mediterranean countries. The concentration of O$_3$ typically increases with altitude in the first kilometres of the troposphere. Higher concentrations of O$_3$ can therefore be observed at high-altitude stations. Close to the ground and the NO$_x$ sources, O$_3$ is depleted due to surface deposition and the titration reaction by the emitted NO to form NO$_2$. Therefore, in contrast to other pollutants, O$_3$ concentrations are generally highest at rural locations, lower at urban sites and even lower at traffic locations. The high O$_3$ concentrations occurring at a few urban stations shown in Map 4.1 are attributable to the O$_3$ formation that occurs at times in large urban areas during episodes of high solar radiation and temperatures.

Differences in the distribution of O$_3$ precursor emission sources and climatic conditions in Europe result in considerable regional differences in O$_3$ concentrations. Year-to-year differences in the O$_3$ levels are also induced by meteorological variations. Hot, dry, summers with long-lasting periods of high air pressure over large parts of Europe lead to elevated O$_3$ concentrations, as in the case of the 2003 heat wave.

Map 4.1 Concentrations of O$_3$ in 2013

Notes: The map shows the 93.2 percentile of the O$_3$ maximum daily 8-hour mean, representing the 26th highest value in a complete series. It is related to the O$_3$ target value, allowing 25 exceedances over the 120-μg/m3 threshold. At sites marked with red and dark-red dots, the 26th highest daily O$_3$ concentration exceeded the 120-μg/m3 threshold, implying an exceedance of the target value threshold. Only stations with > 75% of valid data have been included in the map.

Source: Based on Air Quality e-reporting database (EEA, 2015a).
4.2.1 **Exceedance of the target values for protection of health**

The health-related threshold of the O₃ target value was exceeded more than 25 times in 2013 in 18 (8) of the 28 EU countries (see Figure 4.1). In total, 28% of all stations (9) reporting O₃ were in exceedance in 2013. Conformity with the WHO AQG value for O₃ (8-hour mean of 100 μg/m³), set for the protection of human health, was observed in < 3% of all stations and in only 8 of 525 rural background stations in 2013. Although the EU target value (120 μg/m³, 25 exceedances allowed) is less ambitious than the WHO AQG, non-attainment cases (i.e. not having achieved the EU air quality standard) are widely found in most EU Member States, as shown in Map 4.1.

4.2.2 **Relationship of ozone precursor emissions to ambient ozone concentrations**

Reductions in anthropogenic O₃ precursor gas emissions in Europe have not led to equivalent reductions in O₃ concentrations in Europe, as the relationship of O₃ concentration to the emitted precursors is not linear. One contributing factor for this is an increase in intercontinental transport of O₃ and its precursors in the northern hemisphere (EEA, 2013c). Another factor is the reduction in European NOₓ emissions, which has led to an increase in O₃ concentrations in the highly urbanised areas of the southern, central and north-western parts of Europe, including, for example, Belgium, Germany, the Netherlands and the United Kingdom (Bach et al., 2014) and Spain (Querol et al., 2014). Outside these urbanised areas, further NOₓ emissions control will lower O₃ concentrations, as NOₓ is a precursor of O₃. In addition, other factors are also likely to mask the effects of European measures to reduce anthropogenic O₃ precursor emissions, including climate change/variability, NMVOCs emissions from vegetation (difficult to quantify) and fire plumes from forest and other biomass fires (EEA, 2010). Formation of tropospheric O₃ from increased concentrations of CH₄ may also contribute to the sustained O₃ levels in Europe.

Figure 4.1 Attainment situation for O₃ in 2013 in the EU-28

![Graph showing attainment situation for O₃ in 2013 in the EU-28](image)

Notes: The graph is based, for each Member State, on the 93.2 percentile of maximum daily 8-hour mean concentration values, corresponding to the 26th highest daily maximum of the running 8-hour mean. For each country, the lowest, highest and median values (in μg/m³) at the stations are given. The rectangles give the 25 and 75 percentiles. At 25% of the stations, levels are below the lower percentile; at 25% of the stations, concentrations are above the upper percentile. The target value threshold set by the EU legislation is marked by the red line.

Source: Based on Air Quality e-reporting database (EEA, 2015a).

(8) Austria, Bulgaria, Croatia, Cyprus, the Czech Republic, France, Germany, Greece, Hungary, Italy, Luxembourg, Malta, Poland, Portugal, Romania, Slovakia, Slovenia and Spain.

(9) With data coverage equal to or above 75% for all countries reporting O₃ data to EEA, as shown in Map 4.1.
Clearly, O₃ concentrations are not only determined by precursor emissions but also by meteorological conditions, as sunlight and high temperatures favour O₃ formation. Episodes of elevated O₃ levels occur during periods of warm, sunny weather in areas affected by urban/industrial pollution plumes. However, independent of the episodic nature of O₃ pollution, which is strongly influenced by meteorological conditions, emissions of O₃ precursor gases are sustaining O₃ levels that lead to exceedance of legal concentration thresholds. The O₃ pollution problem requires further mitigation efforts at a local and a regional scale, as well as international cooperation.
5 Nitrogen dioxide

5.1 European air quality standards and World Health Organization guidelines for NO₂

The European air quality standards set by the Ambient Air Quality Directive (EU, 2008) for NO₂, as well as the WHO guidelines, are shown in Table 5.1. The directive sets short-term (1-hour) and long-term (annual mean) limit values for the protection of human health. The limit value for the annual mean NO₂ concentration is set at 40 μg/m³. The 1-hour limit value threshold of 200 μg/m³ can be exceeded on up to 18 days per year (corresponding to the 99.8 percentile of hourly concentrations in one year) before the limit value is breached. The limit values were to be met by EU Member States by 1 January 2010 (10).

The Ambient Air Quality Directive (EU, 2008) also defines an ‘alert’ threshold value of 400 μg/m³. When this threshold is exceeded over three consecutive hours in areas of at least 100 km² or in an entire air quality management zone, authorities have to implement short-term action plans. These action plans may include measures in relation to motor-vehicle traffic, construction works, ships at berth and the use of industrial plants or products and domestic heating. The framework of these plans may also consider specific actions for the protection of sensitive population groups, including children, by reducing their exposure to high NO₂ levels.

The threshold values used in the human health objectives set by the Ambient Air Quality Directive (EU, 2008) are identical to the WHO AQG for NO₂, as shown in Table 5.1 (WHO, 2006a). The only difference is that WHO AQG does not allow any exceedance of the 1-hour limit value threshold.

<table>
<thead>
<tr>
<th>Table 5.1</th>
<th>Air quality standards for NO₂ and NOₓ as set out in the EU Ambient Air Quality Directive and WHO AQG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Averaging period</td>
<td>Objectives and legal nature</td>
</tr>
<tr>
<td>1 hour</td>
<td>Human health limit value</td>
</tr>
<tr>
<td>Calendar year</td>
<td>Human health limit value</td>
</tr>
<tr>
<td>1 hour</td>
<td>Alert (a) threshold</td>
</tr>
<tr>
<td>Calendar year</td>
<td>Vegetation critical level</td>
</tr>
</tbody>
</table>

Notes:
(a) To be measured over 3 consecutive hours at locations representative of air quality over at least 100 km² or an entire zone or agglomeration, whichever is the smaller.
(b) As NOₓ expressed as μg NO₂/m³.

Source: EU, 2008; WHO, 2006a.

(10) Exceptions apply for the stations in the few air quality zones for which the European Commission has granted a time extension for this limit value (http://ec.europa.eu/environment/air/quality/legislation/time_extensions.htm).
5.2 Status in concentrations

5.2.1 Exceedances of limit values for the protection of human health

Map 5.1 shows that the annual limit value was widely exceeded across Europe in 2013. Of all stations measuring NO₂ and with sufficient data coverage (1°), 14% registered exceedances of the annual mean limit value.

No exceedances occurred at rural background stations. The highest concentrations, as well as 93% of all exceedances, occurred at traffic stations. Traffic is a major source of NO₂ and of NO, which reacts with O₃ to form NO₂. Traffic emissions are close to the ground, contributing relatively more to NO₂ ground concentrations, than, for example, high industrial stacks, emissions from which are diluted before reaching the ground. In traffic and urban areas with fresh inputs of NO, some of the O₃ present is therefore depleted during the oxidation of NO to NO₂.

Figure 5.1 shows the attainment of annual mean NO₂ values for 2013 for all EU Member States. It clearly indicates that exceedance of the annual limit value (equal to the WHO AQG) was observed in most Member States at one or more stations in 2013. Nineteen (2°) of the 28 EU Member States recorded exceedances of the limit value at one or more stations.

Map 5.1 Concentrations of NO₂ in 2013

Notes: Red and dark-red dots correspond to exceedances of the EU annual limit value and the WHO AQG (40 µg/m³). Only stations reporting hourly data and with > 75% of valid data have been included in the map.

Source: Based on Air Quality e-reporting database (EEA, 2015a).

(1°) Sufficient data coverage for this analysis means fulfilling the criterion of > 75% data coverage (the data coverage gives the fraction of the year for which valid concentration data are available at each location).

(2°) Austria, Belgium, Bulgaria, Croatia, the Czech Republic, Denmark, France, Germany, Greece, Hungary, Italy, Latvia, the Netherlands, Poland, Portugal, Romania, Spain, Sweden and the United Kingdom.
Figure 5.1 Attainment situation for NO$_2$ in 2013 in the EU-28

Notes: The graph is based on the annual mean concentration values (calculated from hourly data) for each Member State. For each country, the lowest, highest and median values (in µg/m3) at the stations are given. The rectangles give the 25 and 75 percentiles. At 25% of the stations, levels are below the lower percentile; at 25% of the stations, concentrations are above the upper percentile. The limit value set by EU legislation (equal to the WHO AQ guideline) is marked by the red line.

Source: Based on Air Quality e-reporting database (EEA, 2015a).

Photo: © Juan Merallo Grande
These findings demonstrate that NO\textsubscript{2} concentrations still need to be substantially reduced in large areas of Europe (focusing on traffic and urban locations) for the annual limit value to be met.

The hourly limit value threshold for NO\textsubscript{2} is less stringent. Only three urban/suburban background stations and 2\% of traffic stations reported exceedances of this limit value in 2013.

5.2.2 Relationship of nitrogen oxides emissions and nitrogen dioxide concentrations

As is the case for PM, the contribution from the different emission sources and sectors to ambient air concentrations depends not only on the amount of pollutant emitted, but also on the emission conditions (e.g. emission height). The transport sector contributed the highest share of NO\textsubscript{x} emissions (46\% in the EU-28) in 2013, followed by the energy and industry sectors (see Section 2.3). Furthermore, the contribution of the transport sector to ambient NO\textsubscript{2} concentrations, especially in urban areas, is considerably higher, owing to the fact that these are emissions close to the ground and distributed over large areas.

The average decrease in annual mean NO\textsubscript{2} concentrations measured over all stations in Europe is slower than the decrease in NO\textsubscript{x} emissions. The main reason for it may be attributed to the increase in the share of NO\textsubscript{x} in the NO\textsubscript{x} emissions from diesel vehicles (Grice et al., 2009; ETC/ACC, 2010).
6 Benzo[a]pyrene

6.1 European air quality standards and reference levels for benzo[a]pyrene

The target value for BaP for the protection of human health is set at 1 ng/m³ (EU, 2004) as an annual mean (Table 6.1). WHO has not drafted a guideline for BaP, which is a potent carcinogen. The estimated reference level presented in Table 6.1 (0.12 ng/m³) was estimated assuming WHO unit risk for lung cancer for PAH mixtures and an acceptable risk of additional lifetime cancer risk of approximately 1×10^{-5} (ETC/ACM, 2011).

6.2 Status in concentrations

BaP is a PAH mainly found in fine PM. The Air Quality Directive (EU, 2004) prescribes that BaP concentration measurements should be made in the PM$_{10}$ fraction. Despite this requirement, available data in any PM fraction were used in the current analysis. The justification is that most of the BaP is present in PM$_{2.5}$ and not in the coarser fraction of PM$_{10}$, and the gaseous fraction of the total BaP is quite small. On the one hand, this may introduce some systematic differences in the measured data, but, on the other hand, the inclusion of additional measured data allows a broader analysis of BaP levels across Europe (ETC/ACM, 2015b).

6.2.1 Exceedances of the target value

Ambient air concentrations of BaP are high across large parts of Europe, mostly as a result of emissions from the domestic combustion of coal and wood. As Map 6.1 shows, about half of the BaP measurement...
stations in Europe continue measuring concentrations above the target value threshold (1 ng/m³ annual average, to be met by 2013) in 2013. Exceedances were measured mainly at urban and suburban stations, with 97% of all stations in exceedance located in urban and suburban locations, and 87% of all exceedances measured at suburban and urban background stations. As in previous years, exceedances are most predominant in central and eastern Europe (Austria, Bulgaria, Croatia,

Table 6.1 Air quality target value for BaP, as set out in the EU Air Quality Directive, and estimated reference level

<table>
<thead>
<tr>
<th>Averaging period</th>
<th>EU Air Quality Directive</th>
<th>Reference level (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual mean (ng/m³)</td>
<td>1 (*)</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Notes: (*) As WHO has not set an AQG for BaP, the reference level was estimated assuming WHO unit risk for lung cancer for PAH mixtures, and an acceptable risk of additional lifetime cancer risk of approximately 1×10^{-5}.

(*) Measured as content in PM10.

Map 6.1 Concentrations of BaP in 2013

Notes: Dark-green dots correspond to concentrations under the estimated reference level (0.12 ng/m³). Dark-red dots correspond to concentrations exceeding the 2004 AQ Directive target value of 1 ng/m³.

Only stations reporting more than 14% of valid data, as daily, weekly or monthly measurements have been included in the map.

Source: Based on Air Quality e-reporting database (EEA, 2015a).
the Czech Republic, Hungary, Italy, Lithuania, Poland and Slovenia), although there are also exceedances in France, Germany, Spain and the United Kingdom.

Figure 6.1 shows the annual mean BaP values for 2013 for all EU Member States. It shows that average annual concentrations of BaP exceeded the target value in the 13 countries mentioned above. The average concentration measured at Polish stations is 4.6 times higher than the target value. Only 24 of the EU-28 Member States reported BaP data with sufficient data coverage (13) for 2013. Reported monitored data are missing from a large part of south-eastern Europe. For example, no measurements are reported from Romania, a country with high estimated BaP concentrations, as discussed in Chapter 10.

Notes: The graph is based on the annual mean concentration values for each Member State. For each country, the lowest, highest and median values (in ng/m³) at the stations are given. The rectangles give the 25 and 75 percentiles. At 25% of the stations, levels are below the lower percentile; at 25% of the stations, concentrations are above the upper percentile. The target value set by EU legislation is marked by the red line. The estimated air quality reference level is marked by the green line.

Source: Based on Air Quality e-reporting database (EEA, 2015a).

(13) A data coverage of 14%, as required by the Air Quality Directive (EU, 2004) for indicative measurements, was used as a minimum requirement for the analysis of BaP data.
7 Other pollutants: sulphur dioxide, carbon monoxide, toxic metals and benzene

7.1 European air quality standards and World Health Organization guidelines

Table 7.1 presents the European air quality standards and the WHO guidelines for SO\(_2\). The limit values for SO\(_2\) are specified for 1-hour averages and for 24-hour averages. Countries were obliged to meet both health protection limits by 2005. There is also an ‘alert’ threshold value of 500 \(\mu\text{g/m}^3\). When this alert threshold is exceeded over three consecutive hours, authorities have to implement action plans to lower the high levels of SO\(_2\). The WHO AQG for SO\(_2\) (WHO, 2006a) is significantly more stringent than the limit values set by the Ambient Air Quality Directive (EU, 2008).

Table 7.2 presents the limit values for CO, Pb and C\(_6\)H\(_6\) and the target values for As, Cd and Ni established in the Air Quality Directives (EU, 2004; EU, 2008) for health protection, as well as the WHO AQGs for CO, Cd and Pb and the reference levels for As, Ni and C\(_6\)H\(_6\). The European limit value and the WHO guideline for the maximum daily 8-hour mean of CO are the same and should have been met by 2005 (EU, 2008).

The limit value for C\(_6\)H\(_6\) is set as an annual mean, given that C\(_6\)H\(_6\) is a carcinogen with long-term effects. It should have been met by 2010. As for PAHs, WHO has not provided a guideline for C\(_6\)H\(_6\), and the estimated reference level presented in Table 7.2 was estimated assuming WHO unit risk for cancer and an acceptable risk of additional lifetime cancer risk of approximately \(1 \times 10^{-5}\) (ETC/ACM, 2011).

The Air Quality Directive (EU, 2004) set target values for long-term exposure to the toxic metals As, Cd and Ni, to be met by 2013, and the Ambient Air Quality Directive (EU, 2008) sets a limit value for Pb, also as an annual mean, to be met by 2005. No EU target or limit value has been set for Hg concentrations in air. However, the Air Quality Directive (EU, 2004) determines methods and criteria for the assessment of concentrations and deposition of Hg. A protocol on heavy metals, including Hg, was adopted in 2003 under the UNECE LRTAP Convention. It aimed to limit emissions of Hg.

<table>
<thead>
<tr>
<th>Averaging period</th>
<th>EU Air Quality Directive</th>
<th>WHO AQG</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 minutes</td>
<td>Objective and legal nature</td>
<td>Concentration</td>
</tr>
<tr>
<td>1 hour</td>
<td>Human health limit value</td>
<td>350 (\mu\text{g/m}^3), not to be exceeded on more than 24 hours per year</td>
</tr>
<tr>
<td>1 day</td>
<td>Human health limit value</td>
<td>125 (\mu\text{g/m}^3), not to be exceeded on more than 3 days per year</td>
</tr>
<tr>
<td>1 hour</td>
<td>Alert threshold (*)</td>
<td>500 (\mu\text{g/m}^3)</td>
</tr>
<tr>
<td>Calendar year</td>
<td>Vegetation critical level</td>
<td>20 (\mu\text{g/m}^3)</td>
</tr>
<tr>
<td>Winter (1 October–31 March)</td>
<td>Vegetation critical level</td>
<td>20 (\mu\text{g/m}^3)</td>
</tr>
</tbody>
</table>

Note: (*) To be measured over 3 consecutive hours at locations representative of air quality over at least 100 km\(^2\) or an entire zone or agglomeration, whichever is the smaller.

Other pollutants: sulphur dioxide, carbon monoxide, toxic metals and benzene

Table 7.2 EU air quality standards, WHO AQGs and estimated reference levels for CO, toxic metals and benzene

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging period</th>
<th>EU limit value</th>
<th>EU target value (*)</th>
<th>WHO AQG</th>
<th>Reference level (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>1 h</td>
<td>30 mg/m³</td>
<td>10 mg/m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum daily 8-hour mean</td>
<td>10 mg/m³</td>
<td>10 mg/m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>Annual</td>
<td>6 ng/m³</td>
<td></td>
<td>6.6 ng/m³</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>Annual</td>
<td>5 ng/m³</td>
<td>5 ng/m³(†)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>Annual</td>
<td>20 ng/m³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>Annual</td>
<td>0.5 μg/m³(†)</td>
<td>0.5 μg/m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>Annual</td>
<td>5 μg/m³</td>
<td></td>
<td>1.7 μg/m³</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Units in ng/m³, except for CO (mg/m³), and lead and benzene (μg/m³).
(*) Measured as contents in PM10.
(†) As WHO has not set an AQG for As, Ni or benzene, the reference level is estimated assuming an acceptable risk of additional lifetime cancer risk of approximately 1×10^{-5}.
(‡) AQG set to prevent any further increase of cadmium in agricultural soil, likely to increase the dietary intake of future generations.

Source: EU, 2004; EU, 2008; WHO, 2000; WHO, 2006a; ETC/ACM, 2011.

Status in concentrations

7.2.1 Sulphur dioxide

The hourly and the daily limit values for the protection of human health were exceeded at only two urban stations in Bulgaria in 2013, out of some 1 390 stations measuring SO₂ in 35 European countries. SO₂ concentrations are generally well below the limit values for health protection.

7.2.2 Carbon monoxide

The highest CO levels are found in urban areas, typically during rush hour at traffic locations or downwind from large industrial emissions. Of 815 operational stations with > 75% data coverage (i.e. each station produced valid data at least 75% of the time) in the 39 EEA member and cooperating countries, only one station, an urban industrial station located in the former Yugoslav Republic of Macedonia, reported an
Other pollutants: sulphur dioxide, carbon monoxide, toxic metals and benzene

exceedance of the CO limit value and the WHO AQG value in 2013.

Average CO concentrations have decreased at all station types except for rural stations, where concentrations are very low and close to the detection limit. On average, the CO maximum daily 8-hour concentrations have decreased by about one-third in the EU over the past decade. These reductions in concentrations are in line with the reported reductions in total emissions.

7.2.3 Toxic metals

The number of monitoring stations measuring toxic metals has increased since 2004, but monitoring data for parts of Europe are still missing. This is probably due to the fact that concentrations are generally low and below the lower assessment threshold (LAT) specified in the Air Quality Directives, allowing assessment to be made by modelling or objective estimates. In 2013, between 530 and 690 stations reported measurement data for each toxic metal (As, Cd, Pb and Ni) with a minimum data coverage of 14% (i.e. at least 14% of 365 days, meaning at least 51 days of the data, produced by each monitoring station, was valid).

A problem in analysing the data of these pollutants is that it is not always certain (from the data made available by the countries) whether the concentrations have been measured on the PM10-particle size fraction (as required by the directive) or on another (undefined) size fraction (e.g. particles of all sizes).

The air pollution problem caused by the toxic metals As, Cd, Pb and Ni is highly localised, because problems are typically related to specific industrial plants. The results from the reported 2013 data can be summarised as follows:

- **As** concentrations below the LAT (2.4 ng/m³) were reported at > 90% of the stations in 2013. Approximately 12 stations reported concentrations exceeding the target value set for 2013 (6 ng/m³). The exceedances occurred both in industrial and urban areas. Exceedances of the target value were observed in Belgium, Bulgaria, the Czech Republic, France and Germany. At the majority of the other stations (approximately 95%), Cd concentrations were below the LAT (2 ng/m³).

- **Pb** concentrations exceeded the 0.5 µg/m³ limit value at fewer than 10 stations in 2013, at traffic, industrial and urban background stations. All the exceedances were in Italy. Some 98% of the stations reported Pb concentrations below the LAT of 0.25 µg/m³.

- **Ni** concentrations exceeded the target value of 20 ng/m³ at two industrial stations, in Germany and Italy.

- **Hg** concentrations recorded in the Air Quality e-reporting database are sparse, despite the fact that the Air Quality Directive (EU, 2004) calls on EU Member States to perform (indicative) measurements of Hg at one background station at least. In total, around 50 stations (in Belgium, Croatia, Cyprus, Finland, Germany, Lithuania, Malta, Poland, Slovenia, Sweden and the United Kingdom) reported Hg data with sufficient data coverage (14%), of which about 80% were classified as background stations. Background concentrations of Hg (measured as total gaseous Hg) in air in 2013 ranged from below the detection limit to 3.3 ng/m³ (observed at an urban background station in the United Kingdom). One urban traffic station in Croatia registered a concentration of 20 ng/m³ Hg in air and one urban industrial in the United Kingdom registered 23.5 ng/m³.

7.2.4 Benzene

C₆H₆ is measured at a relatively small number of stations, for example, at 646 stations in 2013. Only those stations with at least 50% data coverage were used in the analysis. When concentrations are below the LAT, air quality can be assessed by means of indicative or discontinuous measurements, by modelling or by objective estimates. At 85% of locations, annual mean concentrations of C₆H₆ were below the LAT of 2 µg/m³.

The Ambient Air Quality Directive (EU, 2008) sets an annual average concentration limit value of 5 µg/m³ for C₆H₆ in ambient air. The limit value was exceeded at only two urban stations; one in Germany (industrial) and one in Italy (traffic). No exceedances of the limit value were observed at rural stations.

(*) The ‘lower assessment threshold’ is the level defined in the Air Quality Directives (EU, 2004; EU, 2008) below which modelling or objective-estimation techniques alone may be used to assess ambient air quality.
8 Population exposure to air pollutants in European urban areas

Health effects are related to both short-term and long-term exposure to air pollution. Short-term (exposure over a few hours or days) is linked with acute health effects, whereas long-term exposure (over months or years) is linked with chronic health effects. Depending on the pollutant and its health effects, the Air Quality Directives and WHO define short- and long-term standards and guidelines, respectively, for the protection of human health.

The monitoring data reported by the countries (EEA, 2015a) provide the basis for estimating the exposure of the urban European population to exceedances of the most stringent European air quality standards and WHO guidelines. The exposure is estimated based upon measured concentrations at all urban and suburban background monitoring stations for most of the urban population, and at traffic stations for populations living within 100 m of major roads. The methodology is described by the EEA (2015d).

Table ES.1 shows the percentage of the EU-28 urban population exposed to concentrations above the EU limit or target values, WHO AQG levels and estimated reference levels between 2011 and 2013.

8.1 Particulate matter

In 2013, about 17% of the EU-28 urban population was exposed to PM10 above the EU daily limit value (i.e. 50 μg/m³ not to be exceeded on more than 35 days a calendar year, for short-term exposure). The extent of exposure above this EU daily limit value has fluctuated between 17% and 38% between 2004 and 2013, and between 17% and 30% from 2011 to 2013 (Table ES.1). Furthermore, up to 61% of the same urban population was exposed to concentrations exceeding the stricter WHO AQG value for PM10 (annual mean, for long-term exposure) in 2013. The percentage of urban population exposed to levels above the WHO annual AQG (20 μg/m³) ranged between 61% and 87% in 2004–2013, and between 61% and 83% from 2011 to 2013 (Table ES.1). These ranges partly reflect variations attributable to meteorology and changes in the subset of cities and stations included in the year-to-year estimates.

For PM2.5, the Ambient Air Quality Directive (EU, 2008) introduced a target value (25 μg/m³ annual mean) to be attained by 2010, which will become a limit value starting in 2015 (see Table 3.1). In 2013, about 9% of the EU-28 urban population was exposed to PM2.5 above the target value threshold. The percentage of the EU-28 urban population exposed to levels above the PM2.5 target value (25 μg/m³) was in the range of 9% to 14% from 2011 to 2013. In terms of urban population exposure to levels above the more stringent WHO AQG (10 μg/m³ as annual mean) for PM2.5, it has fluctuated between 87% and 93% from 2011 to 2013 (Table ES.1).

The Ambient Air Quality Directive (EU, 2008) also set the national exposure reduction target and the exposure concentration obligation for human exposure to PM2.5 based on the AEI set at national level. The AEI is an averaged level of concentrations (over a 3-year period), measured at selected urban background monitoring stations (representative of general urban population exposure). Figure 8.1 (15) indicates that in eight EU Member States, the average urban concentrations in the period 2011–2013 were above 20 μg/m³. This is the legally binding level for this exposure concentration obligation to be met in the EU by 2015.

8.2 Ozone

In 2013 about 15% of the EU-28 population in urban areas was exposed to O3 concentrations above the EU target value threshold. The percentage of the urban population exposed to O3 levels above the target value threshold has fluctuated between 14% and 45% since 2004. Table ES.1 shows the range from 2011 to 2013. These variations are partly caused by meteorological variability.

(15) The levels presented are based on measurements at all urban and suburban background stations with 75% data coverage and are not based on a stable set of stations for the 3-year average. Figure 8.1 is therefore not necessarily based on the same set of stations as the countries used for compliance checking.
Population exposure to air pollutants in European urban areas

8.3 Nitrogen dioxide

About 9% of the EU-28 urban population was exposed to NO₂ above the EU annual limit value and the WHO NO₂ AQG value (both 40 μg/m³ as an annual mean) in 2013. The fraction of the urban population exposed to concentrations above the annual limit value fluctuated between 8% and 20% between 2004 and 2013, and between 8% and 12% in the period 2011–2013 period (Table ES.1). The range partly reflects variations caused by meteorology.

8.4 Benzo[a]pyrene

Between 25% and 28% of the urban population in the EU-28 was exposed to BaP concentrations above the target value (1 ng/m³ as annual mean) from 2011 to 2013, whereas 85% to 91% of the EU-28 urban population was exposed to BaP concentrations above the estimated reference level (0.12 ng/m³ as annual mean) over the same period. The proportion of the EU-28 urban population exposed to BaP levels exceeding both the EU target value and the estimated reference level was 25% and 91%, respectively, in 2013.

8.5 Sulphur dioxide

There has been a trend for decreasing exposure to SO₂ over the past few decades, and, since 2007, the
exposure of the urban population to concentrations above the daily limit value has been under 0.5%.

The EU-28 urban population exposed to SO$_2$ levels exceeding the WHO AQG (20 μg/m3 as daily mean) in 2011–2012 amounted to about 36–37% of the total urban population (Table ES.1). Proportions have been constantly decreasing since 2004, when 64% of the EU-28 urban population was exposed to SO$_2$ levels exceeding the WHO AQG.

8.6 Carbon monoxide

Based on the available measurements, it can be concluded that the European population’s exposure to CO ambient concentrations above the limit value is very localised and infrequent, and is limited to a very few areas near traffic and industry.

8.7 Toxic metals (arsenic, cadmium, lead and nickel)

Human exposure to As, Cd, Pb and Ni ambient air concentrations above the limit or target values is a local problem, restricted to a few areas in Europe, and is typically caused by specific industrial plants. However, atmospheric deposition of toxic metals contributes to the exposure of ecosystems and organisms to toxic metals and to bioaccumulation in the food chain, thus affecting human health.

8.8 Benzene

Exposure to C$_6$H$_6$ in Europe is limited to a few local areas with higher concentrations, which are often close to traffic or industrial sources.
Health impacts of exposure to fine particulate matter, ozone and nitrogen dioxide

Most of the health impact studies reviewed by WHO are focused on natural, non-accidental, mortality, respiratory and cardiovascular effects attributed to exposure to air pollution (WHO, 2005; WHO, 2006a; WHO, 2006b; WHO, 2008), but evidence is also growing for a range of other effects.

The health impacts of air pollution can be quantified and expressed as premature mortality and morbidity. Mortality reflects reduction in life expectancy owing to premature death as a result of air pollution exposure, whereas morbidity relates to illness occurrence and years lived with a disease or disability, ranging from minor effects, such as coughing, to chronic conditions that may require hospitalisation. Even less severe effects might have strong public health implications, because air pollution affects the whole population on a daily basis, especially in major cities where concentrations tend to be higher than in rural areas.

9.1 Health impacts of current exposure to fine particulate matter, ozone and nitrogen dioxide

The health impacts from air pollution can be estimated using different health outcomes (Box 9.1). The health impacts estimated for this report are those attributable to exposure to PM$_{2.5}$, O$_3$, and (for the first time) NO$_2$ in Europe for 2012. Such an assessment required information on air pollution, demographic data and the relationship between exposure to ambient pollutant concentrations and a health outcome. In this assessment, the demographic data and the health-related data were taken from the United Nations (UN) (2012) and WHO (2013b), respectively. The recommendations from a report on health risks from air pollution by the WHO (2013c) were used. For PM$_{2.5}$ impacts have been estimated for the full range of observed concentrations. For NO$_2$, the recommendation by the WHO (2013c) that the NO$_2$ impact should be calculated for levels above 20 μg/m3 was followed. However, this recommendation, which ignores potential impacts at lower concentrations, may be too conservative, as indicated by Heroux et al. (2015).

The air pollutants concentration maps (annual mean concentration for PM$_{2.5}$ and NO$_2$; and accumulated O$_3$ concentration (daily maximum 8-hour) in excess of 35 parts per billion (ppb) (70 μg/m3) for O$_3$) used in the assessment were prepared by the ETC/ACM. They are based on the Air Quality e-reporting database (EEA, 2015a) monitoring data measured at regional and urban background stations, auxiliary information, such as meteorological data, and concentrations modelled with the European Monitoring and Evaluation Programme (EMEP) chemical dispersion model (ETC/ACM, 2015a).

The results of the health impact assessment are presented in Tables 9.1 and 9.2. Table 9.1 shows, for each pollutant, the population-weighted concentration, the estimated number of YLL and the YLL per 100 000 inhabitants. In total, in the 40 countries assessed, 4 804 000 YLL are attributed to PM$_{2.5}$ exposure, and 828 000 YLL and 215 000 YLL are attributed to NO$_2$ and O$_3$ exposure, respectively. In the EU-28, the attributed YLL to PM$_{2.5}$, NO$_2$ and O$_3$ exposure are 4 494 000, 800 000 and 197 000, respectively.

Box 9.1 Different ways of estimating health impacts

- **Premature deaths** are deaths that occur before a person reaches an expected age. This expected age is typically the age of standard life expectancy for a country and gender. Premature deaths are considered to be preventable if their cause can be eliminated.

- **Years of life lost** (YLL) are defined as the years of potential life lost owing to premature death. It is an estimate of the average years that a person would have lived if he or she had not died prematurely. YLL take into account the age at which deaths occur, giving greater weight to deaths at a younger age and lower weight to deaths at an older age. It gives, therefore, more nuanced information than the number of premature deaths alone.
Table 9.1: Years of life lost (YLL) attributable to PM$_{2.5}$, O$_3$ and NO$_2$ exposure in 2012 in 40 European countries and the EU-28

<table>
<thead>
<tr>
<th>Country</th>
<th>PM$_{2.5}$ Annual mean</th>
<th>PM$_{2.5}$/105 inhabitants</th>
<th>O$_3$ SOMO35 Annual mean</th>
<th>O$_3$/105 inhabitants</th>
<th>NO$_2$ Annual mean</th>
<th>NO$_2$/105 inhabitants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>14.8</td>
<td>65 400</td>
<td>776</td>
<td>5 419</td>
<td>3 800</td>
<td>46</td>
</tr>
<tr>
<td>Belgium</td>
<td>15.8</td>
<td>99 500</td>
<td>894</td>
<td>2 050</td>
<td>2 100</td>
<td>19</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>24.9</td>
<td>141 500</td>
<td>1 937</td>
<td>5 960</td>
<td>5 900</td>
<td>81</td>
</tr>
<tr>
<td>Croatia</td>
<td>16.8</td>
<td>46 900</td>
<td>1 099</td>
<td>7 143</td>
<td>3 200</td>
<td>74</td>
</tr>
<tr>
<td>Cyprus</td>
<td>25.0</td>
<td>8 000</td>
<td>729</td>
<td>8 369</td>
<td>500</td>
<td>47</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>18.8</td>
<td>116 300</td>
<td>1 106</td>
<td>4 806</td>
<td>4 700</td>
<td>44</td>
</tr>
<tr>
<td>Denmark</td>
<td>10.0</td>
<td>31 400</td>
<td>562</td>
<td>2 662</td>
<td>1 300</td>
<td>24</td>
</tr>
<tr>
<td>Estonia</td>
<td>7.9</td>
<td>7 000</td>
<td>532</td>
<td>2 310</td>
<td>300</td>
<td>24</td>
</tr>
<tr>
<td>Finland</td>
<td>7.1</td>
<td>20 800</td>
<td>385</td>
<td>1 650</td>
<td>700</td>
<td>14</td>
</tr>
<tr>
<td>France</td>
<td>14.7</td>
<td>508 900</td>
<td>778</td>
<td>3 635</td>
<td>21 100</td>
<td>32</td>
</tr>
<tr>
<td>Germany</td>
<td>13.3</td>
<td>645 200</td>
<td>802</td>
<td>3 357</td>
<td>25 100</td>
<td>31</td>
</tr>
<tr>
<td>Greece</td>
<td>19.2</td>
<td>116 700</td>
<td>1 057</td>
<td>9 378</td>
<td>9 200</td>
<td>84</td>
</tr>
<tr>
<td>Hungary</td>
<td>18.9</td>
<td>141 900</td>
<td>1 431</td>
<td>6 342</td>
<td>7 700</td>
<td>77</td>
</tr>
<tr>
<td>Ireland</td>
<td>8.1</td>
<td>14 400</td>
<td>315</td>
<td>1 479</td>
<td>500</td>
<td>11</td>
</tr>
<tr>
<td>Italy</td>
<td>18.9</td>
<td>652 200</td>
<td>1 095</td>
<td>7 328</td>
<td>40 500</td>
<td>68</td>
</tr>
<tr>
<td>Latvia</td>
<td>12.4</td>
<td>19 900</td>
<td>976</td>
<td>3 103</td>
<td>800</td>
<td>40</td>
</tr>
<tr>
<td>Lithuania</td>
<td>12.9</td>
<td>25 100</td>
<td>839</td>
<td>3 358</td>
<td>1 000</td>
<td>35</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>12.6</td>
<td>2 800</td>
<td>524</td>
<td>2 561</td>
<td>100</td>
<td>16</td>
</tr>
<tr>
<td>Malta</td>
<td>12.4</td>
<td>2 300</td>
<td>551</td>
<td>8 022</td>
<td>300</td>
<td>64</td>
</tr>
<tr>
<td>Netherlands</td>
<td>13.7</td>
<td>112 700</td>
<td>673</td>
<td>1 949</td>
<td>2 700</td>
<td>16</td>
</tr>
<tr>
<td>Poland</td>
<td>23.9</td>
<td>560 400</td>
<td>1 472</td>
<td>4 045</td>
<td>16 100</td>
<td>42</td>
</tr>
<tr>
<td>Portugal</td>
<td>9.9</td>
<td>59 900</td>
<td>570</td>
<td>4 240</td>
<td>4 000</td>
<td>38</td>
</tr>
<tr>
<td>Romania</td>
<td>20.8</td>
<td>279 700</td>
<td>1 395</td>
<td>3 967</td>
<td>9 900</td>
<td>49</td>
</tr>
<tr>
<td>Slovakia</td>
<td>20.5</td>
<td>65 400</td>
<td>1 209</td>
<td>6 103</td>
<td>3 400</td>
<td>63</td>
</tr>
<tr>
<td>Slovenia</td>
<td>17.7</td>
<td>19 900</td>
<td>967</td>
<td>7 092</td>
<td>1 200</td>
<td>61</td>
</tr>
<tr>
<td>Spain</td>
<td>11.9</td>
<td>274 100</td>
<td>586</td>
<td>5 850</td>
<td>21 900</td>
<td>47</td>
</tr>
<tr>
<td>Sweden</td>
<td>7.2</td>
<td>35 200</td>
<td>370</td>
<td>2 233</td>
<td>1 700</td>
<td>18</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>11.9</td>
<td>420 800</td>
<td>661</td>
<td>1 183</td>
<td>7 200</td>
<td>11</td>
</tr>
<tr>
<td>Albania</td>
<td>21.1</td>
<td>24 500</td>
<td>854</td>
<td>8 760</td>
<td>2 300</td>
<td>81</td>
</tr>
<tr>
<td>Andorra</td>
<td>15.9</td>
<td>600</td>
<td>838</td>
<td>8 058</td>
<td>100</td>
<td>71</td>
</tr>
<tr>
<td>Bosnia and Herzegovina</td>
<td>18.5</td>
<td>41 200</td>
<td>1 074</td>
<td>7 322</td>
<td>2 700</td>
<td>71</td>
</tr>
<tr>
<td>Iceland</td>
<td>4.7</td>
<td>600</td>
<td>181</td>
<td>1 242</td>
<td>30</td>
<td>8</td>
</tr>
<tr>
<td>former Yugoslav Republic of Macedonia, the</td>
<td>29.2</td>
<td>32 200</td>
<td>1 560</td>
<td>8 472</td>
<td>1 800</td>
<td>89</td>
</tr>
<tr>
<td>Liechtenstein</td>
<td>10.2</td>
<td>200</td>
<td>546</td>
<td>5 132</td>
<td>20</td>
<td>43</td>
</tr>
<tr>
<td>Monaco</td>
<td>18.2</td>
<td>300</td>
<td>957</td>
<td>6 979</td>
<td>20</td>
<td>62</td>
</tr>
<tr>
<td>Montenegro</td>
<td>18.7</td>
<td>6 800</td>
<td>1 093</td>
<td>8 584</td>
<td>600</td>
<td>93</td>
</tr>
<tr>
<td>Norway</td>
<td>7.2</td>
<td>16 400</td>
<td>327</td>
<td>2 128</td>
<td>800</td>
<td>16</td>
</tr>
<tr>
<td>San Marino</td>
<td>16.7</td>
<td>300</td>
<td>978</td>
<td>6 048</td>
<td>20</td>
<td>56</td>
</tr>
<tr>
<td>Serbia (*)</td>
<td>24.3</td>
<td>140 200</td>
<td>1 557</td>
<td>6 844</td>
<td>7 000</td>
<td>77</td>
</tr>
<tr>
<td>Switzerland</td>
<td>12.6</td>
<td>46 500</td>
<td>582</td>
<td>4 990</td>
<td>3 100</td>
<td>39</td>
</tr>
</tbody>
</table>

Total (*)

<table>
<thead>
<tr>
<th>PM$_{2.5}$</th>
<th>4 804 000</th>
<th>895</th>
<th>215 000</th>
<th>40</th>
<th>828 000</th>
<th>154</th>
</tr>
</thead>
<tbody>
<tr>
<td>O$_3$</td>
<td>4 494 000</td>
<td>898</td>
<td>197 000</td>
<td>39</td>
<td>800 000</td>
<td>160</td>
</tr>
</tbody>
</table>

EU-28 (*)

Notes:

(*) Including Kosovo, under the UN Security Council Resolution 1244/99.

(*) 'Total' and 'EU-28' figures are rounded up or down to the nearest thousand.

Population-weighted concentration (in µg/m3 for PM$_{2.5}$ and NO$_2$, or (µg/m3).day for O$_3$), YLLs and YLL per 100 000 inhabitants; all-cause mortality.

SOMO35, sum of means over 35 ppb (of daily maximum 8-hour O$_3$ concentrations).
In a similar way, Table 9.2 shows the estimated number of premature deaths. In the 40 countries considered, 432 000 premature deaths are attributed to PM$_{2.5}$ exposure and 75 000 and 17 000 premature deaths to NO$_2$ and O$_3$ exposure, respectively. The estimated number of premature deaths in EU-28 attributed to PM$_{2.5}$, NO$_2$ and O$_3$ exposure are 403 000, 72 000, and 16 000, respectively.

As regards PM$_{2.5}$, the highest numbers of YLL are estimated for the countries with the largest populations (United Kingdom, France, Italy, and Germany). However, in relative terms, when considering YLL per 100 000 inhabitants, the largest impacts are observed in the central and eastern European countries where the highest concentrations are also observed.

Regarding O$_3$, the countries with the largest impacts are Italy, Germany, Spain, France, and Poland; and the countries with the highest rate of YLL per 100 000 inhabitants are the countries in the Western Balkans, Hungary and Italy.

The largest health impact attributable to NO$_2$ exposure is seen in the well-known NO$_2$ hot-spot regions (i.e. the Benelux, Italy (Po valley) and the United Kingdom (London), as well as the Ruhr area in Germany). Averaged over the EU-28, the NO$_2$ contribution to the burden of disease is about four times as large as the O$_3$ contribution and five to six times smaller than the PM$_{2.5}$ contribution. The YLL estimated for each pollutant may not be added to determine the total YLL attributable to exposure to these three pollutants. As concentrations are (sometimes strongly) correlated, it is difficult to quantify the impact of one single pollutant. This may lead to a double counting of up to 30% of the effects of PM$_{2.5}$ and NO$_2$ (WHO, 2013c).

9.2 Estimated health gains attributable to attainment of fine particulate matter and nitrogen dioxide guidelines or limit values

For each of the pollutants, additional calculations have been made to explore what the reduction in YLL or premature deaths would be, when the various limit or target values are met.

For PM$_{2.5}$, the following options have been considered:

Scenario A: it is assumed that the annual WHO AQG of 10 µg/m3 has been met;

Scenario B: it is assumed that the annual EU limit value of 25 µg/m3 has been met;
Scenario C: it is assumed that the exposure concentration obligation (AEI value of 20 µg/m³) is attained;

Scenario D: it is assumed that the (country-specific) exposure reduction target is attained in 2020.

Results from these sensitivity calculations are summarised in Figure 9.1. Meeting the annual WHO AQG throughout the EU-28 would lead to the averaged PM₂.₅ concentrations dropping by about one-third, to the gain of 1 616 000 life years (144 000 premature deaths) compared with the current (2012) situation. Most countries will have benefits in this scenario A, although in the few countries in which the maximum concentration is already around 10 µg/m³, there are no or limited benefits. With respect to meeting the EU reference levels (scenarios B to D), the smallest benefits are expected when meeting the limit value of 25 µg/m³ (to be met in 2015, scenario B), given that, in many countries in 2012, peak values were below the limit value and no further gain in life years was expected. The attainment of the exposure concentration obligation (scenario C) would lead to a gain in 407 000 life years (36 000 premature deaths) in the EU-28. However, meeting the exposure reduction targets (scenario D) would lead to the concentration dropping from an EU-28 average of 15.3 µg/m³ in 2012 to 13.0 µg/m³ in 2020, with an estimated 674 000 life years (60 000 premature deaths) gained in the EU-28.

For NO₂, the estimated health gain attributable to compliance with the NO₂ annual mean limit value of 40 µg/m³ at all locations is approximately 205 000 life years for the EU-28, compared with the current 2012 situation. As potential impacts at concentrations below 20 µg/m³ are ignored (see above) the benefits might be underestimated. This health gain is higher than the health gain achieved with the least ambitious attainment scenario for PM₂.₅ (scenario B).

Figure 9.1 Estimated health benefits attributable to different attainment scenarios of PM₂.₅ (left: years of life gained and right: premature deaths saved)

Notes:
- Dark purple bars: years of life gained in the EU-28 compared with the 2012 reference scenario (left figure).
- Light purple bars: number of premature deaths saved in the EU-28 compared with the 2012 reference scenario (right figure).
- Green dots: population-weighted concentration (both figures, in µg/m³).
- Scenario A, assuming that WHO AQG of 10 µg/m³ has been met.
- Scenario B, assuming that the EU limit value of 25 µg/m³ has been met.
- Scenario C, assuming that the exposure concentration obligation (AEI value of 20 µg/m³) is attained.
- Scenario D, assuming that the (country-specific) exposure reduction target is attained in 2020.
10 Health impacts of exposure to benzo[a]pyrene

PAHs are persistent organic pollutants, that is, organic substances that: (1) are toxic; (2) are persistent in the environment; (3) bioaccumulate in the food chain; (4) can be transported in the atmosphere over long distances; and (5) are likely to cause adverse human health or environmental effects near to and distant from their sources. Some PAHs are potent carcinogens and they are often attached to airborne particles. BaP has been classified as carcinogenic to humans (IARC, 2012) and it is the most widely investigated PAH, as a marker of the carcinogenic risk of PAHs in ambient air. In addition, WHO (2013a) has found new evidence linking PAH exposure to cardiovascular morbidity and mortality, although, at present, the effects of PAH exposure cannot be easily separated from those of other particles. The Air Quality Directive (EU, 2004) sets an annual target value for BaP (see Table 6.1), in order to avoid, prevent or reduce the harmful effects of PAHs on human health and the environment as a whole.

Emissions of BaP have increased in the past decade as a result of an increase in emissions from domestic combustion (see Chapter 2). It is, therefore, increasingly important to understand human exposure to BaP and its health effects in order to develop climate and air pollution mitigation policies that are able to reduce climate change without aggravating the impacts of air pollution. ETC/ACM (2015b) estimated the European population exposure to BaP ambient air concentrations both in urban and rural areas by combining measurements and modelled data for 2012. On that basis, the potential health impacts of BaP in Europe were estimated. Table 10.1 shows the percentage of European population exposed to different BaP annual mean concentration intervals. It also shows the population-weighted concentration, that is, the average BaP concentration that the average European inhabitant was exposed to in 2012. The population-weighted concentration of BaP, averaged over the whole of Europe, was about 0.84 ng/m³. About 20% of the European population was exposed to BaP annual mean concentrations above the target value of 1 ng/m³ in 2012, and only about 12% of the European population live in areas in which concentrations are below the estimated reference level of 0.12 ng/m³. The estimated exposure map for Europe (Map 10.1) shows that the population-weighted concentration of BaP is very high and above 1.5 ng/m³ in large regions of central and eastern Europe, including the Baltic countries (especially Lithuania). Both the percentage of inhabitants living in the areas above the target value (20%) and the average population-weighted concentration in Europe (7.5 times higher than the reference level) are high (ETC/ACM, 2015b).

The analysis of the uncertainties of the estimated BaP concentrations undertaken by ETC/ACM (2015b) shows that in large parts of Europe, the relative standard error exceeds the 60% required in the Air Quality Directive (EU, 2004). The high uncertainty is mostly due to the low density of the measurement network. The Air Quality Directive (EU, 2004) sets a LAT (16) of 0.4 ng/m³ for the assessment of concentrations and exposure and does not require monitoring for lower levels. This threshold is

| Table 10.1 Population exposure and population-weighted concentration for BaP annual mean in 2012, based on the interpolated concentration map |
BaP: annual mean, exposed population (%)					
< 0.12 ng/m³	0.12-0.4 ng/m³	0.4-0.6 ng/m³	0.6-1.0 ng/m³	1.0-1.5 ng/m³	> 1.5 ng/m³
11.7%	46.7%	10.4%	10.7%	6.8%	13.6%
BaP population-weighted concentration	0.84 ng/m³				

(16) The LAT is the level defined in the Air Quality Directives (EU, 2004; EU, 2008), below which modelling or objective-estimation techniques alone may be used to assess ambient air quality.
higher than the estimated reference level of 0.12 ng/m³. Therefore, in large parts of Europe BaP concentrations are not measured or the measurement density is very low, which increases the uncertainties in the interpolated concentration map and population exposure estimate. In addition, there are also lack of measurement stations in areas in which high concentrations are expected, for example in Bulgaria, Romania, other Balkan states and the Baltic states. It is particularly desirable to establish stations in densely populated areas and in areas in which higher concentrations are expected, in order to produce more reliable population exposure estimates.

ETC/ACM (2015b) estimated the health effects of exposure to BaP air concentrations for lung cancer incidence using the exposure-response function recommended by WHO and the BaP concentration map shown in Map 10.1. The estimated number of lung cancer incidences was 550 (17) for Europe in 2012. The largest health impacts can be found in the central and eastern European countries. About 50% of incidences occurred in Poland and Romania.

This study's estimated lung cancer incidence attributable to BaP exposure is low compared with the health impacts presented in Chapter 9. Nevertheless, the impacts of exposure to PAHs (of which BaP is an indicator) will be larger, for the following reasons:

- PAHs have several health impacts, which could not be included in the study, owing to the lack of reliable exposure-response functions. In addition to lung cancer, there are other health impacts, such as increased incidence of skin and bladder cancer; genotoxicity and mutagenicity; and effects on children's cognitive development; and exposure to PAHs is also linked to cardiovascular morbidity and mortality (18) (WHO, 2010).

(17) The 95% confidence interval is 180 to 940 lung cancer incidences for the assessment area shown in Map 10.1 for 2012.

(18) At present, however, the effects of PAH exposure cannot be easily separated from those of particles.
Health impacts of exposure to benzo[a]pyrene

• BaP is a marker for total exposure to carcinogenic PAHs but it contributes to only part of the total carcinogenic potential of PAHs (WHO, 2010; Holland et al., 2001; Pufelete et al., 2004).

• Intake only via inhalation is considered in this study. Airborne PAHs are deposited on soil and water and may be bioaccumulated in the food chain. Humans are, therefore, also exposed to airborne PAHs through the consumption of food and water.
11 Impacts of air pollution on ecosystems

Air pollution also harms the environment, and it is estimated that 71% of the EU Natura 2000 area was exposed to eutrophication in 2010 (EC, 2013a). Ground-level O\textsubscript{3} can damage crops and other vegetation, impairing their growth. The atmospheric deposition of sulphur and nitrogen compounds has acidifying effects on soils and freshwaters. Acidification may lead to an increased mobilisation of toxic metals, which increases the risk of uptake in the food chain.

The deposition of nitrogen compounds can also lead to eutrophication, an oversupply of nutrients that may lead to changes in species diversity and to invasions of new species. In addition, toxic metals and persistent organic pollutants may have severe impacts on ecosystems. This is mainly due to their environmental toxicity, but in some cases it is also due to their tendency to bioaccumulate, a process whereby the toxin cannot be digested and excreted by animals and, therefore, slowly accumulates in the animal’s system, causing chronic health problems.

The impacts of air pollution on the environment depend not only on the air pollutant emission rates but also on the location and conditions of the emissions. Factors such as meteorology and topography are also important, as these determine the transport, chemical transformation and deposition of air pollutants. Furthermore, the environmental impacts of air pollution also depend on the sensitivity of ecosystems to O\textsubscript{3} exposure, acidification, eutrophication and toxic metals.

11.1 Vegetation damage by ground-level ozone

The principal mechanism for removing O\textsubscript{3} from the atmosphere is deposition on the Earth’s surface, in particular through absorption by plants. This absorption damages plant cells, impairing their ability to grow. In some sensitive plants, O\textsubscript{3} can cause leaves to exhibit what appear to be burn marks. By impairing plants’ reproduction and growth, high levels of O\textsubscript{3} can thus lead to reduced agricultural crop yields, decreased forest growth and reduced biodiversity.

Direct exposure to O\textsubscript{3} is considered to be more damaging to vegetation than exposure to any other air pollutant (Ainsworth et al., 2012). Mills and Harmens (2011) calculated that (assuming that soil moisture is not limiting to production), the effect of O\textsubscript{3} on wheat resulted in European production losses of 27 million tonnes of grain in 2000. The study showed that effects on wheat crops would be greatest in France, Germany, Bulgaria, the United Kingdom, Italy, Poland, and Spain. O\textsubscript{3}-induced growth reductions also result in an economic loss for forest owners. For example, the annual economic loss for owners of Swedish forests has been estimated to be approximately EUR 40 million (Karlsson, 2005). Harmens and Mills (2012) concluded that today’s levels of O\textsubscript{3} exposure in northern and central Europe have the potential to reduce the rate of increase in forests’ living biomass by roughly 10% compared with pre-industrial O\textsubscript{3} exposure levels. Harmens and Mills (2012) estimated that between 1990 and 2000, the reduction in carbon stored in vegetation that can be accounted for by O\textsubscript{3} concentrations was around 6% globally and almost 4% in Europe.

The EU has the objective of protecting vegetation from high O\textsubscript{3} concentrations accumulated over the growing season (i.e. May to July). The vegetation protection value is specified as AOT40 (see Table 4.1). The vegetation protection value is calculated as the sum of the differences between hourly concentrations > 80 µg/m3 (â€œ40 ppb) and 80 µg/m3 accumulated over all hourly values measured during the daylight period of the most intense growing season. The target value for 2010 was 18 000 (µg/m3).h, calculated as an average over 5 years (2010–2014). The long-term objective is set to 6 000 (µg/m3).h, as shown in Table 4.1. In addition to the EU target value, the UNECE LRTAP Convention (UNECE, 1979) defines a critical level for the protection of forests. This level is specified as the AOT40 during the period April–September and is set to 10 000 (µg/m3).h (UNECE, 2011).

The threshold used for the AOT40 target value (applicable from 2010) for the protection of vegetation was exceeded to a substantial degree (33% of the rural stations) in 2012. The highest measured values (in Italy) exceeded 47 000 µg/m3.h, which is more than twice the target threshold.
The UNECE LRTAP Convention critical level for the protection of forests was exceeded at 85% of the rural stations in 2012. For this forest-protection objective, there is a much higher number of exceedances than for the EU target value for the protection of vegetation.

Since 2003, the target value for protecting vegetation from high O₃ concentrations has been exceeded in a substantial part of the European agricultural area, as shown in Figure 11.1 (left). The exceedances since 2004 of the critical level for the protection of forest areas are even more pronounced, as shown in Figure 11.1 (right, note that only the green parts of the bars correspond to compliance with the critical level).

In 2012, the target value for protecting vegetation was exceeded in about 30% of all European and in 27% of EU-28 countries (i.e. 645 747 km² and 557 865 km², respectively), of all agricultural land, mostly in the southern Mediterranean and central Europe (Map 11.1). O₃ levels vary considerably from year to year, mostly owing to meteorological variations. 2012 registered an increase in the total area with agricultural crops above the target value (30%) compared with the period 2009–2011 (19% to 26%), but it is lower than in the period 2005–2008 (36% to 69%) (19). The long-term objective was exceeded in 86% of the total European and the EU-28 agricultural area in 2012 (ETC/ACM, 2015a).

Figure 11.1 Exposure of agricultural area (left) and exposure of forest area (right) to O₃ (AOT40 in μg/m³.h) in the EEA-33 member countries in the period 2003/04 to 2012

Notes: Exposure expressed as AOT40: accumulated O₃ exposure over a threshold of 40 ppb in μg/m³.hour.

Right figure: In the Ambient Air Quality Directive (EU, 2008), the target value for protection of vegetation is set to 18 000 (μg/m³.h), averaged over 5 years, whereas the long-term objective is set to 6 000 (μg/m³.h). Owing to lack of detailed land cover data and/or rural O₃ data, Iceland and Norway were not included until 2006. Switzerland has not been included in the analysis for the period 2004–2007 for the same reasons. Owing to lack of data, Turkey is not included during the entire period. Croatia has been included since 2011.

Left figure: UNECE LRTAP Convention has set a critical level for the protection of forest to 10 000 (μg/m³.h). Since 2004, a growing number of EEA member countries have been included. In 2005, Bulgaria, Greece and Romania were added; in 2007, Iceland and Norway; and in 2008, Switzerland. Since 2008, only Turkey has not been included as a result of lack of detailed land cover data and/or rural O₃ data. Calculations of forest exposure are not available for years prior to 2004.

Source: EEA, 2015b.

(19) The 69% of the agricultural area in exceedance occurred in summer 2006, which had favourable meteorological conditions for O₃ formation, resulting in exceptionally high concentrations.
The UNECE LRTAP Convention critical level for the protection of forest was exceeded in 65% and 67% of the total European and EU-28 forest area, respectively (i.e. 987 446 km2 and 888 196 km2, respectively) in 2012 (Map 11.2). The attainment areas in 2012 were, as in previous years, in the northern part of Europe. The highest exceedances occurred in Italy, the Western Balkans and Spain. In 19 EEA member countries, all the forest areas in their territories were in exceedance (ETC/ACM, 2015a).

11.2 Eutrophication

Eutrophication refers to an excess of nutrients in the soil or water. It threatens biodiversity through the excessive growth of a few species that thrive in the presence of the added nutrients, to the detriment of a larger number of species that have long been part of the ecosystem but are accustomed to a lower-nutrient environment. The two major causes of eutrophication are excess nutrient nitrogen (mainly nitrates and ammonium) and excess phosphates in ecosystems.

Air pollution contributes to the excess of nutrient nitrogen, as the nitrogen emitted to the air, namely NO$_x$ (mainly from combustion of fuels) and NH$_3$ (mostly from livestock breeding), deposits on soils, vegetation surfaces and waters.

Atmospheric nitrogen deposition contributes to eutrophication in freshwater and in the sea. Eutrophication often leads to algae ‘blooms’, that is, the rapid growth of algae which form dense patches near the surface of the water and prevent light from penetrating into deeper layers of the water. The fact that light is unable to penetrate into the water may lead to the reduction, and sometimes extinction, of aquatic plants, as they are unable to survive without this light. Another problem arises when the algae begin to die and deposit on the floor of lakes and rivers. Bacteria then take over the ecosystem, decomposing the organic material of the dead algae and using up large amounts of dissolved oxygen in the process. The high oxygen demand attributable to the increased bacterial activity may lead to a severe reduction in the oxygen available to other life forms, and, in severe cases, causes fish
Impacts of air pollution on ecosystems

Map 11.2 Rural concentration of the O₃ indicator AOT40 for forest in 2012

Eutrophication effects are estimated using the ‘critical load’ concept (De Vries et al., 2015), a term that describes the ecosystem’s ability to absorb eutrophying nitrogen pollutants that have been deposited from the atmosphere, without the potential to cause negative effects on the natural environment. Exceedances of these spatially determined critical loads present a risk of damage or change to the existing ecosystem. Such exceedances are estimated using ecosystem classification methods and model calculations.

An earlier EEA study (EEA, 2014a) estimates that 63% of the total EU-28 ecosystem area and 73% of Natura 2000 area was at risk of eutrophication in 2010, owing to excessive atmospheric nitrogen covering most of continental Europe as well as Ireland and southern areas of the United Kingdom and Sweden. The reduction of ecosystem area at risk of eutrophication has merely been moderate. For 2005, the study estimated that 67% of EU-28 ecosystem area and 78% of the Natura 2000 area were at risk of eutrophication. The risks of ecosystem eutrophication and its geographical coverage have thereby diminished only slightly over the past decade, and it is still widespread across Europe.

Furthermore, the projections for 2020 indicate that ecosystems exposure to eutrophication will still be widespread (EEA, 2015b). This conflicts with the EU’s long-term objective of not exceeding critical loads of airborne acidifying and eutrophying substances in European ecosystem areas (EU, 2001; EU, 2002; EC, 2005).

11.3 Acidification

The emission of nitrogen and sulphur into the atmosphere creates nitric acid and sulphuric acid, respectively. These compounds fall to the earth and its waters as acid deposition, reducing the pH level of the
soil and water and leading to acidification. Acidification damages plant and animal life, both on land and in water.

Owing to the considerable SOx emission reductions over the past decades, nitrogen compounds emitted as NOx and NH3 have become the principal acidifying components in both terrestrial and aquatic ecosystems, in addition to their role causing eutrophication. However, emissions of SOx, which have a higher acidifying potential than NOx and NH3, still contribute to acidification.

As with eutrophication effects, acidification effects are estimated using the concept of ‘critical load’ (De Vries et al., 2015), which describes an ecosystem’s ability to absorb acidifying pollutants that have been deposited from the atmosphere without negative effects on the natural environment. Exceedance of these spatially determined critical loads presents a risk of damage. Such exceedances are also estimated using information on ecosystem classification and model calculations.

EEA (2014a) estimated that 7% of the total EU-28 ecosystem area and 5% of the Natura 2000 area were at risk of acidification in 2010. This represents a reduction by 30% and 40%, respectively, from 2005 levels. Compared with 1990, the area of sensitive ecosystems in the EU-28 in which the acidity critical load was exceeded had declined by 94% in 2010. This improvement is primarily attributed to sharp reductions in SOx emissions over the past two decades. The analysis does not address the fact, however, that despite ecosystems receiving depositions of acidifying substances that will not exceed critical loads in future, it may still take decades for a full ecosystem recovery from past acidification.

11.4 Environmental impacts of toxic metals

Although the atmospheric concentrations of As, Cd, Pb, Hg and Ni may be low, they still contribute to the deposition and build-up of toxic metal contents in soils, sediments and organisms. These toxic metals do not break down in the environment and some bioaccumulate (i.e. they gradually accumulate in plants and animals and cannot be excreted by them). This means that plants and animals can be poisoned over a long period of time through long-term exposure to even small amounts of toxic metals. If a toxic metal has bioaccumulated in a particular place in the food chain — for example in a fish — then human consumption of that fish presents a serious risk to health.

Atmospheric deposition of toxic metals into the environment contributes to the exposure of ecosystems and organisms to these and, therefore, to the risk of bioaccumulation. Some ecosystem areas are at risk owing to the atmospheric deposition of Cd, Pb and Hg.

The share of national ecosystem areas in Europe exceeding critical loads for Cd is < 1% in most countries, except countries that have set lower critical loads than other countries (Slootweg et al., 2010).

As regards Pb, the area and extent of the exceedances of critical loads are much higher. Atmospheric deposition of Pb exceeds the critical loads in > 12% of the EU ecosystem area (Slootweg et al., 2010).

The largest exceedances of toxic metal critical loads involve Hg. Almost half of all EEA-33 member and cooperating countries (20) have exceedances of critical loads for Hg across nearly 90% or more of their ecosystem area. In total, the atmospheric deposition of Hg exceeds the critical loads across 54% of the EU ecosystem area (Slootweg et al., 2010).

11.5 Ecosystem exposure to nitrogen oxides and sulphur dioxide

Three CLs are set by the Ambient Air Quality Directive (EU, 2008) for the protection of vegetation: one for the NOx annual mean of 30 μg/m3 (Table 5.1); and two for SO2, the annual and winter means of which must not exceed 20 μg/m3 (Table 7.1). Member States were obliged to meet the vegetation protection limits by 2005.

The NOx annual critical level for the protection of vegetation was exceeded in 2013 at 13 rural background stations (18 in rural areas), mainly in Italy, but also in Germany, the Netherlands and Switzerland.

In 2013, the highest concentrations and exceedances of the annual critical level for the protection of vegetation from SO2 occurred in Romania, Poland and Serbia, with six exceedances recorded in total. As in previous years, none of these exceedances occurred at rural locations, where the critical loads are supposed to apply.

([20] Albania, Bosnia and Herzegovina, Bulgaria, Croatia, Denmark, Greece, Hungary, Italy, Latvia, Lithuania, Luxembourg, the former Yugoslav Republic of Macedonia, the Netherlands, Poland, Romania, Slovenia and Spain.)

References

EEA, 2015b, Exposure of ecosystems to acidification, eutrophication and ozone (Indicator CSI 005), European Environment Agency.

EEA, 2015d, Exceedance of air quality limit values in urban areas (Indicator CSI 004), European Environment Agency.

Harmens, H. and Mills, G. (eds), 2012, Ozone Pollution: Impacts on carbon sequestration in Europe, ICP Vegetation Programme Coordination Centre, Centre for Ecology and Hydrology, Bangor, UK.

WHO, 2006b, *Health risks of particulate matter from long-range transboundary air pollution*, World Health Organization, Regional Office for Europe, Copenhagen.

WHO, 2013c, *Health risks of air pollution in Europe — HRAPIE project. New emerging risks to health from air pollution — results from the survey of experts*, World Health Organization, Regional Office for Europe, Copenhagen.

HOW TO OBTAIN EU PUBLICATIONS

Free publications:

• one copy:
 via EU Bookshop (http://bookshop.europa.eu);

• more than one copy or posters/maps:
 from the European Union's representations (http://ec.europa.eu/represent_en.htm);
 from the delegations in non-EU countries (http://eeas.europa.eu/delegations/index_en.htm);
 by contacting the Europe Direct service (http://europa.eu/europedirect/index_en.htm) or calling
 00 800 6 7 8 9 10 11 (freephone number from anywhere in the EU) (*).

 (*) The information given is free, as are most calls (though some operators, phone boxes or hotels may charge you).

Priced publications:

• via EU Bookshop (http://bookshop.europa.eu).