SNAP CODES:

(See below)

SOURCE ACTIVITY TITLE: COMBUSTION IN ENERGY & TRANSFORMATION INDUSTRIES Combustion Plants as Point Sources

The following activities are taken into account, when treating combustion plants individually as point sources.

Combustion plants with a thermal capacity < 300 MW, gas turbines and stationary engines, which may also be considered collectively as area sources, are covered by chapter B112 "Combustion Plants as Area Sources" as well.

	Combustion plants as point sources										
	Boilers/Furnaces										
SNAP97	NOSE	NFR									
Codes	CODE	CODE	The amount 1	Dublia	District	Tu du atmia l	Commonsi-1	Dagi danti cl	A ani an 160	Cas	Stationa-
			Thermal capacity	Public power and	District heating	Industrial combustion	Commercial and	Residential combustion	Agriculture forestry	Gas turbines	Stationary engines
			[MW]	cogeneration	incuring	and specific	institutional	- onio astron	and fishing	, aromes	5
				plants		sector	combustion		Ű		
01 01 01	101.01	1 A 1 a		Х							
01 02 01	101.01	1 A 1 a			х						
01 03 01 01 04 01	101.01 101.01	1 A 1 b 1 A 1 c	≥ 300			X X					
01 04 01 01 01 05 01	101.01	1 A 1 c	<i>2</i> 300			X					
02 01 01	101.01	1 A 4 a				A	х				
03 01 01	101.01	1 A 2 a-f				х					
01 01 02	101.02	1 A 1 a		х							
01 02 02	101.02	1 A 1 a			х						
01 03 02	101.02	1 A 1 b				х					
01 04 02	101.02	1 A 1 c	≥ 50			Х					
01 05 02 02 01 02	101.02 101.02	1 A 1 c 1 A 4 a	and < 300			х	х				
02 01 02 01 02	101.02	1 A 4 b i	< 500				~	х			
02 02 01 02 01	101.02	1 A 4 c i						A	х		
03 01 02	101.02	1 A 2 a-f				х					
01 01 03	101.03	1 A 1 a		х							
01 02 03	101.03	1 A 1 a			х						
01 03 03	101.03	1 A 1 b				х					
01 04 03 01 05 03	101.03 101.03	1 A 1 c 1 A 1 c	< 50			x x					
01 03 03 02 01 03	101.03	1 A 1 c 1 A 4 a	< 30			х	х				
02 01 03 02 02 02	101.03	1 A 4 b i					л	х			
02 03 02	101.03	1 A 4 c i							х		
03 01 03	101.03	1 A 2 a-f				х					
01 01 04	101.04	1 A 1 a								х	
01 02 04	101.04	1 A 1 a								х	
01 03 04	101.04	1 A 1 b	m-4							X	
01 04 04 01 05 04	101.04 101.04	1 A 1 c 1 A 1 c	not relevant							X	
01 03 04 02 01 04	101.04	1 A 1 c 1 A 4 a	reievailt							X X	
02 01 04 02 02 03	101.04	1 A 4 b i								x	
02 03 03	101.04	1 A 4 c i								x	
03 01 04	101.04	1 A 2 a-f								х	
01 01 05	101.05	1 A 1 a									Х
01 02 05	101.05	1 A 1 a									х
01 03 05	101.05	1 A 1 b									х
01 04 05 01 05 05	101.05 101.05	1 A 1 c	not								X
01 05 05	101.05	1 A 1 c	relevant	I	I	I	I	I	I	I	Х

		Combustion plants as point sources Boilers/Furnaces									
SNAP97	NOSE	NOSE NFR									
Codes	CODE	CODE									
			Thermal	Public	District	Industrial	Commercial	Residential	Agriculture	Gas	Stationary
			capacity	power and	heating	combustion	and	combustion	forestry	turbines	engines
			[MW]	cogeneration		and specific	institutional		and fishing		
				plants		sector	combustion				
02 01 05	101.05	1 A 4 a									х
02 02 04	101.05	1 A 4 b i									х
02 03 04	101.05	1 A 4 c i									х
03 01 05	101.05	1 A 2 a-f									х

x = indicates relevant combination

1 ACTIVITIES INCLUDED

This chapter covers emissions from boilers, gas turbines and stationary engines as point sources. According to CORINAIR90, combustion plants with

- a thermal capacity $\geq 300 \text{ MW}$

or

- emissions of SO₂ or NO_x or NMVOC > 1,000 Mg/ a^1

should be considered as point sources /41/. Within CORINAIR other combustion plants may also be considered as point sources on a voluntary basis. Different criteria are applied for the classification of combustion plants according to the Large Combustion Plant Directive (88/609/EEC)² /9, 42/.

Boilers, gas turbines and stationary engines need to be treated separately (see table at start of this chapter). With regard to boilers, a combustion plant may consist of one single boiler or may comprise a series of boilers of different sizes (joint plant). Therefore, whenever there is more than one boiler on a site, a decision on the aggregation of these facilities to plants has to be taken. Through this decision, an allocation to the respective SNAP categories is achieved. For aggregation criteria see Section 3.2 and Annex 1.

The subdivision of SNAP activities according to CORINAIR90 concerning combustion plants takes into account two criteria:

- a) the economic sector concerning the use of energy
 - public power and co-generation,
 - district heating,
 - commercial and institutional combustion,
 - industrial combustion in boilers,
 - (Note: Process furnaces are allocated separately.)

¹ For CO₂ a further optional criterion for point sources is the emission of > 300 Gg/a.

² The Large Combustion Plant Directive covers combustion plants with a thermal capacity \ge 50 MW in the EU. Gas turbines and stationary engines are excluded. Existing plants with a thermal capacity > 300 MW have to be reported as point sources on an individual basis.

b) the technical characteristics

- with respect to boilers, the installed thermal capacity,
 - $\ge 300 \text{ MW},$
 - ≥ 50 to < 300 MW,
 - ≤ 50 MW,
- other combustion technologies,
 - gas turbines,
 - stationary engines.

Emissions considered in this section are released by a controlled combustion process (boiler emissions, emissions from the combustion chamber of gas turbines or stationary engines), taking into account primary reduction measures, such as furnace optimisation inside the boiler or the combustion chamber, and secondary reduction measures downstream of the boiler or the combustion chamber. Solid, liquid or gaseous fuels are used, where solid fuels comprise coal, coke, biomass and waste (as far as waste is used to generate heat or power). In addition, a non-combustion process can be a source of ammonia emissions, namely ammonia slip in connection with several NO_x abatement techniques.

2 CONTRIBUTION TO TOTAL EMISSIONS

This section covers emissions of SO_x , NO_x , CO, CO_2 , NMVOC, CH_4 , N_2O , NH_3 and heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, Zn, V). The contributions of point source emissions released by combustion plants to the total emissions in countries of the CORINAIR90 inventory are given as follows in Table 1:

			Contribution to total emissions [%]						
Source category	SNAP90 code	SO_2	NO _x	NMVOC	CH ₄	CO	CO ₂	N ₂ O	NH ₃
≥ 300 MW	01 01 01 01 02 01 03 01 01	85.6	81.4	10.2	5.5	16.8	79.0	35.7	2.4
50-300 MW	01 01 02 01 02 02 02 00 01 03 01 02	6.4	5.4	1.1	0.6	3.1	6.5	1.9	0.2
< 50 MW	01 01 03 01 02 03 02 00 02 03 01 03	0.2	0.3	0.1	0.05	0.1	0.2	0.1	0
Gas turbines ¹⁾	01 01 04 01 02 04 02 00 03	0	0.39	0.07	0.06	0.05	0.35	0.02	-

 Table 1: Contributions of emissions from combustion plants as point sources to total emissions of the CORINAIR90 inventory reported as point sources

COMBUSTION IN ENERGY & TRANSFORMATION INDUSTRIES Activities 010101 - 010105

	03 01 04								
Stationary engines ¹⁾	01 01 05 01 02 05 02 00 04 03 01 05	0.04	0.10	0.04	0	0.01	0.02	0	-

- : no emissions are reported

 $\boldsymbol{0}$: emissions are reported, but the precise number is under the rounding limit

¹⁾ Gas turbines and stationary engines may be reported either as point or as area sources.

In the literature concerning heavy metal emissions across Europe, point source emissions are not reported separately. Giving an order of magnitude of heavy metal emissions released from combustion plants emission data of coal-fired public power plants in Germany and Austria is presented here as an example, due to the availability of data:

Table 2: Contributions of heavy metal emissions from coal-fired public power plants to national total emissions of Germany¹⁾ /36/

	Contribution in	on in [wt%]		
Pollutant	1982	1990		
As	38	27		
Cd ²⁾	7	7		
Cr	12	4		
Cu	22	8		
Hg ³⁾	11	14		
Ni	5	4		
Pb	8	1		
Se	1	1		
Zn	7	6		

¹⁾ Western part of Germany

 $^{2)}~$ E.g. emissions of Cd in Austria in 1992 were 0,2 % /37/.

³⁾ E.g. emissions of Hg in Austria in 1992 were 6 % /37/.

By comparing the heavy metal emissions in 1982 (without flue gas desulphurisation (FGD) installed) to the emissions in 1990 (where most plants are equipped with FGD), it can be seen that the application of FGD technologies has lead to a significant decrease in heavy metal emissions within the last years.

For Particulate Matter:

Combustion Plants < 50 MW (boilers) are now covered in the new supplementary chapter Particulate emissions from smaller Combustion Plants (<50MWth) B111(S1).

ps010101

Combustion Plants ≥ 50 and < 300 MW (boilers) are now covered in the new supplementary chapter Particulate emissions from large Combustion Plants (≥ 50 MWth) B111(S2).

Gas Turbines are now covered in the new supplementary chapter Particulate emissions from gas turbines and internal combustion engines B111(S3).

3 GENERAL

3.1 Description

The emissions considered in this chapter are generated either by boilers or by gas turbines and stationary engines regardless of the allocation of plants to SNAP activities. Emissions from process furnaces (combustion with contact) and from waste incineration are not included here (therefore see SNAP code 090200).

3.2 Definitions

ar	as received, a reference state of coal which determines the conditions, when coal arrives at the plant $/73/$.
Availability (of an abatement technology)	ratio of full load operating hours with operating emission control technology to total full load operating hours of the power plant; the availability β normally amounts to 99 %; but extreme low values of β can occur down to 95 %. By taking into account the start-up behaviour of emission reduction technologies, the availability β can decrease further down to 92 %. Default values are proposed in Tables 7 and 11.
Boiler	any technical apparatus, in which fuels are oxidised in order to generate heat for locally separate use.
Coking coal (NAPFUE 101)	subcategory of hard coal with a quality that allows the production of a coke suitable for supporting a blast furnace charge /114/.
Co-generation plant	steam production in boilers (one or more boilers) for both, power generation (in a steam turbine) and heat supply.
Combined Cycle Gas Turbine (CCGT)	gas turbine combined with a steam turbine. The boiler can also be fuelled separately.
daf	dry and ash free, a reference state of coal which is calculated with reference to a theoretical base of no moisture or ash associated with the sample (equivalent to maf - moisture and ash free) $/73/$.
Hard coal	refers to coal of a gross caloric value greater than 23,865 kJ/kg on an ash-free but moist basis and with a mean random

reflectance³ of vitrinite of at least 0.6. Hard coal comprises the subcategories coking coal and steam coal⁴ /114/.

International classification codes (UN, Geneva, 19956) USA classification British classification Polish classification Australian classification 323, 333, 334, 423, 433, 435, 523, 533, 534, 535, 623, 633, 634, 635, 723, 733, 823 Class II Group 2 "Medium Volatile Bituminous" Class 202, 203, 204, 301, 302, 400, 500, 600 Class 33, 34, 35.1, 35.2, 36, 37 Class 4A, 4B, 5.

³ Mean random reflectance: characteristic value, which stands for a defined coal composition (modular component is e.g. vitrinite).

⁴ The following coal classification codes cover those coals, which would fall into these subcategories /114/:

Integrated Coal Gasification gas turbine fuelled by gas, which is a product of a coal

Combined Cycle Gas Turbine gasification process.

(IGCC)	S
Lignite (NAPFUE 105)	non-agglomerating coals with a gross caloric value less than 17,435 kJ/kg and containing more than 31 % volatile matter on a dry mineral matter free basis /114/.
maf	moisture and ash free, a reference state of coal (equivalent to daf - dry and ash free) $/73/$.
Plant/Joint Plant	classification with respect to boilers (one or more boilers) according to the respective boiler configuration on a given site and the applied concept of aggregation. The stack-by- stack principle considers all boilers linked to the same stack as a common plant. On the other hand, according to the virtual stack principle, all boilers which, for technical and economic reasons, could be connected to a common stack, are treated as one unit. It is also possible to carry out a still broader combination following e.g. administrative aspects. Gas turbines and stationary engines are allocated separately. A typical example of different allocation possibilities of boilers to the SNAP codes is given in Annex 1.
Power plant	steam generation in boilers (one or more boilers) for power generation.
Reduction efficiency (of an abatement technology)	difference between the pollutant concentration in the raw gas (c_{raw}) and the pollutant concentration in the clean gas (c_{clean}) divided by the pollutant concentration in the raw gas (referred to full load operating hours); default values for the reduction efficiency $\eta = (c_{raw} - c_{clean})/c_{raw}$ of different emission control technologies are recommended in Tables 7 and 11 (extreme low values of η can be up to ten percent below the values given).
Start-up emission	here start-up emissions have been considered for boilers equipped with secondary measures: For SO_2 and NO_2 from the time when burners switch on up to the time when the secondary abatement facility operates under optimum conditions; for CO up to the time when the boiler operates at minimum load.
Stationary engines	spark-ignition or compression-ignition engines (2- and 4- stroke).
Steam coal (NAPFUE 102)	subcategory of hard coal used for steam raising and space heating purposes. Steam coal includes all anthracite and bituminous coals not included under coking coal /114/.

Sub-bituminous coal (NAPFUE 103)	non-agglomerating coals with a gross caloric value between 17,435 and 23,865 kJ/kg containing more than 31 % volatile matter on a dry mineral free matter basis /114/
Sulphur retention in ash	difference between the sulphur dioxide concentration calculated from the total sulphur content of fuel (c_{max}) and the sulphur dioxide concentration of the flue gas (c_{eff}) divided by the sulphur dioxide concentration calculated from the total sulphur content of the fuel. Default values for the sulphur retention in ash $\alpha_s = (c_{max} - c_{eff})/c_{max}$ are proposed in Table 8.

3.3 Techniques

3.3.1 Combustion of coal

3.3.1.1 Dry bottom boiler (DBB)

The DBB is characterised by the dry ash discharge from the combustion chamber due to combustion temperatures from 900 up to 1,200 °C. This type of boiler is mainly used for the combustion of hard coal and lignite and is applied all over Europe.

3.3.1.2 Wet bottom boiler (WBB)

Typical combustion temperatures exceeding 1,400 °C lead to a liquid slag discharge from the combustion chamber. This type of boiler is used for hard coal with a low content of volatiles and is mainly applied in Germany.

3.3.1.3 Fluidised bed combustion (FBC)

The combustion of coal takes place by injection of combustion air through the bottom of the boiler into a turbulent bed. The typical relatively low emissions are achieved by air staging, limestone addition and low combustion temperatures of about 750 - 950 °C. FBC is in particular adapted to coals rich in ash. Only few large combustion plants are equipped with the FBC technique; in the category of thermal capacities \geq 300 MW mostly Circulating Fluidised Bed Combustion (CFBC) is installed.

3.3.1.4 Grate Firing (GF)

The lump fuel (coal, waste) is charged on a stationary or slowly moving grate. The combustion temperatures are mainly between 1,000 and 1,300 °C.

3.3.2 Combustion of biomass

The combustion of biomass (peat, straw, wood) is only relevant for some countries (e.g. Finland, Denmark). FBC (mostly CFBC) and DBB facilities are installed.

3.3.3 Combustion of waste

For the combustion of waste, mostly grate firing installations are in use.

3.3.4 Combustion of gas/oil

3.3.4.1 Combustion in boilers (general aspects of the combustion techniques)

For both, gas and oil combustion, the fuel and oxidising agents are gaseous under combustion conditions. The main distinctions between gas/oil combustion and pulverised coal combustion are the operation designs of the individual burners of the boiler. With respect to emissions, a principal distinction can be made between burners with and without a pre-mix of fuel and combustion air: pre-mixing burners are characterised by a homogeneous short flame and a high conversion rate of fuel bound nitrogen; non-pre-mixing burners are characterised by inhomogeneous flames with understoichiometric reaction zones and a lower conversion rate of fuel bound nitrogen.

The importance of oil and gas combustion considered as point sources (see Section 1) is low compared to coal combustion, due to the smaller total capacity of these installations. The main parameters determining emissions from oil and gas fired plants are given in Table 3.

	Fuel dependent	Process dependent				
Pollutant	Oil-fire	d boiler				
SO ₂	Х	-				
NO _x	Х	Х				
CO	-	х				
	Gas-fired boiler					
SO ₂	x ¹⁾	-				
NO _x	-	Х				
CO	-	Х				
¹⁾ trace amounts	x : relevant	- : not relevant				

3.3.4.2 Gas turbines

Gas turbines are installed with a thermal capacity ranging from several hundred kW up to 500 MW. Gaseous fuels are mainly used, such as natural gas or the product of coal gasification (e.g. CCGT or IGCC installations) or other process gases. Also liquid fuels are used, such as light distillates (e.g. naphtha, kerosene or fuel oil) and in some cases other fuels (e.g. heavy fuel oil). Combustion temperatures of up to 1,300 °C in the combustion chambers may lead to considerable NO_x emissions.

Gas turbines are installed as a part of different types of combustion plants such as Combined Cycle Gas Turbine (CCGT) or Integrated Coal Gasification Combined Cycle Gas Turbine (IGCC) Plants (see also Section 3.2). For IGCC plants, the only emission relevant unit considered here is the gas turbine (combustion chamber). For CCGT, in addition to the gas turbine any installed fossil fuelled boiler should also be taken into account.

3.3.4.3 Stationary engines

Stationary engines are installed as spark-ignition engines and compression-ignition engines (2- and 4-stroke) with electrical outputs ranging from less than 100 kW to over 10 MW (e.g. in co-generation plants) /cf. 46/. Both types represent relevant emission sources.

3.4 Emissions

Relevant pollutants are sulphur oxides (SO_x) , nitrogen oxides (NO_x) , carbon dioxide (CO_2) and heavy metals (arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), selenium (Se), zinc (Zn) and in the case of heavy oil also vanadium (V)). Emissions of volatile organic compounds (non-methane VOC and methane (CH₄)), nitrous oxide (N₂O), carbon monoxide (CO) and ammonia (NH₃) are of less importance. For species profiles of selected pollutants see section 9.

The emissions are released through the stack. Fugitive emissions (from seals etc.) can be neglected for combustion plants.

The emissions of sulphur oxides (SO_x) are directly related to the sulphur content of the fuel, which for coal normally varies between 0.3 and 1.2 wt.-% (maf) (up to an extreme value of 4.5 wt.-%) and for fuel oil (including heavy fuel oil) from 0.3 up to 3.0 wt.-% /15, 16/; usually, the sulphur content of gas is negligible. Sulphur appears in coal as pyritic sulphur (FeS₂), organic sulphur, sulphur salts and elemental sulphur. A major part of the sulphur in coal comes from pyritic and organic sulphur; both types are responsible for SO_x formation. The total sulphur content of coal is usually determined by wet chemical methods; by comparison with results from the X-ray method, it has been found that standard analytical procedures may overestimate the organic sulphur content of coal /30/. The uncertainty introduced by the analytical procedures should be determined by further research.

For nitric oxide (NO, together with NO_2 normally expressed as nitrogen oxides NO_x) three different formation mechanisms have to be distinguished (see also Section 9):

-formation of "fuel-NO" from the conversion of chemically bound nitrogen in the fuel (NO_{fuel}),

-formation of "thermal-NO" from the fixation of atmospheric nitrogen coming from the combustion air (NO_{thermal}),

-formation of "prompt-NO".

In the temperature range considered (up to 1,700 °C) the formation of "prompt6-NO" can be neglected. The majority of NO_x emissions from coal combustion (80 to more than 90 %) is formed from fuel nitrogen. Depending on combustion temperatures, the portion of thermal-NO_x formed is lower than 20 %. The content of nitrogen in solid fuels varies: for hard coal between 0.2 and 3.5 wt.-% (maf), for lignite between 0.4 and 2.5 wt.-% (maf), for coke between 0.6 and 1.55 wt.-% (maf), for peat between 0.7 and 3.4 wt.-% (maf), for wood between 0.1 and 0.3 wt.-% (maf), and for waste between 0.3 and 1.4 wt.-% (maf) /17/. The content of nitrogen in liquid fuels varies for heavy fuel oil between 0.1 and 0.8 wt.-%, and for

fuel oil between 0.005 and 0.07 wt.-% /17/. Natural gas contains no organically bound nitrogen. The content of molecular nitrogen in natural gas has no influence on the formation of fuel-NO; only thermal-NO is formed.

Emissions of non-methane volatile organic compounds (NMVOC), e.g. olefins, ketones, aldehydes, result from incomplete combustion. Furthermore, unreacted fuel compounds such as methane (CH₄) can be emitted. The relevance of NMVOC/CH₄ emissions from boilers, which are often reported together as VOC, is very low for large-sized combustion plants. VOC emissions tend to decrease as the plant size increases (cf. /24/).

Carbon monoxide (CO) appears always as an intermediate product of the combustion process and in particular under understoichiometric combustion conditions. However, the relevance of CO released from combustion plants is not very high compared to CO_2 . The formation mechanisms of CO, thermal-NO and VOC are similarly influenced by combustion conditions.

Carbon dioxide (CO₂) is a main product from the combustion of all fossil fuels. The CO₂ emission is directly related to the carbon content of fuels. The content of carbon varies for hard and brown coal between 61 and 87 wt.-% (maf), for wood it is about 50 wt.-% and for gas oil and heavy fuel oil about 85 wt.-%.

The formation mechanism of nitrous oxide (N_2O) has not yet been completely clarified. There is a possible formation mechanism based on intermediate products (HCN, NH₃), which is comparable to the formation of NO /55/. It has been found, that lower combustion temperatures, particularly below 1,000 °C, cause higher N_2O emissions /13/. At lower temperatures the N_2O molecule is relatively stable; at higher temperatures the N_2O formed is reduced to N_2 /55/. Compared to emissions from conventional stationary combustion units, nitrous oxides from either bubbling, circulating or pressurised fluidised bed combustion are relatively high /13, 14/. In laboratory experiments, it has been found that nitrous oxide is formed by Selective Catalytic Reduction (SCR) processes, passing a maximum at, or close to, the optimum temperature "window" of the SCR process /13/.

Emissions of ammonia (NH_3) are not caused by a combustion process; the emissions result from incomplete reaction of NH_3 additive in the denitrification process (slip of ammonia in SCR and SNCR units).

Most of the heavy metals considered (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, Zn, V) are normally released as compounds (e.g. oxides, chlorides) in association with particulates. Only Hg and Se are at least partly present in the vapour phase. Less volatile elements tend to condense onto the surface of smaller particles in the flue gas stream. Therefore, an enrichment in the finest particle fractions is observed. The content of heavy metals in coal is normally several orders of magnitude higher than in oil (except occasionally for Ni and V in heavy fuel oil) and in natural gas. For natural gas only emissions of mercury are relevant. The concentrations are reported to be in the range of $2 - 5 \mu g/m^3$ for natural gas /35, 63/. During the combustion of coal, particles undergo complex changes which lead to vaporisation of volatile elements. The rate of volatilisation of heavy metal compounds depends on fuel characteristics (e.g.

concentrations in coal, fraction of inorganic components, such as calcium) and on technology characteristics (e.g. type of boiler, operation mode).

From DBB, all heavy metals of concern are emitted as particulate matter, except Hg and Se. Emissions from lignite fired DBB are potentially lower than from hard coal, as the trace element content in lignite and the combustion temperatures are lower. In WBB, the recirculation of fly ash is a common operation mode, which creates an important increase in heavy metal concentrations in the raw gas. Heavy metal emissions from FBC units are expected to be lower due to the lower operating temperatures and a smaller fraction of fine particles. The addition of limestone in FBC facilities might reduce the emission of some heavy metals, corresponding to an increased retention of heavy metals in the bottom ash. This effect can be partially compensated by the increase in the fraction of fine particulates in the flue gas leading to increased emissions from particulates highly enriched by heavy metals.

High concentrations of As poison denitrification catalysts. Therefore, Selected Catalytic Reduction plants (SCR) in a high-dust configuration may require special measures (e.g. reduction of fly ash recirculation). /10, 11, 12/

3.5 Controls

Relevant abatement technologies for SO_x , NO_x and heavy metals are outlined below. Abatement techniques for gas turbines and stationary engines are treated separately. Average reduction efficiencies and availabilities of abatement technologies for SO_x and NO_x are summarised in Tables 7, 10, and 11. Due to the fact, that most published studies do not clearly distinguish between SO_x and SO_2 , for the following chapters, it can be assumed that SO_2 includes SO_3 , if not stated otherwise.

3.5.1 Sulphur oxides: Flue Gas Desulphurisation Processes (FGD) (Secondary measures) /cf. 18/

FGD processes are designed to remove SO_2 from the flue gas of combustion installations. Most processes, like the wet scrubbing process (WS), the spray dryer absorption (SDA), the dry sorbent injection (DSI) and the Walther process (WAP) are based on the reaction of the SO_2 with an alkaline agent added as solid or as suspension/solution of the agent in water to form the respective salts. In secondary reactions also SO_3 , fluorides and chlorides are removed. In the case of the DESONOX process (see Section 3.5.4.2), the SO_2 is catalytically oxidised to SO_3 and reacts with water to form sulphuric acid. The Activated Carbon process (see Section 3.5.4.1) and the Wellman-Lord process remove the SO_2 to produce a SO_2 rich gas, which may be further processed to sulphur or sulphuric acid.

3.5.1.1 Lime/Limestone Wet Scrubbing (WS)

The pollutants are removed from the flue gas by chemical reactions with an alkaline liquid (suspension of calcium compounds in water). The main product is gypsum. The WS process represents about 90 % of the total FGD-equipped electrical capacity installed in European OECD countries. Facilities are in operation at combustion units using hard coal, lignite and oil with sulphur contents from about 0.8 to more than 3.0 wt.-%. Other fossil fuels (such as peat) are presently rarely used at combustion plants with a thermal capacity \geq 300 MW. The SO₂ reduction efficiency is > 90 %.

3.5.1.2 Spray Dryer Absorption (SDA)

The SDA process removes the pollutant components from flue gas of fossil fired combustion units by injection of Ca(OH)₂. The process forms a dry by-product (CaSO₃·1/2 H₂O). This technology covers about 8 % of the total FGD-equipped electrical capacity installed in the European OECD countries. The SDA process is mostly in use at hard coal fired combustion units (sulphur content of fuel up to 3 wt.-%). Recent pilot studies have shown that this technique is also operational with other fossil fuels (oil, lignite, peat). The SO₂ reduction efficiency is > 90 %.

3.5.1.3 Dry Sorbent Injection (DSI, LIFAC Process)

The DSI process is based on a gas/solid reaction of the flue gas and a dry sorbent (e.g. lime/limestone, sodium hydrogen carbonate NaHCO₃) inside the boiler. There are three different process types according to the injection point of the additive into the boiler (e.g. primary or secondary air, flame front). The by-products are a dry mixture of the respective salts (mostly CaSO₄). Only few power plants (some 5 % of the total FGD-equipped electrical capacity installed in European OECD countries) are equipped with this technology due to its low SO₂ reduction efficiency of 40 - 50 %, which is not sufficient to meet the emission standards of some countries. DSI processes are presently in use for hard coal, lignite, oil and coal/oil fired boilers. The optimum reduction efficiency is obtained for the sulphur contents of fuel between 0.5 and 1.7 wt.-% (max. 2 wt.-%).

The LIFAC process is an advanced dry sorbent injection process using additional water injection in a separate reactor downstream of the boiler, in order to raise the reduction efficiency. Generally, the SO₂ reduction efficiency is > 50 %. At present, the LIFAC process is used in one plant in Finland with a SO₂ reduction efficiency of already 70 %.

3.5.1.4 Wellman-Lord (WL)

The WL process is a regenerable FGD process, which uses the sodium sulphite $(Na_2SO_3)/$ sodium bisulphite (NaHSO₃) equilibrium in order to remove SO₂ from the flue gas. An SO₂-rich gas is obtained, which is used for the production of sulphuric acid. At present only three installations with a total thermal capacity of 3,300 MW are in use (in Germany), due to the complexity of the process and the resulting high investments and operating costs (this technology represents about 3 % of the total thermal capacity installed in the European OECD countries). The WL process is operational with various types of fuel (e.g. hard coal, oil), especially with high sulphur contents (of about 3.5 wt.-%). The SO₂ reduction efficiency is > 97 %.

3.5.1.5 Walther Process (WAP)

The WAP process uses ammonia water in order to remove SO_2 from the flue gas. The byproduct is a dry salt mixture of the respective ammonia salts (mainly ammonium sulphate ((NH₄)₂SO₄). One reference installation is currently operating in Germany. This process is operational with all types of fuel. However, the maximum sulphur content should be limited to 2 wt.-% (due to the increasing formation of ammonia sulphate aerosols). The SO₂ reduction efficiency is > 88 %.

3.5.2 Nitrogen oxides: Primary measures - Denitrification techniques /cf. 17, 18, 19/

3.5.2.1 Low NO_x burner (LNB)

A characteristic of LNB is the staged air to fuel ratio at the burner. Three different technical modifications are in use:

- Air-staged LNB: An understoichiometric zone is created by a fuel-air mixture and primary air. An internal recirculation zone occurs due to the swirl of primary air. A burn-out zone is created due to secondary air fed by air nozzles arranged around the primary air nozzles.
- Air-staged LNB with flue gas recirculation (FGR): The basic function is similar to air-staged LNB. The distances between the primary and secondary nozzles are greater, therefore, a flue gas layer is formed. As a result, the residence time in the reducing atmosphere increases and the oxygen concentration decreases.
- Air/Fuel staged LNB: An additional reduction zone around the primary zone is achieved by the extremely overstoichiometric addition of secondary fuel around the secondary flame.

LNB is operational with all fuels and all types of burners. The NO_x reduction efficiency for coal fired boilers varies between 10 and 30 % (see Table 10).

3.5.2.2 Staged Air Supply (SAS)

Staged air means the creation of two divided combustion zones - a primary zone with a lack of oxygen and a burn-out zone with excess air. SAS covers the low excess air (LEA), burners out of service (BOOS) and biased burner firing (BBF) techniques:

- Low excess air (LEA) means reduction of the oxygen content in the primary combustion zone of the burners. When firing hard coal, experience has shown that the general limitations are fouling and corrosion, caused by the reducing atmosphere and incomplete burn-out. When firing gas, the reduction efficiency is limited by the CO formed. LEA is more suitable for lignite and often used for retrofitting combustion plants. For oil fired boilers a reduction efficiency of 20 % has been achieved.
- Burners out of service (BOOS) means that the lower burner row(s) in the boiler operate under a lack of oxygen (fuel rich), the upper burners are not in use. This technology is in particular suitable for older installations, but the thermal capacity of the boiler decreases by about 15 - 20 %.
- Biased burner firing (BBF) means that the lower burner rows in the boiler operate under a lack of oxygen (fuel rich) and the upper burners with an excess of oxygen. The boiler efficiency is less compared to BOOS and the NO_x reduction is also lower.

The NO_x reduction efficiency for coal fired boilers varies between 10 and 40 % (see Table 10).

ps010101

3.5.2.3 Overfire Air (OFA)

All burner rows in the boiler operate with a lack of oxygen. The combustion air is partly (5 - 20 %) injected through separate ports located above the top burner row in the boiler. OFA is operational with most fuels and most types of boilers. For gas fired boilers a reduction efficiency of 10 - 30 % and for oil fired boilers 10 - 40 % has been achieved. The NO_x reduction efficiency for coal fired boilers varies between 10 and 40 % (see Table 10).

3.5.2.4 Flue Gas Recirculation (FGR)

The recirculation of flue gas into the combustion air is an efficient NO_x abatement method for firing modes with high combustion temperatures, such as wet bottom boilers and especially for gas and oil fired boilers.

The recirculated flue gas can be added to the secondary or primary air. In the first case, the flame core is not affected and the only effect is a reduction of the flame temperature, which is favourable for thermal-NO_x abatement. The influence on dry bottom boilers is thus very limited, considering the fact that about 80 % of the NO_x formed originates from fuel bound nitrogen; FGR can be used as an additional measure. A more efficient method is the introduction of flue gas into the primary air of an unstaged burner. High reduction efficiencies of FGR in the primary flow (15 - 20 %) have been achieved in gas and oil fired boilers. The NO_x reduction efficiency for coal fired boilers varies between 5 and 25 % (see Table 10).

3.5.2.5 Split Primary Flow (SPF)

Split primary flow means fuel staging in the furnace. This technique involves injecting fuel into the furnace above the main combustion zone, thereby producing a second understoichiometric combustion zone. In the primary zone of the boiler the main fuel is burnt under fuel-lean conditions. This zone is followed by a secondary zone with a reducing atmosphere, into which the secondary fuel is injected. Finally, secondary air is injected into the burn-out zone of the boiler. This reburning technique can, in principle, be used for all types of fossil fuel fired boilers and in combination with low NO_x combustion techniques for the primary fuels. When nitrogen is present in the reburning fuel, a part of it will be converted into NO_x in the burn-out zone. Therefore, natural gas is the most appropriate reburning fuel. NO_x reduction efficiencies have not been yet reported.

3.5.3 Nitrogen oxides: Secondary measures - Denitrification Processes /cf. 18, 19/

3.5.3.1 Selective Non-Catalytic Reduction (SNCR)

The reduction of nitrogen oxides in the flue gas is based on the selective reaction of NO_x with injected ammonia, urea or caustic ammonia to form nitrogen and water. The SNCR process has been implemented at several installations (e.g. in Germany, in Austria and in Sweden) and has in principle proved to be operational with various types of fuels. The NO_x reduction efficiency is about 50 %, in some installations up to 80 %.

3.5.3.2 Selective Catalytic Reduction (SCR)

The reduction of nitrogen oxides is based on selective reactions with injected additives in the presence of a catalyst. The additives used are mostly gaseous ammonia, but also liquid caustic ammonia or urea. The SCR technology accounts for about 95 % of all denitrification

processes. SCR is mostly used for hard coal. For brown coal, lower combustion temperatures lead to lower NO_x formation, so that primary measures fulfil the emission reduction requirements. Several heavy metals in the flue gas can cause rapid deactivation of the catalyst. The NO_x reduction efficiency varies between 70 and 90 %.

3.5.4 Nitrogen oxides and sulphur oxides: Simultaneous Processes /18, 19/

3.5.4.1 Activated Carbon Process (AC)

The AC process is a dry process for simultaneous SO_2 and NO_x removal based on the adsorption of the pollutants in a moving bed filter of activated carbon. The sulphur oxides undergo catalytic oxidation with the moisture in the flue gas to form sulphuric acid. NO_2 is completely reduced to N_2 ; NO reacts catalytically with the ammonia injected and forms N_2 and H_2O . The AC process has been installed at four power plants in Germany (in two cases downstream of an SDA process). The sulphur content in the fuel used should not exceed 2.3 wt.-%. The SO₂ reduction efficiency is > 95 %, the NO_x reduction efficiency is > 70 %.

3.5.4.2 DESONOX Process/SNOX Process (DESONOX)

The purification of the flue gas by the DESONOX process is based on the simultaneous catalytic reduction of nitrogen oxides (NO_x) to nitrogen (N₂) and water (H₂O) and on the catalytic oxidation of sulphur dioxide (SO₂) to sulphur trioxide (SO₃). The by-product is sulphuric acid. The process has been installed at one power plant in Germany, where hard coal is used with a sulphur content of about 1 wt.-%. The concentration of catalyst toxics (mainly arsenic, but also chromium, selenium etc.) has to be taken into account. The SO₂ reduction efficiency is up to 95 %, the NO_x reduction efficiency is also up to 95 %.

The SNOX process works on the same basic principle as the DESONOX process, with the main difference that reduction and oxidation take place in two separate reaction towers. The SNOX process has been applied at one Danish power plant. No reduction efficiency has been reported yet. The SNOX process is also known as a combination of the Topsøe WSA-2 process and the SCR process.

3.5.5 Heavy metals: Secondary measures /12, 20, 21, 22, 23/

Heavy metal emissions are mainly reduced by dust control equipment. Particulate control systems, which are used in coal-fired power plants, are cyclones, wet scrubbers, electrostatic precipitators (ESP), and fabric filters. In most power plants 99 % of the particulates are removed from the flue gases by using ESP or fabric filters. The latter are more efficient in controlling fine particulate matter; wet scrubbers and cyclones are less efficient.

The reduction efficiency of ESP for most elements in the solid state is > 99 %. Only for some higher volatile elements, such as Cd, Pb, Zn and Se, is the reduction efficiency less, but it remains above 90 %. The reduction efficiency of an ESP for Hg depends on the operating temperature of the ESP. A cold-side ESP operating at about 140 °C is estimated to have an average Hg reduction efficiency of about 35 %.

The influence of FGD- and $DeNO_x$ -units on heavy metal emissions has been investigated mainly in the frame of mass balance studies. WS-FGD-units remove a further fraction of

particulate matter in flue gas in addition to dust control. Particle bound elements are removed by FGD-units with an efficiency of about 90 %. In FGD-units, in particular WS-units, the gaseous compounds can additionally condense on particulate matter, which are mainly removed in the prescrubber. With regard to gaseous elements, various studies have shown reduction efficiencies of 30 - 50 % for Hg and 60 - 75 % for Se. Lime contributes over 90 % of the input of As, Cd, Pb and Zn to the FGD.

The abatement of Hg emissions is influenced indirectly by $DeNO_x$ -units. A high dust SCRunit improves Hg removal in a subsequent FGD-unit using a lime scrubbing system. The SCR-unit increases the share of ionic mercury (HgCl₂) to up to 95 %, which can be washed out in the prescrubber of the FGD-unit. A study in the Netherlands found no influence of LNB on heavy metal emissions.

3.5.6 Gas turbines /cf. 68, 69/

For gas turbines mainly NO_X emissions are of most relevance. Primary measures for NO_X reduction are the following: dry controls (e.g. overstoichiometric combustion in a dry low NO_X burner with $\eta = 0.6 - 0.8$, which is a relatively new development as a primary measure) and wet controls (injection of water and/or steam with $\eta \ge 0.6 / 114 / 1$) in order to regulate the combustion temperature. For large gas turbines secondary measures are also installed such as Selective Catalytic Reduction (SCR).

3.5.7 Stationary engines /cf. 70/

For spark-ignition engines the main pollutants emitted are NO_x , CO and unburned hydrocarbons (VOC). For diesel engines sulphur dioxide (SO₂) emissions have also to be considered. Emissions of soot also contribute to emissions of heavy metals and persistent organic pollutants, but at this stage insufficient information is available /35/.

Primary measures are installed to optimise combustion conditions (air ratio, reduced load, water injection, exhaust-gas recirculation, optimised combustion chamber etc.). Reduction efficiencies can be given e.g. for exhaust gas recirculation from 6.5 to 12 % and for internal exhaust gas recirculation from 4 to 37 %. External exhaust gas recirculation (turbo charged models) can have reductions of NO_x varying from 25 to 34 %. /cf. 114/

Secondary measures are installed, if the emission thresholds cannot be met by adjustments to the engine itself. The following methods are used depending on the air ratio λ :

- $\lambda = 1$ Reduction of NO_X, CO and VOC by using a three-way catalytic converter (NSCR),
- $\lambda > 1$ Reduction of NO_X by Selective Catalytic Reduction with NH₃ (SCR), Reduction of other emissions (CO, VOC) using oxidation catalytic converter (NSCR).

Typical conversion rates of NO_x range from 80 to 95 % with corresponding decreases in CO and VOC. Depending on the system design, NO_x removal of 80 up to 90 % is achievable. /114/

4 SIMPLER METHODOLOGY

4.1 General

4.1.1 General / specified emission factors

Here "simpler methodology" refers to the calculation of emissions, based on emission factors and activities. The simpler methodology should only be used in cases where no measured data is available. The simpler methodology covers all relevant pollutants (SO₂, NO_x, NMVOC, CH₄, CO, CO₂, N₂O, NH₃, heavy metals). Special emphasis is put on the pollutants SO_x, NO_x and heavy metals, due to the significant contribution of combustion plants as point sources to the total emissions of these pollutants.

A combustion plant can be treated either as a whole (irrespective of kind/size of individual boilers) or on a boiler-by-boiler level. Differences in design and operation of boilers, in fuels used and/or controls installed require different emission factors. The same applies to gas turbines and stationary engines.

The annual emission E is derived from an activity A and a factor which determines their linear relation (see Equation (1)):

$$\mathbf{E}_{i} = \mathbf{E}\mathbf{F}_{i} \cdot \mathbf{A} \tag{1}$$

E_i annual emission of pollutant i

EF_i emission factor of pollutant i

A activity rate

The activity rate A and the emission factor EF_i have to be determined on the same level of aggregation by using available data (e.g. fuel consumption) (see Section 6). For the activity rate A, the energy input in [GJ] should be used, but in principle other relations are also applicable.

Two different approaches in order to obtain the emission factor EF_i are proposed:

- General emission factor EF_G

The general emission factor is a mean value for defined categories of boilers taking into account abatement measures (primary and secondary). A general emission factor is only related to the type of fuel used and is applicable for all pollutants considered, except of SO_2^{5} . It should only be used where no technique specific data are available (only as a makeshift).

- Specified emission factor EF_{R:}

The specified emission factor is an individually determined value for boilers taking into account abatement measures (primary and secondary). A specified emission factor is related to individual fuel characteristics (e.g. sulphur content of fuel) and to technology specific

⁵ For the appropriate determination of SO₂ emissions the sulphur content of fuel is required. Therefore, the specified emission factor approach has to be applied.

parameters. The following sections provide determination procedures for suitable specified emission factors for the pollutants NO_x , SO_x and heavy metals.

In principle, plant specific data should be used, if available, for the determination of emission factors. The following Sections 4.1 to 4.8 give recommendations for the estimation and the use of general and specified emission factors as given in Table 4.

Table 4: Applicability of general emission factors EF_{G_i} and specified emission factors EF_{R_i}

Pollutant	General emission factor EF_{Gi}	Specified emission factor EF_{R_i}
SO _x	-	+
NO _x	+	++ ¹⁾
Heavy metals	+	$++^{2)}$
NMVOC, CH ₄ , CO, CO ₂ , N ₂ O, NH ₃	+	*

+: possible, but not recommended methodology; ++ : possible and recommended methodology;

- : not appropriate; * : not available

¹⁾ detailed calculation schemes are given for pulverised coal combustion

²⁾ detailed calculation schemes are given for coal combustion

An accurate determination of full load emissions can only be obtained by using specified emission factors. For the calculation of specified SO_x and NO_x emission factors for pulverised coal combustion, a computer programme has been developed (see Annexes 2 - 6 and Annex 14).

If not stated otherwise, the general and specified emission factors presented refer to full load conditions. Start-up emissions have to be considered separately (see Section 4.1.2).

4.1.2 Start-up dependence

Start-up emissions depend on the load design of the plant and on the type of start-up (see Tables 5 and 6). A plant can be designed for:

- peak load: to meet the short-term energy demand,
- middle load: to meet the energy demand on working days,
- base load: continuous operation.

Table 5: Load design and start-ups per year

Load design	Start-up	s per year	Full load hou	Emission	
	range	value	range	value	relevance ²⁾
Peak load ¹⁾	150 - 500	200	1,000 - 2,500	2,000	x ¹⁾
Middle load	50 - 250	150	3,000 - 5,000	4,000	XXX
Base load	10 - 20	15	6,000 - 8,000	7,000	х

¹⁾ For peak load often high-quality fuels (e.g. gas, oil) and often gas turbines are used.

²⁾ x: low; xxx: high.

Type of start-up	Time of stand- still [h] /65/	Status of the boiler	Frequency ²⁾	Emission relevance ²⁾
Hot-start	< 8	hot	XXX	Х
Warm-start	8 - ca. 50	warm	XX	XX
Cold-start	> 50	cold	$\mathbf{x}^{1)}$	XXX

¹⁾ normally once a year, only for maintenance.

²⁾ x: low; xx: medium; xxx: high.

In order to take into consideration the relevance of start-up emissions, a detailed investigation has been carried out. There, start-up emissions and start-up emission factors have been determined for different types of boilers (DBB, WBB, gas-fired boiler, see Annex 15). Start-up emissions are only relevant if secondary measures are installed.

By taking into account boiler characteristics as given in Annex 15, the following general trends of start-up emissions of SO_x , NO_x and CO on the type of fuel and type of boiler are obtained (based on /116/).

- For the boilers considered in the detailed investigation it has been found that start-up emissions for the combustion of coal are significantly higher than for the combustion of gas.
- Start-up emissions are higher for dry bottom boilers than for wet bottom boilers and gas boilers.

In the following sections, start-up emissions and start-up emission factors derived from measured data are presented as ratios:

$$F^{\rm EF} = EF^{\rm A} / EF^{\rm V} \tag{2}$$

F^{EF} ratio of start-up and full load emission factors []

EF^A emission factor at start-up period [g/GJ]

EF^v emission factor at full load conditions [g/GJ]

$$\mathbf{F}^{\mathrm{E}} = \mathbf{E}^{\mathrm{A}} / \mathbf{E}^{\mathrm{V}} \tag{3}$$

F^E ratio of start-up and full load emissions []

E^A emission during start-up period (see Section 3.2) [Mg]

 E^v emission for full load conditions during start-up period [Mg]

Start-up emissions and full load emissions are related to comparable periods; the energy input (fuel consumption) during the start-up period is lower than during full load operation. The emission factor ratio F^{EF} is often higher than the emission ratio F^{E} . Increased specific

emissions during the start-up period were found to be compensated to a high degree by the lower fuel consumption. Further pollutant specific results are given in the Sections 4.2 - 4.9.

If start-up emissions are taken into account the corresponding activity rates have to be determined as follows:

$$A = A_{\text{full load}} + A_{\text{cold}} + A_{\text{warm}} + A_{\text{hot}}$$
(4a)

А activity rate within the period considered [GJ] activity rate for full load operation periods [GJ] A_{full load} activity rate for cold start periods [GJ] Acold A_{warm} activity rate for warm start periods [GJ] activity rate for hot start periods [GJ] A_{hot}

Each sub-activity (e.g. A_{cold}) has to be determined separately by totalling the thermal energy input for the respective periods e.g. cold start periods.

Accordingly, Equation (1) becomes:

$\mathbf{E} = \mathbf{E}\mathbf{F}^{\mathbf{V}} \cdot (\mathbf{A}_{\text{full loa}})$	$_{\rm d}$ + $F_{\rm cold}^{\rm EF}$ · $A_{\rm cold}$ + $F_{\rm warm}^{\rm EF}$ · $A_{\rm warm}$ + $F_{\rm hot}^{\rm EF}$ · $A_{\rm hot}$) · 10 ⁻⁶	(4b)
E	emission within the period considered [Mg]	
EF^{V}	emission factor at full load operation conditions [g/GJ]	
$\mathrm{F}^{\mathrm{EF}}_{\mathrm{cold/warm/hot}}$	ratio of start-up (cold/warm/hot start) to full load emission factor []	
Afull load/cold/	activity rates at full load operation/cold start/ [GJ]	

The emission factor at full load conditions EF^V can be approximated by using the emission factors given in Tables 24 and 25 (for NO_x) and Table 28 (for CO); SO₂ emission factors can be determined as given in Equation (5). A correction factor for the annual emission can be obtained by calculating the ratio of the annual emissions resulting from Equation (4b) to those determined without consideration of start-up emissions.

4.1.3 Load dependence

A load dependence of emissions has only been found for NO_x emissions released from older types of boiler (see Section 4.3).

4.2 SO₂ emission factors

For SO₂, only specified emission factors $\mathrm{EF}_{\mathrm{R}_{\mathrm{SO2}}}$ are recommended here. For the determination of specified SO₂ emission factors the following general equation should be used (for emissions of SO₃ see Section 9):

$$EF_{R_{SO2}} = 2 \cdot C_{S_{fuel}} \cdot (1 - \alpha_S) \cdot \frac{1}{H_u} \cdot 10^6 \cdot (1 - \eta_{sec} \cdot \beta)$$
(5)

 $\mathrm{EF}_{\mathrm{R}_{\mathrm{SO2}}}$ specified emission factor [g/GJ]

 $\boldsymbol{C}_{\boldsymbol{S}_{fuel}}$ sulphur content in fuel [kg/kg]

sulphur retention in ash [] $\alpha_{\rm s}$

H_u lower heating value of fuel [MJ/kg]

 η_{sec} reduction efficiency of secondary measure []

 β availability of secondary measure []

Equation (5) can be used for all fuels, but not all parameters may be of relevance for certain fuels (e.g. α_s for gas). Default values for reduction efficiencies and availabilities of secondary measures installed are presented in Table 7. The technologies listed in Table 7 are mainly installed in the case of coal-fired boilers, but they can also be applied when burning other fuels.

No.	Type of secondary measure	Reduction efficiency η _{sec} []	Availability β[]
1	WS	0.90	0.99
2	SDA	0.90	0.99
3	DSI	0.45	0.98
4	LIFAC	0.70	0.98
5	WL	0.97	0.99
6	WAP	0.88	0.99
7	AC	0.95	0.99
8	DESONOX	0.95	0.99

Table 7: Default values for secondary measures for SO₂ reduction (all fuels) /18, 19/

4.2.1 Combustion of coal

SO₂ emission factors for coal fired boilers can be calculated by using Equation (5). If some input data are not available, provided default values based on literature data can be used:

- C _{s,fuel}	see Annexes 7 and 8, Table 23,
- α _s	see Table 8,
- η_{sec} and β	see Table 7,
- H _u	see Annexes 7 and 8.

For further details concerning the calculation of SO_2 emission factors, see Annexes 2 (flowsheet of the computer programme) and 3 (description of the computer programme). Default values for sulphur retention in ash for coal fired boilers are presented in Table 8.

Type of boiler	α _s []		
	Hard coal	Brown coal	
DBB	0.05	0.31)	
WBB	0.01	-	

Table 8: Default values for the sulphur retention in ash (α_s) for pulverised coal fired boilers

¹⁾ average value; in practice, a range of 0.05 - 0.60 can occur (e.g. in the Czech Republic 0.05 is used)

Emission factors obtained by using Equation (5) are related to full load conditions; start-up emissions are not taken into account. If a flue gas desulphurisation unit is installed, start-up emissions should be considered as given in Section 4.1.2. The relevance of start-up emissions of SO_2 depends strongly on the following parameters:

- the type of fuel (e.g. SO_x emissions are directly related to the fuel sulphur content),
- the status of the boiler at starting time (hot, warm or cold start, see also Table 6),
- start-up of the flue gas desulphurisation unit (FGD direct or in by-pass configuration),
- limit for SO_x emissions, which has to be met (boiler specific limits can be set up below the demands of the LCP Directive).

For the combustion of coal in dry bottom boilers, the following ranges and values of F^{EF} , F^{E} have been obtained within the investigation outlined in Annex 15:

Table 9: Ratios of start-up to full load emission factors F^{EF} and ratios of start-up to full load
emissions F^E for SO2 for dry bottom boilers

	Ratio of start-up to full load emission factors F ^{EF} []	Ratio of start-up to full load emissions F ^E []
Range	3 - max. 16	1 - max. 4
Values for direct start-up of the FGD	$\begin{array}{rrrr} F_{cold}^{EF}: & 5 \\ F_{warm}^{EF}: & 5 \\ F_{hot}^{EF}: & 4 \end{array}$	$\begin{array}{rcl} F^{\rm E}_{\rm cold}:&1\\ F^{\rm E}_{\rm warm}:&1\\ F^{\rm E}_{\rm hot}:&1 \end{array}$
Values for by-pass start-up of the FGD	$F_{cold}^{EF}: 8.5 - 16$ $F_{warm}^{EF}: 5 - 14.5$ $F_{hot}^{EF}: 5 - 5.5$	$F_{cold}^{E}: 2 - 4.5$ $F_{warm}^{E}: 1 - 3.5$ $F_{hot}^{E}: 1.5$

F^{EF}_{cold, warm, hot} Ratio of start-up to full load emission factors for cold, warm or hot start-ups (see also Table 6)

 $F_{cold, warm, hot}^{E}$ Ratio of start-up to full load emissions for cold, warm or hot start-ups (see also Table 6)

The values from the direct start-up of the FGD show, that start-up emissions of SO₂ are not relevant (ratio F^E of ca. 1). In the case of a by-pass start-up of the FGD, start-up emissions of SO₂ are significant for hot, warm and cold starts; start-up emissions can be up to 4 times higher than emissions in a comparable full load time span (based on /116/).

4.2.2 Combustion of other fuels (biomass, waste, liquid fuels, gaseous fuels)

SO₂ emissions are directly related to the sulphur content of biomass, waste, liquid and gaseous fuels (see Equation (5)). The sulphur retention in ash α_s is not relevant. The reduction efficiency η_{sec} and the availability β of installed secondary measures have to be taken into account (in particular for the combustion of waste). Default values for η and β are given in Table 7. Sulphur contents of different fuels are given in Table 23 and in Annexes 7 and 8.

4.3 NO_x emission factors

For the determination of NO_x emissions, general as well as specified NO_x emission factors can be used. Emission factors are listed in Tables 24 and 25 depending on installed capacity, type of boiler, primary measures and type of fuel used.

4.3.1 Combustion of pulverised coal

Specified NO_x emission factors can be calculated individually for pulverised coal fired boilers. Due to the complex reaction mechanism of NO_x formation (see also Section 3.4) an estimate of specified NO_x emission factors can only be made on the basis of empirical relations as given in Equation (6). The decisive step in Equation (6) is the undisturbed NO_x formation (without primary measures) inside the boiler ($C_{NO_{2,boiler}}$). $C_{NO_{2,boiler}}$ is determined by an empirical equation depending on fuel parameters only, as described in Annex 5.

$$EF_{R_{NO_2}} = C_{NO_2, \text{boiler}} \cdot (1 - \eta_{\text{prim}}) \cdot \frac{1}{H_u} \cdot 10^6 \cdot (1 - \eta_{\text{sec}} \beta)$$
(6)

 $\text{EF}_{R_{\text{NO7}}} \quad \text{ specified emission factor } [g/GJ]$

C_{NO_{2,boiler} total content of nitrogen dioxide formed in the boiler without taking into account primary reduction measures (in mass NO₂/mass fuel [kg/kg])⁶}

 η_{prim} reduction efficiency of primary measures []

H_u lower heating value of fuel [MJ/kg]

 η_{sec} reduction efficiency of secondary measure []

 β availability of secondary measure

For further details concerning the calculation of specified NO_2 emission factors see Annexes 4 (flowsheet of the computer programme) and 5 (description of the computer programme).

If some input data are not available, default values based on literature data are provided for:

- C _{N, fuel} , content of fuel-nitrogen,	see Annexes 7 and 8,
- C _{volatiles} , content of volatiles in the fuel,	see Annexes 7 and 8,

⁶ Note: The computer programme, which is described in Annex 5, provides C_{NO2 boiler} as (mass pollutant/mass flue gas [kg/kg]).

- η _{prim}	see Table 10,
- η_{sec} and β	see Table 11,
- H _u	see Annexes 7 and 8.

Default values for the reduction efficiency of primary measures are presented in the following Tables 10 and 11.

	Reduct	ion effici	ency DBB η	[]	Reduction e WBB η[]	efficiency
Type of primary	Hard c	oal	Ligni	ite	Hard	coal
measure ¹⁾	range	value ³⁾	range	value ³⁾	range	value ³⁾
no measure ⁴⁾	0	0	0	0	0	0
LNB	0.10 - 0.30	0.20	0.10 - 0.30	0.20	0.10 - 0.30	0.20
SAS	0.10 - 0.40	0.30	0.10 - 0.40	0.30	0.10 - 0.40	0.30
OFA	0.10 - 0.40	0.30	0.10 - 0.35	0.25	0.10 - 0.35	0.25
FGR	0.05 - 0.15	0.10	0.05 - 0.20	0.15	0.10 - 0.25	0.20
LNB/SAS	0.20 - 0.60	0.45	0.20 - 0.60	0.45	0.20 - 0.60	0.45
LNB/OFA	0.20 - 0.60	0.45	0.20 - 0.55	0.40	0.20 - 0.55	0.40
LNB/FGR	0.15 - 0.40	0.30	0.15 - 0.45	0.30	0.20 - 0.50	0.35
SAS/OFA	0.20 - 0.65	0.50	0.20 - 0.60	0.40	0.20 - 0.60	0.40
SAS/FGR	0.15 - 0.50	0.40	0.15 - 0.50	0.40	0.20 - 0.55	0.45
OFA/FGR	0.15 - 0.50	0.40	0.15 - 0.50	0.35	0.20 - 0.50	0.40
LNB/SAS/OFA	0.30 - 0.75	0.60	0.30 - 0.75	0.60	0.30 - 0.75	0.60
LNB/SAS/FGR	0.25 - 0.65	0.50	0.25 - 0.70	0.50	0.30 - 0.70	0.55
LNB/OFA/FGR	0.25 - 0.65	0.50	0.25 - 0.65	0.50	0.30 - 0.65	0.50
old installation/ optimised		0.15		0.15		0.15
old installation/ retrofitted ²⁾		0.50		0.50		0.50
new installation ²⁾		0.40		0.40		0.40

Table 10: Reduction efficiencies for selected primary measures for NO_X emissions in coal fired boilers /17, 18, 19, 28, 31, 32, 33, 34, 53/ (value means recommended value)

¹⁾Selection from the DECOF database developed by and available at the Institute for Industrial Production (IIP).

²⁾ Recommended values, when no information concerning the type of primary measure is available.

³⁾ Default values used in the computer programme.

⁴⁾No primary measures are installed. This case is mainly relevant for old installations.

Table 11: Default values for reduction efficiency and availability of secondary measures for NO_x reduction /18, 19/ (all fuels)

No.	Type of secondary measure	Reduction efficiency $\eta_{sec}[$	Availability β[]
1	SNCR	0.50	0.99
2	SCR	0.80	0.99
3	AC	0.70	0.99
4	DESONOX	0.95	0.99

Emission factors of NO_2 for different coal compositions have been calculated by using default values as given above and are listed in Table 25.

The load dependence of NO_X emissions can be split into two different phenomena (see Sections 4.1.2 and 4.1.3):

a) Load variations during normal operation:

Load variations are discussed very controversially in the literature. Often a strong correlation of NO_x emissions and load is reported. Load corrections, e.g. as given in /66/, may be appropriate for older types of boilers.

For boilers of modern design, with optimised combustion conditions e.g. by primary measures, only a negligible load dependence has been reported /64/. This is explained by the fact that for modern boilers (with primary measures) under reduced load conditions an overstoichiometric air ratio is applied in order to achieve an acceptable burning out of the fuel, which leads to NO_x emission factors similar to those obtained under full load conditions. Therefore, for boilers of modern design no load correction is proposed.

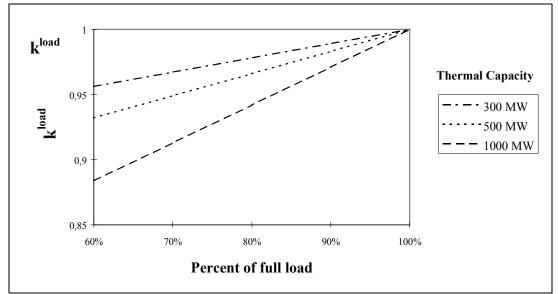
For older boilers (without primary measures) a load dependent emission factor can be calculated according to Equation (7), which has been derived for German dry bottom boilers (combustion of hard coal) /71/:

$$EF = 1,147 + 0.47 \cdot L \tag{7}$$

EF emission factor [g/MWh]⁷ L actual load [MW]

At this stage, no general approach is available for estimating the load dependence of NO_x emissions. However, a load correction factor can be obtained by using a ratio between reduced load and full load emission factors:

⁷ 1 MWh = 3.6 GJ


COMBUSTION IN ENERGY & TRANSFORMATION INDUSTRIES Activities 010101 - 010105

$$k^{\text{load}} = \frac{EF^{\text{Reduced load}}}{EF^{\text{V}}} = \frac{1,147 + 0.47 \cdot L}{1,147 + 0.47 \cdot L_{\text{nominal}}}$$
(8)

ps010101

kloadratio of reduced load to full load emission factor []EFReduced loademission factor for reduced load conditions [g/MWh]6EFVemission factor for full load conditions [g/MWh]6Lactual load [MW]Lnominalnominal load [MW]

Figure 1.1 gives a graphic presentation of the results of Equation (8):

Figure 1.1: Variation of k^{load} with load

If reduced load operation is taken into account the corresponding activity rates have to be determined as follows:

$$A = A_{\text{full load}} + A_{\text{load }1} + A_{\text{load }2} + \dots$$
(9a)

А	activity rate within the period considered [GJ]
$A_{\text{full load}}$	activity rate for full load operation periods [GJ]
$A_{load i}$	activity rate for reduced load operation periods at level i [GJ]

Each sub-activity (e.g. $A_{load 1}$) has to be determined separately by totalling the thermal energy input for the respective periods of operation e.g. at load level 1.

Emissions are calculated according to Equation (9b):

$$E = EF^{V} \cdot (A_{\text{full load}} + k^{\text{load 1}} \cdot A_{\text{load 1}} + k^{\text{load 2}} \cdot A_{\text{load 2}} + ...) \cdot 10^{-6}$$
(9b)

$$E \qquad \text{emission within the period considered [Mg]}$$

$$EF^{V} \qquad \text{emission factor at full load conditions [g/GJ]}$$

$$A_{\text{load i}} \qquad \text{activity rates at load level i [GJ]}$$

$$k^{\text{load i}} \qquad \text{ratio of reduced load to full load emission factor at load level i []}$$

If secondary measures are installed, no load correction for NO_X emissions has to be taken into account.

b) Load variations with respect to start-up behaviour:

Emission factors for NO_x , as given in Tables 24 and 25, are related to full load conditions; start-up emissions are not taken into account. If an SCR is installed, start-up emissions should be considered as given in Section 4.1.2. The relevance of start-up emissions of NO_x depends strongly on the following parameters:

- the type of boiler (e.g. NO_x emissions released by wet bottom boilers are always higher than those by dry bottom boilers, due to higher combustion temperatures),
- the type of fuel used (e.g. fuel nitrogen also contributes to the formation of NO_x),
- the status of the boiler at starting time (hot, warm or cold start),
- the specifications of any individual start-up, such as
 - -- the duration and the velocity of start-up,
 - -- the load level (reduced load or full load),
 - -- the configuration of secondary measures (e.g. the start-up time of the high-dustconfigurations (SCR-precipitator-FGD) depends on the boiler load, due to the fact that the SCR catalyst is directly heated by the flue gas; tail-end-configurations (precipitator-FGD-SCR) can have shorter start-up times, due to the fact that the SCR catalyst can be preheated by an additional furnace),
 - -- emission standards, which have to be met (boiler-specific emission standards can be set up below the demands of the LCP Directive).

In the investigation mentioned in Annex 15 the measured data from different boilers have been analysed. For the combustion of coal the following ratios have been obtained (based on /116/):

- For the combustion of coal in dry bottom boilers the following ranges and values can be given:

Table 12:	Ratios of start-up to full load emission factors F ^{EF} and ratios of start-up to full	
	load emissions \overline{F}^{E} for NO ₂ for dry bottom boilers	

	Ratio of start-up to full load emissions factors F ^{EF} []	Ratio of start-up to full load emissions F ^E []
Range	2 - max. 6	1 - 2
Values for DBB	F_{cold}^{EF} : 3.5 - 6 F_{warm}^{EF} : 3 - 6.5 F_{hot}^{EF} : 2.5 - 3	$F_{cold}^{E} : 1.5 - 2$ $F_{warm}^{E} : 1 - 2$ $F_{hot}^{E} : 1 - 1.5$

F^{EF}_{cold, warm, hot} Ratio of start-up to full load emission factors for cold, warm or hot start-ups (see also Table 6)

 $F_{cold, warm, hot}^{E}$ Ratio of start-up to full load emissions for cold, warm or hot start-ups (see also Table 6)

The investigation revealed that start-up emissions of NO_2 were mostly higher than emissions under full load conditions. There is a dependence between start-up emissions (see Section 3.2) and the time of standstill of the boiler: cold starts showed emissions about 2 times higher, warm starts about 1 up to 2 times higher and hot starts about 1 up to 1.5 higher than at full load conditions. Start-up emission factors can be up to 6 times higher than full load emission factors. At the investigated boilers the SCR was installed in a high-dust configuration.

For the combustion of coal in wet bottom boilers (SCR in tail-end configuration) it was found that start-up emissions were not higher than full load emissions (ratio of ≤1).
 However, this consideration is based on data of only two boilers. Measured data for hot starts was not available.

 NO_x emissions, in particular for the combustion of coal in DBB, might be underestimated, if these effects are not taken into account.

4.3.2 Combustion of other fuels (biomass, waste, liquid fuels, gaseous fuels)

The emission calculation is based on Equation (1). During the combustion of solid and liquid fuels, fuel-NO and thermal-NO are formed. For gaseous fuels only thermal-NO_x is relevant, as gaseous fuels do not contain any fuel-nitrogen. For gaseous fuels the emission reduction is mainly achieved by primary measures. There are several biomass-fuelled plants with SNCR in Sweden.

The analysis of emission data from a gas fired boiler, equipped with an SCR, revealed that start-up emissions are not of relevance (ratios F^E were below 1) (based on /116/).

4.4 NMVOC/CH₄ emission factors

The emission calculation is based on Equation (1). Fuel and technique specific emission factors are given in Tables 26 and 27.

ps010101

4.5 CO emission factors

The emission calculation is based on Equation (1). Fuel and technique specific emission factors are given in Table 28 (full load conditions); start-up emissions are not taken into account. CO emissions at starting time and under full load conditions are mainly influenced by the combustion conditions (oxygen availability, oil spraying etc.). In the detailed investigation start-up emissions for CO have only been found to be relevant for the combustion of coal. Start-up emissions for CO are determined for the time when burners switch-on up to the time when the boiler operates on minimum load.

For the combustion of coal and gas the following results have been obtained (based on /116/ see also Section 4.1.2):

- For the combustion of coal in dry bottom boilers the following ranges can be given:

Table 13:Ratios of start-up to full load emission factors F^{EF} and ratios of start-up to full
load emissions F^{E} for CO for dry bottom boilers

	Ratios for start-up to full load emission factors F ^{EF} []	Ratios for start-up to full load emissions F ^E []
Range	0.5 - 3.5	0.1 - 0.7
Values for DBB	$F_{cold}^{EF} : 1.5 - 3.5$ $F_{warm}^{EF} : 1$ $F_{hot}^{EF} : 0.5$	$\begin{array}{l} F_{cold}^{E} & : \ 0.4 - 0.7 \\ F_{warm}^{E} & : \ 0.2 - 0.7 \\ F_{hot}^{E} & : \ 0.1 \end{array}$

F^{EF}_{cold,warm,hot} Ratio of start-up to full load emission factors for cold, warm or hot start-ups (see also Table 6)

F^E_{cold warm hot} Ratio of start-up to full load emissions for cold, warm or hot start-ups (see also Table 6)

The values in Table 13 show that start-up emissions for CO for DBB are lower than full load emissions for the boilers considered.

- Start-up emissions from wet bottom boilers can be up to 1.2 times higher than full load emissions for cold starts ($F^{EF} = 4$); they are lower for warm starts ($F^{E} = 0.3$; $F^{EF} = 0.8$).
- Start-up emissions of CO from gas boilers are also negligible.

4.6 CO₂ emission factors

The emission calculation is based on Equation (1). Fuel specific emission factors are given in Table 29. For the determination of specified CO_2 emission factors, the following general Equation (10) can be used:

$$EF_{R_{CO2}} = \frac{44}{12} \cdot C_{C_{fuel}} \cdot \varepsilon \cdot \frac{1}{H_u} \cdot 10^6$$
(10)

 $EF_{R_{CO2}}$ specified emission factor [g/GJ]

 $C_{C_{fuel}}$ carbon content of fuel (in mass C/mass fuel [kg/kg])

ε fraction of carbon oxidised []

H_u lower heating value of fuel [MJ/kg]

Default values for carbon content and lower heating value of different coals, available on the world market, are given in Annexes 7 and 8. The fraction of carbon oxidised (ϵ) is defined as the main part of carbon which is oxidised to CO₂; small amounts of carbon may remain unoxidised. Default values for ϵ according to IPCC /61/ are for liquid fuels 0.99, for solid fuels 0.98 and for gaseous fuels 0.995. In this approach it is assumed that the only product of the oxidation is CO₂. Nevertheless, double counting of CO₂ has to be avoided: products of incomplete oxidation, like CO, must not be converted into CO₂.

The IPCC/OECD presented an overall model (the so-called reference approach) specially designed for the calculation of CO_2 emissions on a national level (not on a plant level) /61/. This methodology is based on national energy balances.

4.7 N₂O emission factors

The emission calculation is based on Equation (1). The fuel and technique specific emission factors are given in Table 30. At this stage, several pilot studies using measured data are described in the literature /13, 14, 25, 26, 27/. A complete list of influencing parameters has not yet been identified.

4.8 NH₃ emission factors

Emission factors referring to the energy input are not yet available. The available data for ammonia slip at SCR/SNCR installations are based on measurements and are related to the flue gas volume: SCR/SNCR installations are often designed for an ammonia slip of about 5 ppm (3.8 mg NH_3/m^3 flue gas) /45, 62/. The ammonia slip at SCR and SNCR installations increases with an increasing NH_3/NO_x ratio, but also with a decreasing catalyst activity.

4.9 Heavy metal emission factors

For heavy metals, general and specified emission factors can be used. Emission factors, depending on the fuel used and the technique installed, are given in Table 31.

The IPCC/OECD presented an overall model (the so-called reference approach) specially designed for the calculation of CO_2 emissions on a national level (not on a plant level) /61/. This methodology is based on national energy balances.

4.9.1 Combustion of coal

For an individual determination of specific heavy metal emission factors, three different methodologies can be applied, taking into account:

-	fuel composition	(particle-bound and gaseous emissions),
-	fly ash composition	(particle-bound emissions),
-	fly ash concentration in clean gas	(particle-bound emissions).

The choice of the methodology depends on data availability.

4.9.1.1 Calculation of specified emission factors based on fuel composition /cf. 35/

Emissions of heavy metals associated with particulate matter and gaseous emissions are assessed subsequently as given in Equation (11). The enrichment behaviour of heavy metals with regard to fine particles is taken into account as an enrichment factor (see also Section 3.4). Gaseous emissions have to be taken into account additionally in the case of arsenic, mercury and selenium.

$$EF_{R_{HM}} = C_{HM_{coal}} \cdot f_a \cdot f_e \cdot 10^{-2} \cdot (1 - \eta_p) + C_{HM_{coal}} \cdot f_g \cdot 10^{-2} \cdot (1 - \eta_g)$$
(11)

 $\begin{array}{ll} EF_{R_{HM}} & \mbox{specified emission factor of heavy metal (in mass pollutant/mass coal [g/Mg])} \\ C_{HM_{coal}} & \mbox{concentration of heavy metal in coal [mg/kg]} \\ f_{a} & \mbox{fraction of ash leaving the combustion chamber as particulate matter [wt.-%]} \\ f_{e} & \mbox{enrichment factor []} \\ f_{g} & \mbox{fraction of heavy metal emitted in gaseous form [wt.-%]} \\ \eta_{p} & \mbox{efficiency of the dust control equipment []} \\ \eta_{g} & \mbox{efficiency of the emission control equipment with regard to gaseous heavy metals []} \end{array}$

The characteristics of fuel and technology are taken into account by f_a and f_e and the following default values are proposed:

Table 14: Default values for f_a for different combustion technologies (based on /35/)

Type of boiler	f _a [wt%]
DBB (Pulverised coal)	80
Grate firing	50
Fluidised bed	15

Heavy metal	f _e []		
	range	value ¹⁾	
Arsenic	4.5 - 7.5	5.5	
Cadmium	6 - 9	7	
Copper	1.5 - 3	2.3	
Chromium	0.8 - 1.3	1.0	
Nickel	1.5 - 5	3.3	
Lead	4 - 10	6	
Selenium	4 - 12	7.5	
Zinc	5 - 9	7	

Table 15: Default values for f_e for different heavy metals released by the combustion of coal (based on /35/)

¹⁾ Recommended value, if no other information is available.

Gaseous emissions (arsenic, mercury and selenium) are calculated from the heavy metal content in coal; the fraction emitted in gaseous form is given in Table 16. The efficiency of emission control devices with regard to these elements is outlined in Section 3.5.5.

Table 16: Fractions of heavy metals emitted in gaseous form (fg) released b	by the combustion
of coal /35/	

Heavy metal	f _g [wt%]
Arsenic	0.5
Mercury	90
Selenium	15

4.9.1.2 Calculation of specified emission factors based on fly ash composition /cf. 39/ If the concentration of heavy metals in raw gas fly ash is known, emission factors of heavy metals can be assessed by Equation (12). Gaseous emissions have to be taken into account separately as outlined in Section 4.9.1.1.

$$EF_{R_{HM,p}} = EF_{f} \cdot C_{HM_{FA,raw}} \cdot 10^{-3} \cdot (1 - \eta_{p})$$
(12)

 $EF_{R_{HM,P}}$ specified emission factor of heavy metal in particulate matter (in mass pollutant/mass coal [g/Mg]) EF_{f} fly ash emission factor of raw gas (in mass particulate matter/mass coal [kg/Mg])

 $C_{HM_{FA,raw}}$ heavy metal concentration in raw gas fly ash (in mass pollutant/mass particulate matter [g/Mg])

 η_p efficiency of dust control equipment []

Values of EF_f can be calculated in a technology specific way using default parameters, as given in Table 17 depending on the content of ash in coal (a) in [wt.-%].

Table 17: Fly ash emission factor for raw gas (EF _f) as function of the ash content in coal (a)	
[wt%] /cf. 39/	

	EF _f
Technology	(in mass particulate matter / mass coal)
	[kg/Mg]
Cyclone	1.4·a
Stoker	5.9·a
Pulverised coal combustion	7.3·a

The emission factors calculated by taking into account the fuel or the fly ash composition mainly depend on the estimation of the efficiency of dust control equipment.

4.9.1.3 Calculation of specified emission factors based on fly ash concentration in clean flue gas /cf. 36/

If the concentration of heavy metals in fly ash in clean flue gas is known, emission factors of heavy metals can be assessed by Equation (13). Gaseous emissions have to be taken into account separately, as outlined in Section 4.9.1.1.

$$\Xi F_{R_{HM,P}} = C_{HM_{FA,clean}} \cdot C_{FG} \cdot V_{FG} \cdot 10^{-9}$$
(13)

 $EF_{R_{HM,P}}$ specified emission factor of heavy metal in particulate matter (in mass pollutant/mass coal [g/Mg])

1

C_{HM_{FA,clean} concentration of heavy metal in fly ash in clean flue gas (in mass pollutant/mass fly ash [g/Mg])}

 C_{FG} concentration of fly ash in clean flue gas (in mass fly ash/volume flue gas [mg/m³])

 V_{FG} specific flue gas volume (in volume flue gas/ mass coal [m³/Mg])

Fuel and technology specific heavy metal concentrations in fly ash in clean flue gas ($C_{HM_{FAclean}}$) are given in Table 18 /36/:

C _{HM_{FA.clean}}	DBB/hc	B/hc [g/Mg] WBB		g/Mg]	DBB/hc [g/Mg]	
Heavy metal	range	value	range	value	range	value
As	61 - 528	300	171 - 1,378	690	70 - 120	100
Cd	0.5 - 18	10	18 - 117	80	7 - 12	10
Cr	73 - 291	210	84 - 651	310	10 - 250	70
Cu	25 - 791	290	223 - 971	480	13 - 76	50
Ni	58 - 691	410	438 - 866	650	n. a.	90
Pb	31 - 2,063	560	474 - 5,249	2,210	10 - 202	90
Se ¹)	18 - 58	45	7 - 8	7	n. a.	n. a.
Zn	61 - 2,405	970	855 - 7,071	3,350	50 - 765	240

Table 18: Concentration of heavy metals in fly ash in clean flue gas /36/

¹⁾ does not include gaseous Se

n. a.: not available

Default values of particulate matter concentrations downstream of FGD (C_{FG}) are given in Table 19.

Table 19: Particulate matter concentrations downstream of FGD (C _{FG}) released by the	
combustion of coal based on /18/	

Type of FGD	$C_{FG} [mg/m^3]$	
	range	value ¹⁾
WS	20 - 30	25
SDA	20 - 30	25
WL	5 - 10	8
WAP	5 - 10	8
AC	< 40	20
DESONOX	< 40	20

¹⁾ Recommended value, if no other information is available.

The concentration of fly ash in flue gas is often monitored continuously. In this case the total annual fly ash emissions can be derived from measured data (see Section 5.2).

ps010101

4.9.2 Combustion of other fuels

General emission factors for oil and gas combustion can be found in Table 31. Among the other fuels, only waste is relevant for heavy metal emissions. Emission factors for the combustion of waste are currently not available (reported emission factors within the literature mainly refer to the incineration of waste).

5 DETAILED METHODOLOGY

The detailed methodology refers to the handling of measured data in order to determine annual emissions or in order to verify emission factors (for comparison purposes). Annual emissions from major contributors should only be obtained by using continuously measured data which are normally available if secondary abatement technologies are installed. Furthermore, the detailed methodology should be used whenever measured data are available; e.g. for medium and small sized combustion installations periodically measured data are often available.

Measurements are carried out downstream of the boiler or at the stack; measured values obtained by both variants are usable.

National monitoring programmes should include guidelines for quality assurance of measurements (measuring places, methods, reporting procedures, etc.).

The pollutants normally measured at power plants are SO_2 , NO_x , CO, and particulate matter. Gaseous emissions of SO_2 , NO_x , and CO are treated in Section 5.1. Continuously measured particulate matter emission data can be used to estimate heavy metal emissions (see Section 5.2).

5.1 Gaseous emissions

It is desirable to obtain annual emissions in [Mg]. The annual emission as a function of time is normally given by the following Equation (14):

$$E = \int_{T} e(t) \qquad dt \tag{14}$$

E emission within the period T [Mg]

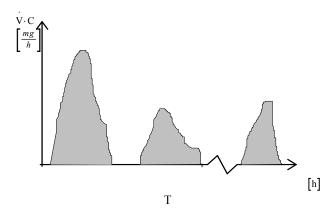
e (t) emission per unit of time in the periods of operation [Mg/h]

t time [h]

T annual time period (see also Figure 1)

Usually, the emission e(t) cannot be or is not directly measured. Therefore, for practical reasons, the concentration of pollutants and the flue gas volume are used for the determination of e(t), as described by Equation (15):

$$\mathbf{e}(\mathbf{t}) = \mathbf{V}(\mathbf{t}) \cdot \mathbf{C}(\mathbf{t}) \tag{15}$$


e (t) emission in the periods of operation [Mg/h]

V(t) flue gas volume flow rate $[m^3/h]$

C (t) flue gas concentration of a pollutant $[mg/m^3]$

Usually, emission fluctuations occur within a year (see Figure 1) as:

- periodical fluctuations (e.g. daily, weekly, seasonally), due to load management depending on the demand of e.g. district heat or electricity,
- operational fluctuations (e.g. start-ups/shut downs, raw material properties, working conditions/reaction conditions).

V	flue gas volume flow rate [m ³ /h]
С	flue gas concentration of a pollutant (abatement techniques installed are included) [mg/m ³]
t	time [h]
t _{bn}	beginning of operation (e.g. start-up of boiler) [h]
t _{en}	ending of operation (e.g. shut down of boiler) [h]
Т	annual time period

Figure 1: Periods of operation of a combustion installation

The following approaches can be used to determine annual emissions depending on the level of detail of measured data available.

– First approach:

The flue gas volume and the concentration of a pollutant are measured continuously (e.g. in Finland). Then, the annual emission is given exactly by the following Equation (16):

$$E = 10^{-9} \int_{T} V(t) \cdot C(t) dt$$
 (16)

- E emission within the period T [Mg]
- V(t) flue gas volume flow rate $[m^3/h]$
- C (t) flue gas concentration of a pollutant (abatement techniques installed are included) [mg/m³]
- t time [h]
- T annual time period (see also Figure 1)

The precision of measurements of V(t) and C(t) depends on the performance of the analytical methods (e.g. state-of-the-art) used. In particular, the regular calibration of measuring instruments is very important. Analytical methods commonly used for NO_x detect only NO

and those used for SO_x detect only SO_2 . It is implicitly assumed that NO_2 in the flue gas is normally below 5 %, and that SO_3 in the flue gas is negligible. Nevertheless, for some combustion plants the amounts of NO_2 and/or SO_3 formed can be significant and have to be detected by appropriate analytical methods. The measured values have to be specified with regard to dry/wet flue gas conditions and standard oxygen concentrations⁸.

For the annual time period T considered, a case distinction has to be made:

- calendar year T₁ (e.g. including time out of operation),
- real operating time T₂ of boiler/plant (e.g. start-ups are reported when ",burner on/off"),
- official reporting time T₃ determined by legislation (e.g. start-ups are reported, as soon as the oxygen content in the flue gas goes below 16 %),

where $T_3 \subset T_2 \subset T_1$. If C(t) is only available for T₃, adequate corrections have to be provided.

- Second approach:

Due to the difficulty in measuring V(t) continuously in large diameter stacks, in most cases the flue gas volume flow rate V(t) is not measured. Then the annual emission can be determined by Equation (17):

$$E = 10^{-9} \overline{\vec{V}} \int_{T} C(t) dt \tag{17}$$

- E emission within the period T [Mg]
- \vec{V} average flue gas volume flow rate [m³/h]
- C(t) flue gas concentration of a pollutant (abatement techniques installed are included) [mg/m³]
- t time [h]
- T annual time period (see also Figure 1)

The average flue gas volume flow rate \vec{k} (dry conditions) can be determined according to the following Equations (18) and (19):

$$\vec{V} = V_{FG} \cdot \vec{m}_{fuel} \tag{18}$$

 \vec{V} average flue gas volume flow rate [m³/h]

 V_{FG} dry flue gas volume per mass fuel [m³/kg]

 \dot{m}_{fuel} fuel consumption rate [kg/h]

$$V_{FG} \approx 1.852 \left[\frac{m^3}{kg}\right] \cdot C_c + 0.682 \left[\frac{m^3}{kg}\right] \cdot C_s + 0.800 \left[\frac{m^3}{kg}\right] \cdot C_N + V_{N_{air}}$$
(19)

 V_{FG} dry flue gas volume per mass fuel [m³/kg]

- C_c concentration of carbon in fuel [kg/kg]
- C_s concentration of sulphur in fuel [kg/kg]

⁸ In some countries the measured values obtained are automatically converted into values under standard oxygen concentrations (e.g. in Germany).

 C_N concentration of nitrogen in fuel [kg/kg]

 $V_{N_{air}}$ specific volume of air nitrogen (in volume/mass fuel [m³/kg])

This calculation of V according to Equation (19) can be performed by the computer programme (see Annex 6) by using default values for C_C , C_S , C_N and $V_{N_{cir}}$.

– Third approach:

In some countries the term $\int_{T}^{T} C(t)dt$ is available as an annual density function P(C)

(histogram). In this case Equation (17) can be simplified to:

$$E = \overline{\dot{V}} \cdot \overline{C} \cdot t_{op} \cdot 10^{-9} \tag{20}$$

where
$$\overline{C} = \int_{0}^{\infty} P(C) \cdot C \cdot dC$$
 (21)

- E emission within the period T [Mg]
- $\overline{\dot{V}}$ average flue gas volume flow rate [m³/h]
- \overline{C} expected value (mean value) of the flue gas concentration for each pollutant (abatement techniques installed are included) [mg/m³]
- t_{op} annual operating time [h]
- P(C) density function []
- C flue gas concentration per pollutant as given in the histogram [mg/m³]

The variable t_{op} has to be introduced consistently with \vec{V} and \vec{C} according to periods T_1 , T_2 or T_3 mentioned above. If e.g. start-ups are not included, they should be taken into account as given in Sections 4.1, 4.2 and 4.4.

- Fourth approach:

If neither T_2 nor T_3 are available, the annual full load operating hours can also be used. Then Equation (20) becomes:

$$E = \overline{V}_{normed} \cdot \overline{C} \cdot t_{op}^{full \, load} \cdot 10^{-9}$$
⁽²²⁾

E emission within the period considered [Mg]

 \vec{V}_{normed} average flue gas volume flow rate related to full load operation [m³/h]

- \overline{C} mean value of the flue gas concentration for each pollutant (abatement techniques installed are included) [mg/m³]
- $t_{op}^{fullload}\;\;$ annual operating time expressed as full load operating hours [h]

From here, emission factors, based on measured values, can be derived e.g. for verification purposes:

$$EF = \frac{E}{A} \cdot 10^6$$
(23)

EF emission factor [g/GJ]

ps010101

E emission within the period considered [Mg]

A activity rate within the time period considered [GJ]

5.2 Heavy metal emissions

Continuously measured values for the total heavy metal emissions (particle-bound and gaseous) are not available for the combustion of fossil fuels. National legislation can require periodical measurements, e.g. weekly measurements of heavy metal emissions [mg/m³] in the case of waste incineration/combustion.

The emissions of particle-bound heavy metals depend on the emission of particulate matter which is normally periodically or continuously monitored. Therefore, the particle-bound heavy metal emissions can be derived from the element content in particulate matter. The heavy metal emission factor can be back-calculated as follows:

$$EF = \frac{\overline{\dot{m}}_{FA} \cdot \overline{C}_{HM_{FA,clean}}}{A}$$
(24)

EF emission factor [g/GJ]

 $\overline{\dot{m}}_{FA}$ mass of fly ash within the period considered [Mg]

 $\overline{C}_{HM_{FA clean}}$ average concentration of heavy metal in fly ash (in mass pollutant/mass fly ash [g/Mg])

A activity rate within the period considered [GJ]

Measured data should also be used to replace the default values of Equation (13) for $C_{HM_{FAclean}}$ and C_{FG} .

6 RELEVANT ACTIVITY STATISTICS

In general, the published statistics do not include point sources individually. Information on this level should be obtained directly from each plant operator.

On a national level, statistics can be used for the determination of fuel consumption, installed capacity and/or types of boilers mainly used. The following statistical publications can be recommended:

- Office for Official Publication of the European Communities (ed.): Annual Statistics 1990; Luxembourg 1992
- Commission of the European Communities (ed.): Energy in Europe Annual Energy Review; Brussels 1991
- Statistical Office of the European Communities (EUROSTAT) (ed.): CRONOS Databank, 1993
- OECD (ed.): Environmental Data, Données OCDE sur l'environnement; compendium 1993
- Commission of the European Communities (ed.): Energy in Europe; 1993 Annual Energy Review; Special Issue; Brussels 1994

 EUROSTAT (ed.): Panorama of EU Industry'94; Office for official publications of the European Communities; Luxembourg 1994

7 POINT SOURCE CRITERIA

Point source criteria for a combustion plant according to CORINAIR are given in chapter AINT and in /41/.

8 EMISSION FACTORS, QUALITY CODES AND REFERENCES

Tables 23 - 31 list emission factors for all pollutants considered, except for SO_2 . For SO_2 emission factors have to be calculated individually (see Equation (5)). Sulphur contents of different fuels are given. The emission factors have been derived from the literature, from the calculations presented here (see also Section 4) and from recommendations from expert panel members. All emission factor tables have been designed in a homogenous structure: Table 20 contains the allocation of SNAP activities used related to combustion installations, where three classes are distinguished according to the thermal capacity installed. Table 21 includes the main types of fuel used within the CORINAIR90 inventory. Table 22 provides a split of combustion techniques (types of boilers, etc.); this standard table has been used for all pollutants. The sequence of the emission factor tables is:

- Table 20: SNAP code and SNAP activity related to the thermal capacities installed in combustion plants
- Table 21:
 Selection of relevant fuels from NAPFUE and lower heating values for boilers, gas turbines and stationary engines
- Table 22:
 Standard table for emission factors for the relevant pollutants
- Table 23:S-contents of selected fuels
- Table 24: NO_x emission factors [g/GJ] for combustion plants
- Table 25: NO_X emission factors [g/GJ] for coal combustion according to the model description (see Annexes 4 and 5)
- Table 26:
 NMVOC emission factors [g/GJ] for combustion plants (coal combustion)
- Table 27: CH₄ emission factors [g/GJ] for combustion plants
- Table 28: CO emission factors [g/GJ] for combustion plants
- Table 29:
 CO2 emission factors [kg/GJ] for combustion plants
- Table 30: N₂O emission factors [g/GJ] for combustion plants
- Table 31:
 Heavy metal emission factors [g/Mg] for combustion plants

References of the emission factors listed are given in footnotes of the following tables. Quality codes are not available in the literature.

Table 20: SNAP code and SNAP activity related to the thermal capacities installed in combustion plants

Thermal capacity [MW]	SNAP code	SNAP activity
>= 300	010101	Public power and co-generation combustion plants
	010201	District heating combustion plants
	010301	Petroleum and/or gas refining plants
	010401	Solid fuel transformation plants
	010501	Coal mining, oil, gas extraction/distribution plants
	020101	Commercial and institutional plants
	030101	Industrial combustion plants
>=50 up to < 300	010102	Public power and co-generation combustion plants
	010202	District heating combustion plants
	020102	Commercial and institutional plants
	020201	Residential combustion plants
	020301	Plants in agriculture, forestry and fishing
	030102	Industrial combustion plants
< 50	010103	Public power and co-generation combustion plants
	010203	District heating combustion plants
	020103	Commercial and institutional plants
	020202	Residential combustion plants
	020302	Plants in agriculture, forestry and fishing
	030103	Industrial combustion plants

Туре с	of fuel accordin	ng to N	IAPFUE		NAPFUE	H _u
		-			code	[MJ/kg] ²)
S	coal	hc	coking ¹⁾	$GHV^{11} > 23,865 \text{ kJ/kg}$	101	29.3 ⁴)
s	coal	hc	steam 1)	$GHV^{11} > 23,865 \text{ kJ/kg}$	102	29.3 ⁴)
s	coal	hc	sub-bituminous	$17,435 \text{ kJ/kg} < \text{GHV}^{11} < 23,865 \text{ kJ/kg}$	103	20.6
s	coal	hc/bc	patent fuels	from hard/sub-bituminous coal	104	
S	coal	bc	brown coal/lignite	$GHV^{11} < 17,435 \text{ kJ/kg}$	105	12.1
S	coal	bc	briquettes		106	19.5 ⁴); 18.6 ⁵)
S	coke	hc	coke oven		107	26.310)
s	coke	bc	coke oven		108	29.97)
S	coke		petroleum		110	30 ¹⁰⁾
S	biomass		wood		111	12.4 ⁴), 16 ¹⁰)
S	biomass		charcoal		112	
s	biomass		peat		113	9.510)
s	waste		municipal		114	7.54)
S	waste		industrial		115	8.4 ⁸⁾
S	waste		wood	except wastes similar to wood	116	
S	waste		agricultural	corncobs, straw etc.	117	
1	oil		residual		203	41.0 ⁴⁾
1	oil		gas		204	42.74, 42.510)
1	oil		diesel	for road transport	205	
1	kerosene				206	
1	gasoline		motor		208	43.54)
1	naphtha				210	
1	black liquor				215	
g	gas		natural	except liquified natural gas	301	heavy 39.7 MJ/m ^{3 3)} , light 32.5 MJ/m ^{3 3)}
g	gas		liquified petroleum gas		303	45.4 ¹⁰⁾
g	gas		coke oven		304	19.8 ¹⁰⁾
g	gas		blast furnace		305	3.010)
g	gas		coke oven and blast furnace gas		306	
g	gas		waste		307	
g	gas		refinery	not condensable	308	48.4 ⁶ , 87 MJ/m ^{3 10})
g	gas		biogas		309	34.7%)
g	gas		from gas works		311	<u> </u>

Table 21: Selection of relevant fuels from NAPFUE and lower heating values for boilers, gas turbines and stationary engines

ps010101

- ¹⁾ A principal differentiation between coking coal and steam coal is given in section 3.2. Further differentiation between coking coal and steam coal can be made by using the content of volatiles: coking coal contains 20 - 30 wt.-% volatiles (maf), steam coal contains 9.5 - 20 wt.-% volatiles (maf) (based on official UK subdivision). This is necessary if no information concerning the mean random reflectance of vitrinite (see Section 3.2) is available.
- ²⁾ H_u = lower heating value; lower heating values for coals from different countries are given in Annexes 7 and 8 and for solid, liquid and gaseous fuels in (/88/, Table 1-2).
- ³⁾ given under standard conditions
- ⁴⁾ Kolar 1990 /17/
- ⁹ Kolar 1990
- ⁵⁾ /98/
- ⁶⁾ MWV 1992 /97/
- ⁷⁾ Boelitz 1993 /78/
- ⁸⁾ Schenkel 1990 /105/
- 9) Steinmüller 1984 /107/
- 10) NL-handbook 1988 /99/
- ¹¹⁾ GHV = Gross heating value

Table 22: Standard table of emission factors for the relevant pollutants

			>= 300	Therm	mal boiler capacity [MW] ⁴⁾ >= 50 and < 300						< 50									no specifi- cation						
							Type of boil	er		Туре	of boile				Type of boiler					G	T ¹⁰⁾	Stat.	E.11)	CORINAIR90 ¹²⁾		
						DBB ⁵⁾	WBB ⁶⁾	FBC ⁷⁾	DBB	WBB	FB	C ⁷⁾	GF	8)	DBB	WBB		FBC ⁷⁾		0	βF					
Ту	pe of fuel	1)	NAPFUE	$H_u^{(2)}$		Primary	Primary	CFBC			CFBC	PFBC	ST1	ST2			AFBC	CFBC	PFBC	ST1	ST2	SC	CC	CI	SI	
	-		code ¹⁾	[MJ/kg]	P1 ³⁾	measures9)	measures9)																			
s	coal	hc																								
s	coal	hc																								
s	coal	hc																								
s	coal	bc																								
s	coke																									
s	biomass																									
s	waste																									
1	oil																									
g	gas																									

 $^{\scriptscriptstyle 1)}$ the type of fuel is based on the NAPFUE code, see table 21

 $^{\rm 2)}$ H_u = lower heating value, when different from table 21

³⁾ relevant parameter of fuel composition for SO₂: P1 = sulphur content of fuel;

⁴⁾ the corresponding SNAP-codes are listed in table 20

⁵⁾ DBB - Dry bottom boiler

⁶⁾ WBB - Wet bottom boiler

⁷⁾ FBC - Fluidised bed combustion; CFBC = Circulating FBC; PFBC = Pressurised FBC (Dense FBC); AFBC = Atmospheric FBC

⁸⁾ GF - Grate firing; ST1 and ST2 are different types of stoker (e.g. travelling stoker, spreader stoker)

⁹⁾ Primary measures are described by reduction efficiency

 $^{10)}$ GT = Gas turbine; SC = Simple cycle; CC = Combined cycle

¹¹⁾ Stat. E. = Stationary engine; CI = Compression ignition; SI = Spark ignition

¹²⁾ CORINAIR90 data on combustion plants as point sources

ps010101

Table 23: S-contents of selected fuels ¹⁾

Ty	be of fuel			NAPFUE	Sı	lphur content	of fuel
				code	value 2)	range	unit
s	coal 3)	hc	coking	101		0.4 - 6.2	wt% (maf)
s	coal 3)	hc	steam	102		0.4 - 6.2	wt% (maf)
s	coal 3)	hc	sub-bituminous	103		0.4 - 6.2	wt% (maf)
s	coal 3)	bc	brown coal/lignite	105		0.4 - 6.2	wt% (maf)
s	coal	bc	briquettes	106		$0.25 - 0.45^{13)}$	wt% (maf)
s	coke	hc	coke oven	107		< 1 5)	wt% (maf)
s	coke	bc	coke oven	108		0.5 - 1 ^{5) 6)}	wt% (maf)
s	coke		petroleum	110			
s	biomass		wood	111		< 0.03 5)	wt% (maf)
s	biomass		charcoal	112		< 0.03 5)	wt% (maf)
s	biomass		peat	113			
s	waste		municipal	114			
s	waste		industrial	115			
s	waste		wood	116			
s	waste		agricultural	117			
1	oil		residual	203		0.3 ⁸⁾ - 3.5 ⁹⁾	wt%
1	oil		gas	204	0.3 11)	0.08 - 1.0	wt%
1	oil		diesel	205	0.3 11)		wt%
1	kerosene			206			
1	gasoline		motor	208		$< 0.05^{(12)}$	wt%
1	naphtha			210			
1	black liquor			215			
g	gas ⁴⁾		natural	301	(0.0075) 10)		g · m ⁻³
g	gas		liquified petroleum gas	303	-		
g	gas		coke oven	304	8		g ' m ⁻³
g	gas		blast furnace	305	45 · 10 ^{-3 10)}		g ' m ⁻³
g	gas		coke oven and blast furnace gas	306			Ĩ
g	gas		waste	307			
g	gas		refinery	308		<= 8 ¹⁰⁾	g ' m-3
g	gas		biogas	309			-
g	gas		from gas works	311			

Emission Inventory Guidebook

¹⁾ for emission factor calculation see Section 4.1, and Annexes 2 and 3

²⁾ recommended value

- $^{\scriptscriptstyle 3)}$ for complete coal composition see Annexes 7 and 8
- ⁴⁾ only trace amounts
- ⁵⁾ Marutzky 1989 /94/
- ⁶⁾ Boelitz 1993 /78/
- ⁸⁾ Mr. Hietamäki (Finland): Personal communication
- ⁹⁾ Referring to NL-handbook 1988 /99/ the range is 2.0 3.5
- ¹⁰⁾ NL-handbook 1988 /99/
- ¹¹⁾ 87/219 CEE 1987 /113/

 $^{\rm 12)}~\alpha_s\sim 0$

13) Davids 1986 /46/

ps010101

Table 24: NO_x emission factors [g/GJ] for combustion plants

							Thermal bo	oiler capacity [MW]	
					>= 300	32)		>= 50 and <	30032)
			Type of fuel	NAPFUE	Type of bo	oiler ⁴³⁾		Type of boiler	
				code	DBB/boiler ²⁷⁾	WBB	FBC	DBB/boiler ²⁷⁾	WBB
							CFBC		
s	coal	hc	coking	101	see table 25	see table 25	70 ¹⁾	see table 25	see table 25
s	coal	hc	steam	102	see table 25	see table 25	70 ¹⁾	see table 25	see table 25
s	coal	hc	sub-bitumious	103	see table 25	see table 25	70 ¹⁾	see table 25	see table 25
\mathbf{S}	coal	bc	brown coal/lignite	105	see table 25	\ /	70 ¹⁾	see table 25	\ /
s	coal	bc	briquettes	106					
\mathbf{S}	coke	hc	coke oven	107					
\mathbf{s}	coke	bc	coke oven	108		\land			\setminus /
s	coke		petroleum	110				300 ¹⁾	$ \setminus /$
\mathbf{S}	biomass		wood	111		V		200 ^{1),15)}	\bigvee
s	biomass		charcoal	112		Λ			Å
s	biomass		peat	113	300 ^{1),28)}			300 ¹⁾	
s	waste		municipal	114					
s	waste		industrial	115					
\mathbf{s}	waste		wood	116		$ / \rangle$			
s	waste		agricultural	117		/ \			/ \
1	oil		residual	203	210 ^{1),29)} , 260 ^{1),28)} , 155 - 296 ^{19),20)}	\ /	$\lambda = I$	$150^{(1),29)}, 170^{(1),29)}, 190^{(1),30)}, 210^{(1),30)}$	$\langle \rangle$
1	oil		gas	204	64 - 68 ²¹⁾		$ \setminus $	100 ¹⁾	
						$ \land / $	\backslash		$\langle \rangle$
1	oil		diesel	205			X		
1	kerosene			206			Λ		\land
1	gasoline		motor	208			/		
1	naphtha			210			/		
1	black liquor			215		/ \	/ \		/ \
g	gas		natural	301	170 ¹⁾ , 48 - 333 ^{22) 23)}		\ /	125 ^{1),25)} , 150 ^{1),26)} , 48 - 333 ^{22),23),24)}	\ /
							$ \rangle /$		
g	gas		liquified petroleum gas	303	88 - 333 ^{23),24)}			88 - 333 ^{23),24)}	
g	gas		coke oven	304	150 ¹⁾ , 88 - 333 ^{23) 24)}	$ \rangle / $	$ \rangle /$	$110^{1,25}$, $130^{1,26}$, $88 - 333^{23,24}$	
g	gas		blast furnace	305	95 ¹⁾ , 88 - 333 ^{23) 24)}		V	$65^{1)25}, 80^{1),26}, 88 - 333^{23),24}$	I X I
g	gas		coke oven and blast furnace gas	306	88 - 333 ^{23),24)}		A	88 - 333 ^{23),24)}	
g	gas		waste	307	88 - 333 ^{23),24)}			88 - 333 ^{23),24)}	
g			refinery	308	88 - 333 ^{23),24)}		$ / \rangle$	140^{1} , 88 - 333 ^{23),24)}	
g	gas		biogas	309	88 - 333 ^{23),24)}		$ / \rangle$	88 - 333 ^{23),24)}	
g	gas		from gas works	311		/	1 1		/ \

to be continued

Table 24: continued

			Thermal boiler capa	city [M	[W]								no speci-
> 50 a	nd < 30	0 32)			< 5032)							fication
	Туре	of boiler		Ту	pe of bo	oiler			Gas t	urbine	Station	ary engine	CORINAIR 9044)
	BC	GF	DBB/boiler ²⁷⁾	WBB		FBC		GF					
	CFBC				PFBC		AFBC		SC	CC	CI	SI	
150 ¹⁾		150 ¹⁾	$180^{(1),31)}, 230^{(1),29)}$			70 ¹⁾		150 ¹⁾	\ /	\ /	\ /	Δ /	545 ⁴⁴⁾
150 ¹⁾		150 ¹⁾	$180^{(1),31)}, 230^{(1),29)}$			70 ¹⁾		150 ¹⁾					36.5 - 761 ⁴⁴
150 ¹⁾ 150 ¹⁾		150 ¹⁾ 150 ¹⁾	$180^{(1),31)}, 230^{(1),29)}$			70 ¹⁾ 70 ¹⁾		150 ¹⁾ 150 ¹⁾					20.5 - 1,683 ⁴⁴⁾ 180 - 380 ⁴⁴⁾
150%	/0*	150%	180 ^{1),31)} , 230 ^{1),29)}	\ /		70%		150%					180 - 380
				1 /									33.3 - 17544)
				() /					\setminus	\backslash			55.5 - 175
			300 ¹⁾	$\backslash /$	300 ¹⁾	300 ¹⁾			X	X	V V	\vee	
		200 ¹⁾ , 33 - 115 ¹⁵⁾	200 ¹⁾ , 33 - 115 ¹⁵⁾	I V				2001),15)				\land	50 - 20044)
				Λ									
160 ¹⁾			280 ¹⁾		160 ¹⁾	100 ¹⁾							150 - 240444)
		90 - 46316),17)		$ \rangle \rangle$				90 - 46316),17)					220 ⁴⁴⁾
		139 - 140 ¹⁸⁾		/ \				139 - 140 ¹⁸⁾					
		000		$\langle \rangle$					/ \	/ \			80 - 20044)
		886)	140 ^{1),29)} , 180 ^{1),30)}						25	045)	1.000)-1,200 ⁴⁵⁾	160 ⁴⁴⁾ 24 - 370 ⁴⁴⁾
()	\setminus /	\land /	80 ¹ , 100 ¹	$ \rangle /$	\backslash	()			120 ^{1),35)} , 350 ^{1),33)}		· · · · · · · · · · · · · · · · · · ·	· 1,200 ⁴⁵⁾	24 - 370 50 - 269 ⁴⁴⁾
() /	$ \rangle / $		50°, 100°	$ \rangle /$	\backslash /	$ \rangle /$				$0^{45}, 300^{46}$		$1,000^{1,40,42}, 1,800^{1,39,42}$	50-207
	V				\backslash	$ \rangle /$			100 - 70	, 500	, 1,200	1,000 , 1,000	
Ň	Λ	\mathbf{X}		Å	X	X							
$ \rangle $	$ \rangle $				/								
$ / \rangle$	$ \rangle$			$ / \rangle$	$ / \rangle$	$ / \rangle$							18044)
/	/ /	/		/ \	/ '	/ `		/					20 - 44044)
1	\backslash		100 ¹⁾ , 48 - 333 ^{22),23),24)}	1	1	1		\ /		360 ⁴⁵⁾	$600^{1,37,42}, 1,200^{1,38,42}$	$1,000^{1),40),42}, 1,800^{1),39),42}$	22 - 350 ⁴⁴⁾
$ \rangle /$	()	\land		$ \rangle /$	$ \rangle /$	I\ /			1884),41)	1874),41)			
() /	$ \rangle / $		88 - 333 ^{23),24)}	$ \rangle /$	() /	$ \rangle /$							35 - 100 ⁴⁴⁾
	$\backslash /$		90 ^{1),23),24)} 88 - 333 ^{23),24)}		V								70 - 571 ⁴⁴⁾ 6.7 - 330 ⁴⁴⁾
X	X I		88 - 333 ^{23),24)}	X	X	ΙV		X					0.7 - 330 "
			88 - 333 ^{23),24)}	$ \rangle$		ΙΛ							35 - 32744)
$ / \rangle$	$ / \rangle $		140 ^{1),23),24)}	$ / \rangle$	$ \rangle \rangle$	$ \rangle$			150-	151 ⁴⁵⁾			35 - 327 35 - 140 ⁴⁴⁾
$ / \rangle$	/		88 - 333 ^{23),24)}	$ / \rangle$	$ \rangle \rangle$	$ / \rangle$			150-				60 ⁴⁴⁾
/ /	/ /			/ \	/	/ `		/ \					

- ¹⁾ CORINAIR 1992 /80/, without primary measures
- ²⁾ Ratajczak 1987 /103/, Kolar 1990 /17/
- ³⁾ Lim 1982 /91/, Kolar 1990 /17/
- ⁴⁾ Mobley 1985 /96/, Kolar 1990 /17/
- ⁵⁾ LIS 1977 /92/
- ⁶⁾ Radian 1990 /102/, IPCC 1994 /88/, without primary measues
- ⁷⁾ UBA 1985 /111/, Kolar 1990 /17/
- ⁸⁾ Kolar 1990 /17/
- ⁹⁾ Bartok 1970 /75/, Kolar 1990 /17/
- 10) Kremer 1979 /90/, Kolar 1990 /17/
- ¹¹⁾ UBA 1981 /110/, Kolar 1990 /17/
- 12) LIS 1987 /93/
- ¹³⁾ Davids 1984 /81/, Kolar 1990 /17/
- ¹⁴⁾ Ministry 1980 /95/, Kolar 1990 /17/

- ¹⁶ utility boiler (GF): 140°, commercial boiler: 463°, commercial open burning: 3° kg/Mg waste ¹⁷ GF: 90 180⁸
- ¹⁸⁾ industrial combustion (mass burn.): 140⁶⁾, industrial combustion (small burner): 139⁶⁾
- ¹⁹⁾ DBB (power plants): 240¹¹⁾, 245¹⁰⁾, 296⁹⁾, 270¹⁰⁾
- ²⁰⁾ utility boiler: 201⁶⁾, commercial boiler: 155⁶⁾, industrial boiler: 161⁶⁾

¹⁵⁾ utility boiler: 112⁶⁾, commercial boiler: 33⁶⁾, industrial boiler: 115⁶⁾

- ²¹⁾ utility boiler: 68⁶⁾, commercial boiler: 64⁶⁾
- ²²⁾ utility boiler: 267⁶⁾, commercial boiler: 48⁶⁾, industrial boiler: 67⁶⁾
- ²³⁾ power plant: 160⁹⁾, 170¹⁰⁾, 185¹⁰⁾, 190¹¹⁾, 215¹⁰⁾, 333¹³⁾
- ²⁴⁾ industry: 88⁹⁾, 100¹¹⁾
- ²⁵⁾ 50 100 MW thermal
- ²⁶⁾ 100 300 MW thermal
- ²⁷⁾ DBB for coal combustion; boiler for other fuel combustion
- 28) wall firing
- ²⁹⁾ tangential firing
- 30) wall/bottom firing
- ³¹⁾ wall/tangential firing
- ³²⁾ The emission factors [g/GJ] are given at full load operating modus.
- 33) no specification
- ³⁴⁾ with diffusion burner
- 35) modern with pre-mixer
- 36) derived from aero engines
- ³⁷⁾ prechamber injection
- ³⁸⁾ direct injection
- ³⁹⁾ 4 stroke engines
- 40) 2 stroke engines
- ⁴¹⁾ 80^{1),35)}, 250^{1),33)}, 160 480^{1),34)}, 650^{1),36)}
- $^{42)}\ 1000^{1),33)}$
- ⁴³⁾ The formation of thermal-NO is much more influenced by the combustion temperature than by the burner arrangement within the boiler /64/. Therefore, no emission factors are given for different burner arrangements (e.g. tangential firing).
- $^{\rm 44)}$ CORINAIR90 data of combustion plants as point sources with thermal capacity of > 300, 50 300, $<50~{\rm MW}$
- ⁴⁵⁾ CORINAIR90 data of combustion plants as point sources
- 46) AP42 /115/

Table 25: NO_x emission factors [g/GJ] for coal combustion according to the model (see Annexes 4 and 5)

									Therr	nal boiler	capacity 50 1)	/[MW]			
Т	pe of f	fuel	coal mining country	NAPFUE	H _u [MJ/kg]						f boiler				
1)		luei	cour mining country	code	(maf)			DBB		i jpe e			WBB		
				coue	(inter)	PM0 ²⁾	PM1	PM2	PM3	PM4	PM0	PM1	PM2	PM3	PM4
					η= 0	η= 0.20	η=0.45	η=0.45	η=0.60	η= 0	η= 0.20	η=0.45	η=0.40	η=0.60	
s	coal	hc	Australia	(101)	34	568	454	312	312	227	703	562	387	422	281
			Canada	(101)	33	500	405	278	278	202	627	501	345	376	251
			China	(101)	32	413	331	227	227	165	512	409	281	307	205
			Columbia	(101)	32	535	428	394	394	214	662	529	364	397	265
			Czech Republic	(101)	34	483	387	266	266	193	598	479	329	359	239
			France	101	35	374	299	205	205	149	463	370	254	278	185
			Germany RAG	102	35	384	307	211	211	154	476	381	262	285	190
			Germany others	101	30	495	396	272	272	198	613	490	337	368	245
			CIS	(101)	32	308	247	169	169	123	382	305	210	229	153
			Hungary	101	34	401	320	220	220	160	496	397	273	298	198
			India	103	30	551	441	303	303	220	682	545	375	409	273
			South Africa	(101)	32	569	456	313	313	228	705	504	388	423	282
			USA	(101)	34	563	450	310	310	225	697	558	383	418	279
			Venezuela	(101)	34	588	471	324	324	235	728	583	401	437	291
						$\eta = 0$	$\eta = 0.20$	η=0.45	η=0.40	η=0.60					
s	coal	bc	Czech Republic	105	28	506	405	278	304	202					/
			Germany												
			- Rheinisch Coal	105 105	27	325	260	179	195	130				/	
			- Middle Germany	25	504	403	277	302	202						
			- East Germany	26	539	431	296	323	215			\sim			
			Hungary-1	36	379 379	303	208	227	151			/			
	Hungary-2 103 28						304	209	228	152		/	•	\sim	
Poland 105 25						531	425	292	319	213					
Portugal 105 25 Turkey-2 103 27						461	369	254	277	185		/			
			Turkey-2	27	725	580	399	435	290					`	

¹⁾ The emission factors [g/GJ] are given at full load operating modus.

²⁾ PM0 ... PM4 = most used combinations of primary

measures; η = reduction efficiencies []

PM0 - no primary measures

PM1 - one primary measure: LNB

PM2 - two primary measures: LNB/SAS

PM3 - two primary measures: LNB/OFA

PM4 - three primary measures: LNB/SAS/OFA

]	Thermal boiler cap	acity [MW]		no speci-
			Type of fuel	NAPFUE	>= 50)	< 50			fication
				code	boiler	GF	boiler	Gas turbine	Stationary engine	CORINAIR90 ⁶⁾
s	coal	hc	coking	101	3 ⁵⁾ , 30 ²⁾	50 ²⁾	600 ¹⁾	\ /	\/	36)
s	coal	hc	steam	102	3 ⁵⁾ , 30 ²⁾	50 ²⁾	600 ¹⁾		\backslash /	1 - 15%
s	coal	hc	sub-bituminous	103	3^{5} , 30^{2}	50 ²⁾	600 ¹⁾		\backslash /	1.5 - 15%
s	coal	bc	brown coal/lignite	105	302),3)	50 ²⁾			\setminus /	1.5 - 15%
s	coal	bc	briquettes	106			150 ¹⁾	$ \setminus /$	\setminus /	
s	coke	hc	coke oven	107			121)	\setminus	\setminus /	5 - 15%
s	coke	bc	coke oven	108				V	\backslash	
s	coke		petroleum	110				Λ	X	1.5%
s	biomass		wood	111		80 ²⁾	1005, 1501, 4004)	/ \	/ \	10 - 48%
s	biomass		charcoal	112						
s	biomass		peat	113	302),3)	302)				3 - 48%
s	waste		municipal	114						10%
s	waste		industrial	115						
s	waste		wood	116				/ \	/	40 - 48%
S	waste		agricultural	117				/ \	/ \	50 ⁶⁾
1	oil		residual	203	10 ^{2),3)}	\setminus /		37)	507)	1.5 - 47.6%
1	oil		gas	204	5 ²⁾	\backslash	151)	5 ²⁾ , 1.5 - 2 ⁷⁾	1.5 - 100 ⁷⁾ , 100 ²⁾	1.5 - 9.3%
1	oil		diesel	205		\backslash				
1	kerosene			206		Ň				3%
1	gasoline		motor	208		$ \rangle$				
1	naphtha			210		$ \rangle$				3%
1	black liquor			215		/ \				3%
g	gas		natural	301	5 ²⁾	\setminus /		5 ²⁾ , 2.5 - 4 ⁷⁾	200 ²⁾	2 - 46)
g	gas		liquified petroleum gas	303		()				2 - 2.6%
g	gas		coke oven	304		()				2.5 - 167%
g	gas		blast furnace	305		$\langle \rangle$				1 - 2.5%
g	gas		coke oven and blast furnace gas	306		X				
g	gas		waste	307				_		2.5%
g	gas		refinery	308	25 ²⁾	$ / \rangle$		2.57)		2.1 - 106)
g	gas		biogas	309		/ /				2.5%
g	gas		from gas works	311		1				
1) L	IS 1977 /92/	²⁾ C(ORINAIR 1992 /80/	3) DBB only		⁴⁾ small	consumers cf. /24/	/	⁵⁾ power plants cf.	/24/

Table 26: NMVOC emission factors [g/GJ] for combustion plants

ps010101

⁶ CORINAIR90 data of combustion plants as point sources with a thermal capacity of > 300, 50 - 300, < 50 MW

⁷⁾ CORINAIR90 data, point sources

Table 27: CH₄ emission factors [g/GJ] for combustion plants

								e of combu	istion					stat. E.	no speci-
					y combust		Commerc			-	l combust				fication
		Tpe of fuel		DBB/WBB	-		boiler	GF	boiler	G		G			
			code	FBC/	sto	-				stol		SC	CC		CORINAIR905)
				boiler3)	spreader	travell.				spreader	travell.				
s coal	hc	coking	101	0.61)	0.71)		10 ¹⁾		2.4 ¹⁾			1 1	١	1 1	0.3 - 15 ⁵⁾
s coal	hc	steam	102	0.61)	0.71)		10 ¹⁾		2.4 ¹⁾			\land /			1.5 - 15 ⁵⁾
s coal	hc	sub-bituminous	103	0.61)	0.71)		10 ¹⁾		2.4 ¹⁾						0.3 - 155)
s coal	bc	brown coal/lignite	105	0.6 ¹⁾	0.71)		10 ¹⁾		2.4 ¹⁾						
s coal	bc	briquettes	106											()	
s coke	hc	coke oven	107									M		Λ	0.2 - 155)
s coke	bc	coke oven	108									V	V	V	
s coke		petroleum	110									Λ	X) (1.55)
s biomass		wood	111	181)			15 ¹⁾		15 ¹⁾			ΙΛ	Λ	Λ	1 - 405)
s biomass		charcoal	112												
s biomass		peat	113												1 - 395)
s waste		municipal	114				6.5	1),4)				[]			1 ⁵⁾
s waste		industrial	115												105)
s waste		wood	116									$ \rangle$			4 - 405)
s waste		agricultural	117				9 ¹),4)				1 1	1	1	325)
l oil		residual	203	0.71)	$\langle \rangle$	\ <i>\</i>	1.61)	\ /	2.9 ¹⁾	\ /	\setminus /	-	5)	36)	$0.1 - 10^{5}$
l oil		gas	204	0.031)	\setminus /	\setminus /	0.61)	\setminus /		\setminus /	\setminus /	1 -	85)	1.5%	0.1 - 85)
l oil		diesel	205		\vee	\backslash		\setminus		\setminus	\backslash				
l kerosene			206		Å	X		X		Х	Å				7 ⁵⁾
l gasoline		motor	208		/	/ \					/ \				
l naphtha			210		/	/				$ / \rangle$					3 ⁵⁾
1 black liqu	or		215		/ \	/ \		/		/ \	/ \				1 - 17.75)
g gas		natural	301	0.1 ¹⁾	v 1	v /	1.21) 2)	\ /	1.41)	$\lambda = I$	۱ <i>I</i>	2.5	- 46)		0.3 - 45)
					$ \setminus /$	/				\setminus /	()	5.9 ¹⁾	6.1 ¹⁾		
g gas		liquified petroleum gas	303		\setminus /	\setminus /		\setminus /		\setminus /	\setminus /				1 - 2.55)
g gas		coke oven	304		\backslash	\backslash		\setminus /		\setminus /	\setminus /				0.3 - 45)
g gas		blast furnace	305		X	Y		V		Y I	V				0.3 - 2.55)
g gas		coke oven and blast furnace gas	306		()	Λ		\land		\wedge	Λ				
g gas		waste	307		/ \	/ \					/ \				2.55)
g gas		refinery	308		/	$ / \rangle$		$ / \rangle$		/ \					0.1 - 2.55)
g gas		biogas	309		/ \	$ \rangle$		/ \		/ \		2	2.5^{6}		0.5 - 2.55)
g gas		from gas works	311		/ /	/ \		/		/ \	/ \				
¹⁾ Radian 1990)/102/, 1	IPCC 1994 /88/ ²⁾ for all types	of gas		³⁾ DBB/W	BB/FBC f	for coal con	mbustion;	boiler fo	r fuel comb	oustion			4) open b	urning

⁵⁾ CORINAIR90 data of combustion plants as point sources with thermal capacity of >300, 50 - 300 and <50 MW

⁶⁾ CORINAIR90 data, point sources

Γ					T leilie	huati		Type Commerce	of combus		ustrial combu	ation			no speci-
				1		v combusti			1		1				fication
			Type of fuel		DBB/WBB/	G		boiler	GF	DBB/WBB/			GT	stat. E.	CORINAIR90 ⁹⁾
				code	boilers1)	stol				boiler1)	sto				
						spreader	travell.				spreader	travelling			
s			coking	101	143)	1213)		195 ³⁾		9.7 ²⁾ , 13 ⁴⁾	81 ²⁾ , 115 ⁴⁾	97.2 ²⁾		\backslash /	15%
s			steam	102	143)	1213)		195 ³⁾		9.7 ²⁾ , 13 ⁴⁾	115 ⁴⁾	9.7 ²⁾	I\ /		10 - 175.2 ⁹⁾
s			sub-bituminous	103	143)	1213)		195 ³⁾		9.7 ²⁾ , 13 ⁴⁾	81 ²⁾ , 115 ⁴⁾	97.2 ²⁾	$ \rangle /$		12 - 246.9 ⁹⁾
s			brown coal/lignite	105	14 ³⁾	121 ³⁾		195 ³⁾		16 ²⁾ , 13 ⁴⁾	133 ²⁾ , 115 ⁴⁾	160 ²⁾			9.6 - 64.4 ⁹⁾
s			briquettes	106											
s			coke oven	107									$ \rangle /$	$ \setminus / $	102 - 121 ⁹⁾
s		bc	coke oven	108										\backslash	
s	coke		petroleum	110									L X	X	15%
s	biomass		wood	111	1,4733)			199 ³⁾		1,5043)			\square		30 - 300 ⁹⁾
s	biomass		charcoal	112											
s	biomass		peat	113											30 - 160 ⁹⁾
s	waste		municipal	114		98	3),6)	19 ³⁾			$19^{3(7)}, 96^{3(7)},$	42 kg/Mg ^{3),8)}			30 ⁹⁾
s	waste		industrial	115									$ / \rangle$		
s	waste		wood	116									/ \		12 - 300 ⁹⁾
s	waste		agricultural	117					g/Mg ^{3),8)}				/	/	209)
1	oil		residual	203	15 ³⁾	\ /	$\lambda = I$	173)		15 ³⁾	\ /	\	10 - 15 ¹⁰⁾	10010)	3 - 32.6%
1	oil		gas	204	15 ³⁾			163)	$ \rangle /$	12 ³⁾			10 - 2010)	12 - 1,13010)	10 - 46.4%
						$ \rangle /$	$ \setminus / $		$ \rangle / $		\setminus /	$ \setminus /$	20.611)		
1	oil		diesel	205		V	V		IV						
1	kerosene			206		Λ	Λ		ΙΛ		Å	\wedge			12 ⁹⁾
1	gasoline		motor	208					$ \rangle \rangle$						
1	naphtha			210			$ / \rangle$		$ / \rangle$						15 ⁹⁾
1	black liquor			215		/ \	/ \		/ \		/ \	/			11.1 - 3149)
g	gas		natural	301	19 ³⁾	1	<u>ι</u> /	9.6 ³⁾	1	17 ³⁾ , 13 ⁵⁾	\ /	\ /		10 - 20 ¹⁰ , 32 ³	0.05 - 60 ⁹⁾
g	gas		liquified petroleum gas	303					$ \rangle / $						10 - 13%
g	gas		coke oven	304		$ \rangle /$	$ \rangle /$		$ \rangle /$						0.03 - 1309)
g	gas		blast furnace	305		$ \rangle / $	$ \rangle / $		\/		$ \rangle / $	$ \rangle /$			0.3 - 64.4 ⁹⁾
g	gas		coke oven and blast furnace gas	306		ΙV	V V		IX		V I	X			
g	gas		waste	307		$ \land $	$ \wedge$								0.1 - 25.5 ⁹⁾
g	gas		refinery	308		$ / \rangle$	$ / \rangle$		$ / \rangle$					1010)	2 - 15%
g	gas		biogas	309		$ / \rangle$	$ / \rangle$		I/			$ / \rangle$			13%
g	gas		from gas works	311			/ \		/ \		/ \	/ \			

Table 28: CO emission factors [g/GJ] for combustion plants

Emission Inventory Guidebook

¹⁾ DBB/WBB for coal combustion; boiler for other fuel combustion

²⁾ EPA 1987 /85/, CORINAIR 1992 /80/

³⁾ Radian 1990 /102/, IPCC 1994 /88/, without primary measure

⁴⁾ OECD 1989 /100/, CORINAIR 1992 /80/

⁵⁾ CORINAIR 1992 /80/, part 8

⁶⁾ grate firing without specification

⁷⁾ small combustion 19 g/GJ, mass burning 96 g/GJ

⁸⁾ open burning

⁹⁾ CORINAIR90 data of combustion plants as point sources with a thermal capacity of > 300, 50 - 300, < 50 MW

¹⁰⁾ CORINAIR90 data, point sources

11) AP42 /115/

ps010101

ps010101

Table 29: CO ₂ emission factor	[kg/GJ] for combustion plants
---	-------------------------------

				NAPFUE		Emission factors	
]	Гуре of fuel	code	value	range	remarks
s	coal	hc	coking	101		92 - 93 ⁵⁾ , 89.6 - 94 ²⁾	
s	coal	hc	steam	102	93.7 ³⁾ , 92 ⁵⁾	92 - 93 ⁵⁾ , 10 - 98 ²⁾	
s	coal	hc	sub-bituminous	103	94.7 ³⁾	91 - 115.2 ²⁾	
s	coal	bc	brown coal/lignite	105	100.2 3)	94 - 107.9 ²), 110 - 113 ⁵)	
s	coal	bc	briquettes	106	98	97 - 99 ⁵⁾	
s	coke	hc	coke oven	107	95.9 ⁴⁾ , 108 ¹⁾	100 - 105 ⁵⁾ , 105 - 108 ²⁾	
s	coke	bc	coke oven	108		96 - 111 ⁵⁾	
s	coke		petroleum	110	101 ⁵⁾ , 121.2 ⁴⁾ , 100.8 ²⁾		
s	biomass		wood	111	100 ¹⁾ , 124.9 ⁴⁾	92 - 100 ²⁾	
s	biomass		charcoal	112			
s	biomass		peat	113	98 ⁵⁾	102 - 115 ²⁾	
s	waste		municipal	114	15 ⁵⁾ , 28 ²⁾	109 - 141 ¹⁾	
s	waste		industrial	115		13.5 - 20 ⁵⁾	
s	waste		wood	116		83 - 100 ²⁾	
s	waste		agricultural	117			
1	oil		residual	203	75.8 ⁴ , 76.6 ³ , 78 ⁵	15 - 93 ²⁾	petroleum oil 72.6 ³⁾
1	oil		gas	204	72.7 ⁴⁾ , 74 ⁵⁾ , 75 ¹⁾	73 - 74 ⁵⁾ , 57 - 75 ²⁾	
1	oil		diesel	205	72.7 ⁴⁾ , 73 ⁵⁾		
1	kerosene			206	73.3 ²⁾	72 - 74 ⁵⁾	
1	gasoline		motor	208	70.8 ³⁾ , 71.7 ⁴⁾ , 72.2 ¹⁾	72 - 74 ⁵⁾	
1	naphtha			210	72.6 ³⁾ , 74 ²⁾		
1	black liquor			215		100 - 110 ²⁾	
g	gas		natural	301	55.5 ³⁾ , 60.8 ⁴⁾	55 - 56 ⁵⁾ , 44 - 57 ²⁾	
g	gas		liquified petroleum gas	303		64 - 65 ⁵⁾ , 57 - 65 ²⁾	
g	gas		coke oven	304	44 ⁵⁾	44 - 49 ⁵⁾ , 41.6 - 90 ²⁾	
g	gas		blast furnace	305	105 5)	100 - 105 ⁵ , 92 - 280 ²	
g	gas		coke oven and blast furnace gas	306			
g	gas		waste	307		44.4 - 57 ²⁾	
g	gas		refinery	308	60 ⁵⁾		
g	gas		biogas	309	75 ²⁾	10.5 - 73.3 ²⁾	
g	gas		from gas works	311	52 ²⁾		

¹⁾ Schenkel 1990 /105/

²⁾ CORINAIR90 data on combustion plants as point sources with thermal capacity of > 300, 50 - 300, < 50 MW

³⁾ IPCC 1993 /87/

4) Kamm 1993 /89/

⁵⁾ BMU 1994 /77/

ps010101 Table 30: N₂O emission factors [g/GJ] for combustion plants

								Type	e of boiler				[]	1	no speci-
Type of fuel NAPFUE						DBB		WBB		FBC		GF	GT	stat. E	
		code			value	remarks	value	remarks	value	remarks	value	remarks			CORINAIR904)
s	coal	hc	coking	101	0.8 1)	utility, no PM ³⁾	0.8 1)	utility, no PM 3)			0.8 1)	utility, no PM 3)	1 1	11	144)
s	coal	hc	steam	102	0.8 1)	utility, no PM ³⁾	0.8 1)	utility, no PM 3)			0.8 1)	utility, no PM ³⁾	$ \rangle /$		2.5 - 100 ⁴⁾
s	coal	hc	sub-bituminous	103	0.8 1)	utility, no PM ³⁾	$0.8^{(1)}$	utility, no PM 3)			0.8 1)	utility, no PM 3)			2.5 - 304)
s	coal	bc	brown coal/lignite	105	0.8 1)	utility, no PM ³⁾					0.8 1)	utility, no PM ³⁾	$ \rangle /$		1.4 - 304)
s	coal	bc	briquettes	106									$ \rangle /$	\mathbf{I}	
s	coke	hc	coke oven	107			/						1 \/	I V	1.4 - 254)
s	coke	bc	coke oven	108				\succ					I V	I V	
s	coke		petroleum	110									X		144)
s	biomass		wood	111	4.3 ¹⁾	commercial, no PM3)	/		4.3 ¹⁾	commercial, no PM ³⁾	4.3 ¹⁾	commercial, no PM3)	ΙA		1.4 - 754)
s	biomass		charcoal	112				\sim							
s	biomass		peat	113									$ \rangle \rangle$		2 - 754)
s	waste		municipal	114			/	/	14 - 165 ²	g/t waste	11 - 270	g/t waste	1 / \		44)
s	waste		industrial	115										$ \rangle$	1.44)
s	waste		wood	116				\sim					$ \rangle \rangle$	$ \rangle$	2 - 64)
s	waste		agricultural	117			/	<u> </u>					1	1	5 ⁴⁾
1	oil		residual	203	46.5 1)	commercial, no PM3)	\	/		/		/	2.5 - 14	⁵⁾ 2.5 ⁵⁾	1.4 - 14.84)
1	oil		gas	204	15.7 ¹⁾	commercial, no PM3)				. /		_ /	2 - 35)	2.55)	0.6 - 144)
1	oil		diesel	205			Ň	\setminus /		\setminus /		\setminus /	_		
1	kerosene			206				X		\times		\times			144)
1	gasoline		motor	208						/					
1	naphtha			210								í 🔪			14 ⁴⁾
1	black liquor			215			/								1 - 21.44)
g	gas		natural	301	2.4 1)	commercial, no PM3)	\ \		\ \	,		/		1 - 35)	0.1 - 34)
-	gas		liquified petroleum gas	303		·									2 - 4.34)
-	gas		coke oven	304											1.1 - 34)
-	gas		blast furnace	305				\setminus /		\setminus /		\setminus /			1.1 - 34)
-	gas		coke oven and blast furnace	306				X		\times		\times			
-	gas		waste	307				/		$\langle \rangle$		$\langle \rangle$			1.1 - 2.54)
g	gas		refinery	308			/	/	/	$\langle \rangle$	/	$\langle \rangle$		2.55)	2.5 - 144)
g	gas		biogas	309				\backslash		\backslash					1.4 - 2.54)
g	gas		from gas works	311			/	\backslash	/	\ \	/	<u>\</u>			
¹) Radian 1990 /102/, IPCC 1994 /88/ ²) DeSoete 1993 /83/, IPCC 1994 /88/ ³) PM: Primary measure ⁵) CORINAIR90 data, point sources															

Table 31: Heavy metal emission factors (g/Mg fuel) for combustion plants

						>=		Thermal boile	er capaci		nd < 300		1
							< 50						
						Type of boiler							
	Type of fuel		NAPFUE	Heavy metal			WB		DBB	WBB	FBC	GF	GF
			code	element	Dust control 1)	Dust control	Dust control 1)	Dust control					
						and FGD 2)		and FGD 2)					
s	coal	hc	101/102	Mercury	0.05 - 0.2	0.02 - 0.08	0.05 - 0.2	0.02 - 0.08					
				Cadmium	0.003 - 0.01	0.0001 - 0.004	0.01 - 0.07	0.004 - 0.03					
				Lead	0.02 - 1.1	0.007 - 0.5	0.3 - 3	0.1 - 1.2					
				Copper	0.01 - 0.4	0.006 - 0.2	0.05 - 0.4	0.05 - 0.2					
				Zinc	0.03 - 1.3	0.01 - 0.5	0.5 - 4	0.2 - 1.6					
				Arsenic	0.03 - 0.3	0.01 - 0.1	0.1 - 0.8	0.04 - 0.3					
				Chromium	0.04 - 0.2	0.02 - 0.06	0.05 - 0.4	0.02 - 0.2					
				Selen	0.01 - 0.03	0.004 - 0.01	-	-					
				Nickel	0.03 - 0.4	0.01 - 0.5	0.2 - 0.5	0.1 - 0.2					
s	coal	bc	105	Mercury	0.05 - 0.2	0.02 - 0.08	\ /			1		\ /	١
				Cadmium	0.002 - 0.004	0.0008 - 0.001				$ \rangle /$		\setminus /	\backslash
				Lead	0.003 - 0.06	0.001 - 0.02				$ \rangle /$		\setminus /	
				Copper	0.004 - 0.02	0.002 - 0.01	\backslash	\setminus		$ \setminus /$		\backslash	\setminus
				Zinc	0.01 - 0.2	0.006 - 0.1	Х	X		V		X	Х
				Arsenic	0.03 - 0.04	0.008 - 0.01				Λ		\wedge	
				Chromium	0.003 - 0.07	0.001 - 0.03						/	/ /
				Selen	-	-				$ / \rangle$		/	
				Nickel	0.02 - 0.04	0.01	/	/		1		1 1	/
1	oil, heavy fuel		203	Mercury	$1.0^{4)}$		\/			١	ι <i>Ι</i>	1	λ
				Cadmium	1.04)					$ \rangle /$	$ \setminus /$	\setminus /	
				Lead	1.34)					$ \setminus /$	\setminus /	\setminus /	
				Copper	$1.0^{4)}$		$ \setminus /$	\setminus		\backslash	\setminus	\setminus /	\setminus /
				Zinc	1.04)					Y	V	V	X
				Arsenic	0.54)		\wedge	\wedge		Λ	Λ	Å	\wedge
				Chromium	2.54)						/ \	/ \	
				Selen	_					$ / \rangle$		$ \rangle \rangle$	
				Vanadium	4.4 ⁵⁾					/ \		$ \rangle \rangle$	
				Nickel	354)		/	/		/	1 \	· · ·	/
g	gas, natural		301	Mercury	0.05 - 0.15 g/TJ ³⁾		\geq	>>		\geq	$>\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	\sim	>>

²⁾ FGD = Flue gas desulphurisation, clean gas particle concentration 20 mg/m^3

⁴⁾ general emission factor according to Stobbelaar 1992 /37/

ps010101

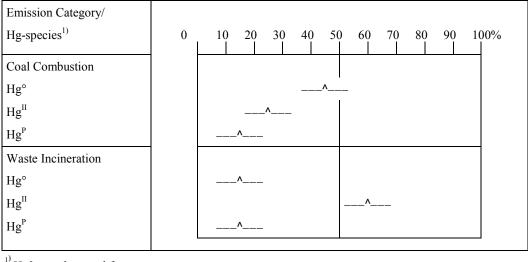
ps010101

9 SPECIFIC PROFILES

9.1 SO_x emissions

Sulphur dioxide SO_2 and sulphur trioxide SO_3 are formed in the flame. Emissions of SO_2 and SO_3 are often considered together as SO_x . Due to the equilibrium conditions at furnace temperature, sulphur trioxide SO_3 normally decomposes to sulphur dioxide SO_2 . Then the amount of SO_2 in the flue gas is approximately 99 %. Therefore, SO_x is given in this chapter as SO_2 .

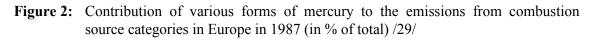
9.2 NO_x emissions


The most important oxides of nitrogen formed with respect to pollution are nitric oxide (NO) and nitrogen dioxide (NO₂), jointly referred to as NO_x. The main compound is NO, which contributes over 90 % to the total NO_x. Other oxides of nitrogen, such as dinitrogen-trioxide (N₂O₃), dinitrogen-tetroxide (N₂O₄), and dinitrogen-pentoxide (N₂O₅), are formed in negligible amounts. Nitrous oxide (N₂O) is considered separately.

9.3 NMVOC emissions

Due to the minor relevance of NMVOC emissions for power plants no split of species is given.

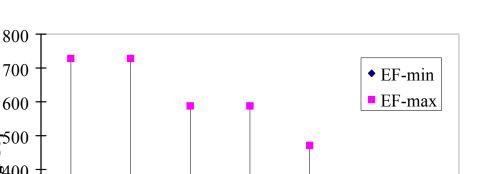
9.4 Heavy metal emissions


The heavy metals, which are of most environmental concern, are: arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), selenium (Se) and zinc (Zn). This selection has been laid down by the UN-ECE Task Force on Heavy Metals, the PARCOM/ATMOS programme (cf. /35/) and the HELCOM programme. In the case of heavy oil combustion, vanadium emissions (V) are also of importance. In fly ash particles most of these elements occur as oxides or chlorides. The contribution of various forms of mercury to the emissions from combustion source categories in Europe is given in the following Figure 2:

¹⁾Hg° elemental form

Hg^{II} oxidised form

Hg^P particle-bound


10 UNCERTAINTY ESTIMATES

Uncertainties of emission data result from the use of inappropriate or inaccurate emission factors, and from missing or inappropriate statistical information concerning activity data. Uncertainty estimates discussed here are related to the use of emission factors with different background information. At this stage a quantification of the uncertainty related to the use of emission factors is not feasible, due to the limited availability of data. However, the precision of emission estimates can be improved by applying individually determined emission factors.

The aim of the following procedure is to show the Guidebook-user how a lack of information concerning the fuel and technical characteristics of a combustion facility gives rise to a high uncertainty in the allocation of the appropriate emission factor. The whole span of possible emission factors is defined by the specification of the type of fuel used, the type of boiler, and the type of primary and secondary measures. The more information about these topics can be gathered, the smaller the span of possible emission factors becomes.

The following diagram (Figure 3) gives as an example the range of NO_x emission factors [g/GJ] for pulverised coal combustion depending on the level of specification.

Activities 010101 - 010105

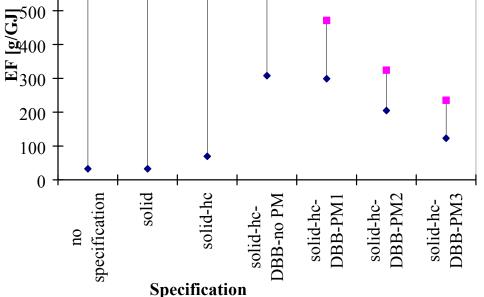


Figure 3: Ranges of NO_x emission factors for the combustion of pulverised coal The level of specification is defined as follows:

- "no information"	- the whole range of combustion sources is taken into account,
- "solid"	- only solid fuels are taken into account,
- "solid-hc"	- only hard coal is considered,
- "solid-hc-DBB-no PM"	- hard coal and combustion technique are taken into account (here dry bottom boiler (DBB), without primary measures),
- "solid-hc-DBB-PM1"	- hard coal, DBB and primary measures are taken into account with a reduction efficiency of 0.2,
- "solid-hc-DBB-PM2"	- hard coal, DBB and primary measures are taken into account with a reduction efficiency of 0.45,
- "solid-hc-DBB-PM3"	- hard coal, DBB and primary measures are taken into account with a reduction efficiency of 0.6.

In Figure 3 a large difference between minimum and maximum emission factors indicates high uncertainties in the allocation of appropriate emission factors. A specification of emission factors only concerning the type of fuel used (e.g. hard coal) is not sufficient. The range of NO_x emission factors for the combustion of pulverised coal is significantly reduced if technique related specifications are considered.

11 WEAKEST ASPECTS/PRIORITY AREAS FOR IMPROVEMENT IN CURRENT METHODOLOGY

The weakest aspects discussed here are related to the determination of emission factors. Methodological shortcomings are discussed in this section for the main pollutants SO_2 , NO_X and heavy metals.

11.1 SO₂ emissions

The approach for the determination of SO_2 emission factors is based on a simple mass balance calculation as the formation mechanisms of sulphur dioxide within the boiler depend almost entirely on the sulphur input. Therefore, for the formation of sulphur dioxide, fuel characteristics are of main influence. The accuracy of this approach is determined by the following fuel parameters: lower heating value, fuel sulphur content and sulphur retention in ash (see Equation (5)). The sulphur content and the lower heating value can be highly variable between different fuel categories and can furthermore vary to a large extent within one fuel category. Therefore, default values for sulphur content and lower heating value should be avoided. However, if emission factors for SO_2 have to be calculated, representative values for the sulphur content and the lower heating value should be based on measured data from individual fuel analysis.

The sulphur retention in ash α_s depends mainly on the content of alkaline components of the fuel. This is only relevant for coal (e.g. CaO, MgO, Na₂O, K₂O) and for the case of additive injection. For a more precise determination of α_s , the Ca/S ratio (amount of calcium/sulphur content of fuel)⁸, the particulate diameter, the surface character of CaO, the temperature (optimum ca. 800 °C), the pressure, the residence time, etc. should be taken into account. Therefore, the assessment of α_s should be based on an extended set of parameters.

Besides the fuel characteristics, the reduction efficiency and availability of secondary measures are of relevance for the determination of the SO₂ emission factors. Default values are proposed in Table 7, but measured data from individual combustion plants should preferably be used.

11.2 NO_X EMISSIONS

The approach for the calculation of NO_X emission factors is based on empirical relations. For fuel-NO only fuel characteristics are taken into account. The formation of thermal-NO increases exponentially with combustion temperatures above 1,300 °C (see /56/). At this

⁸ Alternatively the Ca/S ratio is defined as the amount of additives related to the sulphur content of the flue gas, and is given for a brown coal fired dry bottom boiler as 2.5 - 5 as an example, for a stationary FBC as 2 - 4, for a circulating FBC < 2 etc. /55/.</p>

stage, no satisfactory result has been achieved to determine the thermal-NO formation by using kinetic equations. For inventory purposes, an empirical parameter γ has been introduced (see Annex 5), which represents the fraction of thermal-NO formed. At this stage default values of γ depending on the type of boiler are given. Further work should focus on a more precise determination of this factor.

Load dependence of the pollutant NO_x has been taken into account. For old installations a quantitative relation has been given as an example for German power plants. The validity of this relation should be verified for other countries.

Furthermore, the reduction efficiency of primary or secondary measures are of relevance for the determination of NO_x emission factors. Default values for reduction efficiencies and availabilities are proposed in Tables 10 and 11, but measured data from individual combustion plants should preferably be used.

11.3 Heavy metals

Heavy metals undergo complex transformations during the combustion process and downstream of the boiler, referring to e.g. fly ash formation mechanisms. The approaches for the determination of heavy metal emission factors are based on empirical relations, where fuel and technical characteristics are of main influence. The heavy metal contents can be highly variable between different fuel categories (e.g. coal and heavy fuel oil) and can furthermore vary to a large extent within one fuel category (up to 2 orders of magnitude). Therefore, default values for heavy metal contents in fuel should be avoided and measured values should be used as far as possible.

For inventory purposes, parameters, such as enrichment factors, fractions of fly ash leaving the combustion chamber, fraction of heavy metals emitted in gaseous form, have been introduced. Further work should be invested into a more precise determination of these parameters. In addition, it should be taken into account, that the reduction efficiency of (dust) abatement measures depends on the heavy metal. Heavy metal specific reduction efficiencies should be determined.

11.4 Other aspects

Emission factors for SO_2 , NO_2 and CO, whether calculated or given in the tables, are related to full load conditions. In order to assess the relevance of start-up emissions, a detailed investigation has been accomplished by using measured values from different types of boiler (see also Annex 15). The qualitative and quantitative statements obtained in this approach should be verified.

The emission factors have been determined by considering the pollutants separately. Possible mutual interactions between the formation mechanisms of different pollutants (e.g. NO and N_2O) have been neglected and should be assessed in further work.

Emission Inventory Guidebook

ps010101

12 SPATIAL DISAGGREGATION CRITERIA FOR AREA SOURCES

This section is not relevant for combustion plants considered as point sources.

13 TEMPORAL DISAGGREGATION CRITERIA

The temporal disaggregation of annual emission data (top-down approach) provides a split into monthly, weekly, daily and hourly emission data. Temporal disaggregation of annual emissions released from combustion plants as point sources can be obtained from the temporal change of the production of electrical power or the temporal change of the consumption, taking into account a split into:

- summer and winter time,
- working days and holidays,
- standstill times,
- times of partial load behaviour and
- number of start-ups / type of load design.

This split should be carried out for defined categories of power plants which take into account the main relevant combinations of types of fuel used and types of boiler installed (similar split as used for the emission factor Tables in Section 8).

The disaggregation of annual emissions into monthly, daily or hourly emissions can be based on a step-by-step approach /76/ according to the following equations:

- Monthly emission:

$$E_{M_n} = \frac{E_A}{12} \cdot f_n \tag{25}$$

 E_{M_n} Emission in month n; n = 1, ..., 12 [Mg]

- E_A Annual emission [Mg]
- f_n Factor for month n; n = 1, ..., 12 []

- Daily emission:

$$E_{D_{n,k}} = \frac{E_{M_n}}{D_k} \cdot f_k \cdot \frac{1}{CF_n}$$
(26)

 $E_{D_{n,k}}$ Emission of day k in month n; k = 1, ..., D_k; n = 1, ..., 12 [Mg]

 E_{M_n} Emission in month n; n = 1, ..., 12 [Mg]

- D_k Number of days in month n []
- f_k Factor for day k; k = 1, ..., D_k []
- CF_n Correction factor for month n []

- Hourly emission:

$$E_{H_{n,k,l}} = \frac{E_{D_{n,k}}}{24} \cdot f_{n,l}$$
(27)

 $E_{H_{n,k,l}}$ Emission in hour l in day k and month n; l = 1, ..., 24; k = 1, ..., D_k; n = 1, ..., 12 [Mg]

 $E_{D_{n k}}$ Emission of day k in month n; k = 1, ..., D_k; n = 1, ..., 12 [Mg]

 $f_{n,l}$ Factor for hour l in month n; l = 1, ..., 24; n = 1, ..., 12 []

 D_k Number of days in month n []

The factors (relative activities) for month f_n , day f_k and hour $f_{n,l}$ can be related e.g. to the total fuel consumption or the net electricity production in public power plants. Figure 4 gives an example of a split for monthly factors based on the fuel consumption e.g. for Public Power Plants:

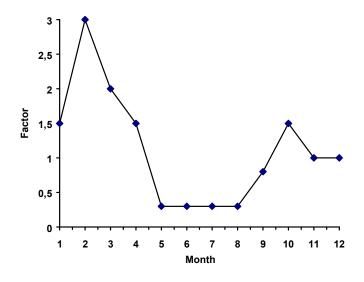
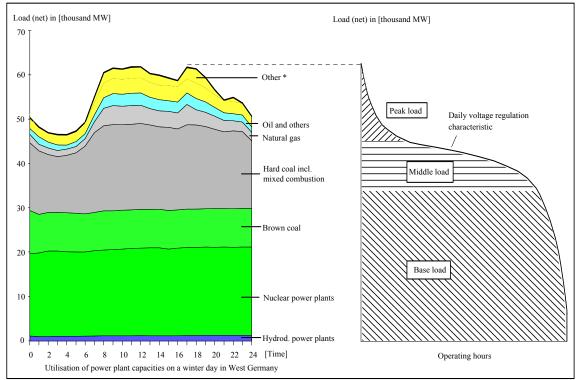



Figure 4: Example of monthly factors for total fuel consumption in Public Power Plants

A split concerning the load design, which determines the annual number of start-ups can be given as follows (see also Table 11):

- Base load: The boiler/plant is normally in continuous operation during the year; startups occur relatively seldom (ca. 15 times per year) depending on maintenance periods which occur mostly in summer. The fuel mostly used in base load boilers is brown coal.
- Middle load: The boiler/plant is in operation in order to meet the energy demand on working days (Monday until Friday); start-ups can occur up to 150 times per year. The fuel mostly used in middle load boilers is hard coal.
- Peak load: The boiler/plant is in operation in order to meet the short term energy demand; start-ups can occur up to 200 times per year. The fuels mostly used in peak load boilers are gas or oil.

The allocation of power plants to the different load designs is given as an example in Figure 5.

*Other includes: Storage pump power plants, power supply from industry etc.

Figure 5: Load variation and arrangement of power plants according to the voltage regulation characteristic (cf. /117/, /118/).

It can be assumed that all power plants of a country with the same allocation of fuel, boiler and load have the same temporal behaviour.

14 ADDITIONAL COMMENTS

15 SUPPLEMENTARY DOCUMENTS

15.1 Computer programme

A computer programme for the calculation of SO_2 and NO_2 emission factors for pulverised coal combustion has been designed, and is available on floppy disc. It has been designed under MICROSOFT EXCEL 4.0 (English version). Default values for the required input data are proposed to the user; a detailed users manual is given in Annex 14. For example, NO_X concentrations in [mg/m³] were calculated with the computer programme and presented

ps010101

together with the emission factors in [g/GJ] as listed in Annexes 10 and 11. An integral part of the computer programme is the calculation of the flue gas volume as given in Annex 6.

15.2 LIST OF ANNEXES

Annex 1:	Example of different possible considerations of boilers as a common plant
Annex 2:	Determination of SO ₂ emission factors (flow sheet)
Annex 3:	Determination of SO ₂ emission factors (description)
Annex 4:	Determination of NO_X emission factors (flow sheet)
Annex 5:	Determination of NO_X emission factors (description)
Annex 6:	Determination of the specific flue gas volume (flow sheet and description)
Annex 7:	Composition and lower heating value (H_u) of hard coal in coal mining countries
Annex 8:	Composition and lower heating value (H_u) of brown coal in coal mining countries
Annex 9:	Conditions for exemplary calculation of NO_X emission factors
Annex 10:	Emission factors and flue gas concentrations for NO_X obtained by model calculations (see Annexes 4 and 5) for hard coal (see Annex 7)
Annex 11:	Emission factors and flue gas concentrations for NO_X obtained by model calculations (see Annexes 4 and 5) for brown coal (see Annex 8)
Annex 12:	Comparison between measured and calculated SO_2 and NO_X emission data
Annex 13.	Sensitivity analysis of the computer programme results
Annex 14:	Users' manual for the emission factor calculation programme (for version September, 1995)
Annex 15:	Determination of start-up emissions and start-up emission factors.
Annex 16:	List of abbreviations

16 VERIFICATION PROCEDURES

As outlined in the chapter "Concepts for Emission Inventory Verification", different general verification procedures can be recommended. The aim of this section is to develop specific verification procedures for emission data from combustion plants as point sources. The

verification procedures considered here are principally based on verification on a national and on a plant level. Moreover, it can be distinguished between the verification of activity data, of emission factors and of emission data.

16.1 Verification on a national level

For combustion plants as point sources, emissions and activities have to be verified. The total emissions from point sources are added together to obtain national total emissions (bottom-up approach). These national total emissions should be compared to emission data derived independently (top-down approach). Independent emission estimates can be obtained by using average emission factors and corresponding statistical data like the total fuel input for all sources, total thermal capacity, total heat or power produced, or by using emission estimates from other sources (e.g. organisations like energy agencies).

The total fuel consumption should be reconciled with energy balances, which often have break-downs for large point sources (e.g. electricity, heat generation and industrial boilers). Furthermore, the total number of plants installed as well as their equipment should be checked with national statistics.

Emission density comparisons can be achieved through comparison of e.g. emissions per capita or emissions per GDP with those of countries with a comparable economic structure.

16.2 Verification on a plant level

It should firstly be verified that separate inventories have been compiled for boilers, stationary engines, and gas turbines (according to SNAP code). The verification at plant level relies on comparisons between calculated emission factors and those derived from emission measurements. An example for such a comparison is given in Annex 12.

17 REFERENCES

- /1/ Bretschneider, B.: Paper presented at the second panel meeting, Karlsruhe; Oct. 21/22, 1993
- /2/ Hietamäki, M.: Personal communication, October 21, 1993
- /3/ Fontelle, J.-P.: Paper presented at the first panel meeting, Karlsruhe; Feb. 18/19, 1993
- /4/ Umweltbundesamt (ed.): Daten zur Umwelt 1990/91; Berlin; 1992
- /5/ Civin, V.: Personal communication, October 21, 1993
- /6/ Pulles, M.P.J.: Emission Inventory in the Netherlands, Industrial Emissions for 1988; Ministry of Housing, Physical Planning and Environment (ed.); s'-Gravenhage; Dec. 1992
- /7/ Berdowski, J.J.M.: Combustion Emissions from Large Combustion Plants in the Netherlands in 1990 and 1991; Ministry of Housing, Physical Planning and Environment (ed.); s'-Gravenhage; March 1993
- /8/ Paper presented by Mr. Debski at the first panel meeting: "Electricity generation and emission statistics"; Karlsruhe; Feb. 18/19, 1993

- /9/ Council Directive of 24 November 1988 on the limitation of emissions of certain pollutants into the air from large combustion plants (88/699/EEC)
- /10/ Proceedings of the second meeting of the UN-ECE Task Force on Heavy Metal Emissions, Prague, October 15 - 17, 1991
- /11/ Neckarwerke Elektrizitätsversorgungs-AG, Kraftwerk Walheim, Block 2: Demonstrationsanlage zur Reduzierung von NO_X-Emissionen aus Schmelzkammerkessel mit Ascherückführung, Abschlußbericht, Gesch.-Z: II 1.1-50441-1/43
- /12/ Clarke, L.B.; Sloss, L.L.:Trace Element Emissions from Coal Combustion and Gasification, IEA Coal Research, Rep.-Nr. IEACR, 1992
- /13/ DeSoete, G.; Sharp, B.: Nitrous oxide emissions: Modifications as a consequence of current trends in industrial fossil fuel combustion and in land use; Commission of the European Communities (ed.), Brussels, Luxemburg, 1991
- /14/ Andersson, Curt; Brännström-Norberg, Britt-Marie; Hanell, Bengt: Nitrous oxide emissions from different combustion sources; Swedish State Power Broad, Vaellingby (Schweden), 1989
- /15/ DIN 51603: Flüssige Brennstoffe; Teil 1: Heizöl EL, Mindestanforderungen (1995); Teil 2: Heizöle L, T und M, Anforderungen an die Prüfung (1992)
- /16/ VDI Richtlinie 2297: Emissionsminderung; Ölbefeuerte Dampf- und Heißwassererzeuger; 1982
- /17/ Kolar, Jürgen; Stickstoffoxide und Luftreinhaltung, Springer Verlag Berlin, Heidelberg, New York, 1990
- /18/ Rentz, O; Dorn, R.; Holschumacher, R.; Padberg, C.: Application of advanced SO₂ and NO_x emission control technologies at stationary combustion installations in OECD countries; Institute for Industrial Production, University of Karlsruhe; June 1992
- /19/ Rentz, O.; Ribeiro, J.: NO_X Task Force Operating Experience with NO_X Abatement at Stationary Sources; Report for the ECE; Dec. 1992
- /20/ Gutberlet, H: Measurement of heavy metal removal by a flue gas desulfurization plant working by the lime scrubbing method, Research report No. ENV-492-D(B), Luxembourg, Commission of the European Communities, 1988
- /21/ Maier, H.; Dahl, P.; Gutberlet, H.; Dieckmann, A.: Schwermetalle in kohlebefeuerten Kraftwerken, VGB Kraftwerkstechnik, 72(1992)5, S. 439
- /22/ Fahlke, J.: Untersuchungen zum Verhalten von Spurenelementen an kohlebefeuerten Dampferzeugern unter Berücksichtigung der Rauchgaseinigungsanlagen, VGB Kraftwerkstechnik, 73(1993)3, S. 254
- /23/ Gutberlet, H.; Spiesberger, A.; Kastner, F.; Tembrink, J.: Zum Verhalten des Spurenelements Quecksilber in Steinkohlenfeuerungen mit Rauchgasreinigungsanlagen, VGB Kraftwerkstechnik, 72(1992)7, S. 636 -641
- /24/ Rentz, O.; Holtmann, T.; Oertel, D.; Röll, C. et al: Konzeption zur Minderung der VOC-Emissionen in Baden-Württemberg; Umweltministerium Baden-Württemberg (ed.); Heft 21; Karlsruhe (Germany), 1993
- /25/ Hulgaard, Tore: Nitrous Emissions from Danish Power Plants; Danmarks Tekuiske Hoejkole, Lyngby (Denmark); Institute for Kemiteknik, 1990

- /26/ Clayton, Russ; Sykes, Alston; Machilek, Rudi; Krebs, Ken; Ryan, Jeff: NO Field study; prepared for the US-EPA; Research Triangle Park (NC), 1989
- Bonn, B.: NO_x-Emissionen bei Wirbelschichtfeuerungen; VDI-Berichte Nr. 1081; Düsseldorf (Germany), 1993
- /28/ Economic Commission for Europe: NO_X Task Force Technologies for Controlling NO_X Emissions from Stationary Sources, April 1986
- /29/ UN-ECE Task Force on Heavy Metal Emissions: State-of-the-Art Report; 1994
- /30/ IEA-coal research (ed.): The problems on sulphur; London 1989
- /31/ EVT Energie- und Verfahrenstechnik GmbH (ed.): Taschenbuch; Stuttgart, 1990
- /32/ Reidick, H.: Primärmaßnahmen zur NO_X-Minderung bei Neu- und Altanlagen als Voraussetzung für optimale Sekundärmaßnahmen; <u>in:</u> Sammelband VGB-Konferenz "Kraftwerk und Umwelt 1985", p. 129-135
- /33/ Reidick, H.: Erfahrungen mit primärer und sekundärer NO_x-Minderung der Abgase von Dampferzeuger-Feuerungen; in: EV-Register 45/86, S. 39 - 50
- /34/ Rüsenberg, D.; Hein, K.; Hoppe, K.: Feuerungsseitige Maßnahmen zur Minderung der NO_X-Emission; <u>in:</u>
 VGB-Kraftwerkstechnik 67 (1987) 3, S. 275-279
- /35/ van der Most, P.F.J.; Veldt, C.: Emission Factors Manual PARCOM-ATMOS, Emission factors for air pollutants 1992, Final version; TNO and Ministry of Housing, Physical Planning and the Environment, Air and Energy Directorate Ministry of Transport and Water Management; The Netherlands; Reference number 92 - 235; 1992
- /36/ Jockel, W.; Hartje, J.: Die Entwicklung der Schwermetallemissionen in der Bundesrepublik Deutschland von 1985 bis 1995; Forschungsbericht 94-104 03 524; TÜV Rheinland e. V. Köln; 1995
- /37/ Stobbelaar, G.: Reduction of Atmospheric Emissions under the terms of the North Sea Action Programme, Report Lucht 102, Ministry of Housing, Physical Planning and Environment, The Netherlands, 1992
- /38/ Bouchereau, J.M.: Estimation des Emissions Atmosphériques de Métaux Lourds en France pour le Chrome, le Cuivre, le Nickel, le Plomb et le Zinc, CITEPA, France (1992)
- /39/ Axenfeld, F.; Münch. J.; Pacyna, J.M.; Duiser, J.; Veldt, C.: Test-Emissionsdatenbasis der Spurenelemente As, Cd, Hg, Pb, Zn und der speziellen organischen Verbindungen Lindan, HCB, PCB und PAK für Modellrechnungen in Europa, Forschungsbericht 104 02 588, Dornier GmbH, NILU, TNO, 1992
- /40/ Marx, E.: Reduzierung von Emissionen und Beseitigung von Rückständen unter Berücksichtigung ernergetischer Nutzung; in: Die Industriefeuerung; 49 (1989); S. 75 - 87
- /41/ CORINAIR 90 Emission Inventory (Proposals) working paper for the 19 20 September 1991 meeting -Annex 4: Definition of Large Point Sources
- /42/ Hernández, R.; Martínez, J.; Ortiz, A.: CORINAIR Relational schema and data dictionary 1st version; AED; March 1992

- /43/ Fontelle, J-P.: The Implementation of the Directive 88/609 on Large Combustion Plants Proposal for the achievement of air emission inventories, CORINAIR (ed.); Nov. 1991
- /44/ Fontelle, J-P.: The Implementation of the Directive 88/609 on Large Combustion Plants LCP Directive inventory reporting; CITEPA (ed.); June 1992
- /45/ Necker, Peter; Lehmann, Bernhard: Kraftwerk Walheim, Block 2 Demonstrationsanlage zur Reduzierung von NO_X-Emissionen aus Schmelzkammerkesseln mit Ascherückführung; Neckarwerke Elektrizitäts-versorgung AG; i. Zusammenarbeit mit Umweltbundesamt Berlin; Esslingen, 1992
- /46/ VDI (ed.): Efficient Energy Supply with Combustion Engine Plants; Part II; Aachen; 1993
- /47/ Brandt, F: Brennstoffe und Verbrennungsrechnung, FDBR Fachbuchreihe; Vol. 1; Essen; 1981
- /48/ N.N.: Ruhrkohlenhandbuch; Verlag Glückauf GmbH, Essen, 1984, 6th Edition, p. 118
- /49/ Wagner, W.: Thermische Apparate und Dampferzeuger Planung und Berechnung; Vogel Fachbuch Technik, Würzburg 1985
- /50/ Schnell, U.: Berechnung der Stickoxidemissionen von Kohlenstaubfeuerungen; VDI Reihe 6: Energieerzeugung Nr. 250, Düsseldorf 1991
- /51/ Pohl, J.H.; Chen, S.L.; Heap, M.P.; Pershing, D.W.: Correlation of NO_X Emissions with Basic Physical and Chemical Characteristics of Coal; <u>in:</u> Joint Symposium on Stationary Combustion NO_X Control, Volume 2, Palo Alto 1982, S. (36-1) - (36-30).
- /52/ Davis, W.T.; Fiedler, M.A.: The Retention of Sulfur in Fly Ash from Coal-Fired Boilers; in: Journal of the Air Pollution Control Association (JAPCA), 32 (1982), p. 395 - 397
- /53/ Heer, W.: Zur Konfiguration von Emissionsminderungsmaßnahmen an Kohlekraftwerken, Dissertation Universität Karlsruhe 1987
- /54/ Zelkowski, J: Kohleverbrennung; Fachbuchreihe "Kraftwerkstechnik", Vol. 8, Essen 1986
- /55/ Görner, K.: Technische Verbrennungssysteme Grundlagen, Modellbildung, Simulation; Springer Verlag Berlin, Heidelberg, New York, 1991
- /56/ Leuckel, W.; Römer, R.: Schadstoffe aus Verbrennungsprozessen; <u>in:</u> VDI Berichte Nr. 346, 1979, S. 323
 347
- /57/ Hansen, U.: Update and Temporal Resolution of Emissions from Power Plants; <u>in:</u> GENEMIS, Paper presented at the 3rd GENEMIS Workshop, Vienna 1993
- /58/ CITEPA (ed.): CORINAIR Inventory Default Emission Factor Handbook, Commission of the European Community (ed.), second edition, January 1992
- /59/ US-EPA (ed.): Compilation of Air Pollutant Emission Factor, Vol. 1; Stationary Point and Area Sources; 1985
- /60/ Pacyna, Josef: Emission Inventorying for Heavy Metals in the ECE; Draft Paper for the Final Report of the Task Force on Heavy Metals Emission; 1994
- /61/ IPCC/OECD (ed.): Greenhouse Gas Inventory Workbook, IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2; 1995

- /62/ Ribeiro, Jacqueline: Techno-economic analysis of the SCR plant for NO_x abatement; University of Karlsruhe; Institute for Industrial Production; 1992
- /63/ Umweltbundesamt, Germany (ed.): Umwelt- und Gesundheitskritierien f
 ür Quecksilber; UBA-Berichte 5/80; Berlin 1980
- /64/ Personal communications with different power plant operators; answers to a questionnaire from March 8, 1994
- /65/ Deutsche Verbundgesellschaft e. V. (ed.): Das versorgungsgerechte Verhalten der thermischen Kraftwerke; Heidelberg; 1991
- /66/ TNO report 88 355/R 22/ CAP included in /58/
- /67/ Winiwater, D.; Schneider, M.: Abschätzung der Schwermetallemissionen in Österreich; Umweltbundesamt Österreich, Wien; 1995
- /68/ VDI (ed.): Gasturbineneinsatz in der Kraft-Wärme-Kopplung; Rationelle Energieversorgung mit Verbrennungs-Kraftmaschinen-Anlagen; Teil V; Aachen; 1993
- /69/ Veaux, C.; Rentz, O.: Entwicklung von Gasturbinen und Gasturbinenprozessen; Institut f
 ür Industriebetriebslehre und Industrielle Produktion; Karlsruhe; 1994 (unpublished)
- /70/ VDI (ed.): Co-generation Technology-Efficient Energy Supply with Combustion Engine Plants; Part II; Aachen; 1993
- /71/ VGB (ed.): Hinweise zur Ausfertigung der Emissionserklärung für Anlagen aus dem Bereich der Kraftund Energiewirtschaft gemäß 11. Verordnung zur Durchführung des Bundesimmissionsschutzgesetzes vom 12.12.1991 (Stand März 1993); Essen; 1993
- /72/ Association of German Coal Importers / Verein Deutscher Kohleimporteure e.V.: Datenbank Kohleanalysen; Stand 27. Januar 1992; Hamburg (Germany)
- /73/ ASTM-ISO 3180-74: Standard Method for Calculating Coal and Coke Analyses from as-determined to different Bases
- /74/ N. N.: Update and Temporal Resolution of Emissions from Power Plants in GENEMIS; Paper published at the 3rd Genemis-Workshop in Vienna; 1983
- /75/ Bartok, W. et. al.: Stationary sources und control of nitrogen oxide emissions; Proc. second International Clean Air Congress; Washington; 1970; p. 801 - 818.
- /76/ N. N.: Update and Temporal Resolution of Emissions from Power Plants, in: GENEMIS; Paper from the 3rd Workshop; Vienna; 1993
- Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (ed.): Umwelt-politik Klimaschutz in Deutschland, Erster Bericht der Regierung der Bundesrepublik Deutschland nach dem Rahmenübereinkommen der Vereinten Nationen über Klimaänderungen; 1994
 The Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (ed.): Environmental Policy Climate Protection in Germany First Report of the Federal Government of the Federal Republic of Germany according to the United Nations Framework Convention of Climate Change, 1994
- /78/ Boelitz, J.; Esser-Schmittmann, W.; Kreusing, H.: Braunkohlenkoks zur Abgasreinigung; in: Entsorger-Praxis (1993)11; S. 819 - 821
- /79/ Breton, D.; Eberhard, R.: Handbuch der Gasverwendungstechnik, Oldenburg 1987

- /80/ CITEPA: CORINAIR Inventory-Default Emission Factors Handbook (second edition); CEC-DG XI (ed.); 1992
- /81/ Davids, P.; Rouge M.: Die Großfeuerungsanlagenverordnung. Technischer Kommentar; VDI, Düsseldorf 1984
- /82/ Davids, Peter; Rouge, Michael: Die TA Luft '86, Technischer Kommentar; Düsseldorf; 1986
- /83/ DeSoete, G.: Nitrous Oxide from Combustion and Industry: Chemistry, Emissions and Control; Working Group Report: Methane Emissions from Biomass Burning; in: van Amstel, A.R. (ed.): Proceedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report no. 481507003; Bilthoven (The Netherlands); p. 324 - 325
- /84/ Environment Agency: Air polluters unveiled by Tokio Government, Japan; Environment Summary 1973-1982, Vol. 1, (1973); p. 18/19
- /85/ US-EPA (ed.): Criteria Pollutant Emission Factors for the NAPAP Emission Inventory; EPA/600/7-87/015; 1987
- /86/ Gerold, F. et. al.: Emissionsfaktoren für Luftverunreinigungen; Materialien 2/80; Berlin; 1980
- /87/ IPCC/OECD (ed.): Joint Work Programme on National Inventories of Greenhouse Gas Emissions: National GHG-Inventories (ed.): Transparency in estimation and reporting; Parts I and II; Final report of the workshop held 1 October 1992 in Bracknell (U.K.); published in Paris; 1993
- /88/ IPCC/OECD (ed.): Greenhouse Gas Inventory Reference Manual; IPCC Guidelines for National Greenhouse Gas Inventories, Volume 3; 1995
- /89/ Kamm, Klaus; Bauer, Frank; Matt, Andreas: CO-Emissionskataster 1990 f
 ür den Stadtkreis Karlsruhe; in: WLB - Wasser, Luft und Boden (1993)10; p. 58 ff.
- /90/ Kremer, H.: NO_X-Emissionen aus Feuerungsanlagen und aus anderen Quellen; <u>in:</u> Kraftwerk und Umwelt 1979; Essen; 1979; p. 163 - 170
- /91/ Lim, K.J. et. al.: A promising NO_X-control-technology; Environmental Progress, Vol. 1; Nr.3; 1982; p. 167 - 177
- /92/ Landesanstalt f
 ür Immissionsschutz des Landes NRW (ed.): Emissionsfaktoren f
 ür Feuerungsanlagen f
 ür feste Brennstoffe; in: Gesundheits-Ingenieur 98(1987)3; S. 58 68
- /93/ Landesanstalt f
 ür Immissionsschutz des Landes NRW (ed.): Erstellung eines Emissionskatasters und einer Emissionsprognose f
 ür Feuerungsanlagen im Sektor Haushalte und Kleinverbraucher des Belastungsgebietes Ruhrgebiet Ost; LIS Bericht Nr. 73; 1987
- /94/ Marutzky, R: Emissionsminderung bei Feuerungsanlagen f
 ür Festbrennstoffe; in: Das Schornsteinfegerhandwerk (1989)3, S. 7 - 15
- /95/ Ministerium für Arbeit, Gesundheit und Soziales des Landes NRW (ed.): Luftreinhalteplan Ruhrgebiet Ost 1979-1983; Luftreinhalteplan Ruhrgebiet Mitte 1980-1984; Düsseldorf; 1978 bzw. 1980
- /96/ Mobley, J.D.; Jones G.D.: Review of U.S. NO_x abatement technology; Proceedings: NOx-Symposium Karlsruhe 1985 B1/B 74
- /97/ MWV: Jahreszahlen 1992, Hamburg 1992

- /98/ N.N.: Untersuchung zur Emissionsbegrenzung bei bestimmten Anlagenarten; in: Umweltschutz in Niedersachsen - Reinhaltung der Luft, Heft 8; S. 145 - 169
- /99/ Ministry of Housing, Physical Planning and Environment (ed.): Handbook of Emission Factors, Stationary Combustion Sources, Part 3; The Netherlands, The Hague; 1988
- /100/ OECD Environment Directorate (ed.): Greenhouse Gas Emissions and Emission Factors; 1989
- /101/ van der Most, P. F J.; Veldt, L.: Emission Factors Manual Parcom-Atmos, Emission factors for air pollutants 1992; Final version; TNO; The Netherlands; Reference number 92 - 235, 1992
- /102/ Radian Corporation (ed.): Emissions and Cost Estimates for Globally Significant Anthropogenic Combustion Sources of NO_X, N₂O, CH₄, CO and CO₂; Prepared for the Office of Research and Development; U.S. Environmental Protection Agency; Washington D.C.; 1990
- /103/ Ratajczak, E.-A.; Akland, E.: Emissionen von Stickoxiden aus kohlegefeuerten Hausbrandfeuerstätten; in: Staub, Reinhaltung Luft; 47(1987)1/2, p. 7 - 13
- /104/ Riediger, Bruno: Die Verarbeitung des Erdöls, Springer-Verlag 1971, p. 31
- /105/ Schenkel, W.; Barniske, L.; Pautz, D.; Glotzel, W.-D.: Müll als CO-neutrale Energieresource; in: Kraftwerkstechnik 2000 - Resourcen-Schonung und CO-Minderung; VGB-Tagung 21./22.2.1990; p. 108
- /106/ Skuschka, M; Straub, D.; Baumbach, C.: Schadstoffemissionen aus Kleinfeuerungen; Institut für Verfahrenstechnik und Dampfkesselwesen; Abt. für Reinhaltung der Luft; Stuttgart; 1988
- /107/ Steinmüller-Taschenbuch -Dampferzeugertechnik, Essen 1984
- /108/ Stromthemen, 6(1989)6, p. 7
- /109/ Tornier, W.: Derzeit erreichbare Emissionswerte von Kesselanlagen und ihre Minderung durch Primärmaßnahmen; VDI-GET-VK-Tagung: Kessel- und Prozeßwärmeanlagen; Essen; 1985
- /110/ Umweltbundesamt (ed.): Luftreinhaltung 1981; Berlin; 1981
- /111/ Umweltbundesamt (ed.): Jahresbericht 1985; Berlin; 1986
- /112/ VGB Technische Vereinigung der Großkraftwerksbetreiber e.V. (ed.): VGB- Handbücher VGB-B301: NO_x-Bildung und NO_x-Minderung bei Dampferzeugern für fossile Brennstoffe; Essen; 1986
- /113/ CEE (ed.): Directive du Conseil du 30 mars 1987 modifiant la directive 75/716/CEE relative au rapprochement des législations des Ètats membres concernant la teneur en soufre de certains combustibles liquides, 87/219/CEE
- /114/ Meijer, Jeroen: Personal communication, IEA (International Energy Agency), Fax of April 24, 1995.
- /115/ US-EPA (ed.): AP 42 CD rom, 1994
- /116/ Personal communication with power plant operators in Germany, 1995
- /117/ Verein Deutscher Elektrizitätswerke (VDEW) (ed.): Jahresstatistik 1991; Frankfurt; 1992
- /118/ Kugeler, F.; Philippen, P.: Energietechnik; 1990

ps010101

18 BIBLIOGRAPHY

Additional literature, which is related to combustion:

Strauß sen., K.: NO_X-Bildung und NO_X-Minderung bei Dampferzeugern für fossile Brennstoffe, VGB - B 301, Part B 5.1; Essen; 1986

Zelkowski, J.: NO_X-Bildung bei der Kohleverbrennung und NO_X-Emissionen aus Schmelzfeuerungen, <u>in:</u> VGB Kraftwerkstechnik 66 (1986) 8, S. 733 - 738

Rennert, K. D.: Mögliche Seiten der Stickstoffreduzierung in Feuerräumen; Sonderdruck aus Fachreport Rauchgasreinigung 2/86, S. FR 13 - 17

Schreiner, W.: Rennert, K. D.: Emissionsverhalten von Brennern mit Luftstufung in Groß- und Versuchsanlagen, <u>in:</u> BWK Bd. 40 (1988) 5, Mai 1988

Visser, B.M.; Bakelmann, F.C.: NO_x-Abatement in Gas Turbine Installations; <u>in</u>: Erdöl und Kohle-Erdgas-Petrochemie vereinigt mit Brennstoff-Chemie, 46 (1993) 9, S. 333 - 335

Alaghon, H.; Becker, B.: Schadstoffarme Verbrennung von Kohlegas in GuD-Anlagen; <u>in</u>: VGB Kraftwerkstechnik, 64 (1984) 11, S. 999 - 1064

Arbeitsgruppe Luftreinhaltung der Universität Stuttgart (ed.): Verbrennungsmotoren und Feuerungen-Emissionsminderung; <u>in</u>: Jahresbericht der Arbeitsgruppe Luftreinhaltung; Stuttgart 1988

Scherer, R.: Konzept zur Rauchgasreinigung bei schwerölbetriebenen Motorheizkraftwerken; <u>in</u>: BWK 45 (1993) 11, S. 473 - 476

N.N.: NO_X-Emissions by Stationary Internal Combustion Engines; <u>in</u>: Erdöl und Kohle-Erdgas-Petrochemie vereinigt mit Brennstoff-Chemie, 40 (1987) 9, p. 375 - 376

Kehlhofer, R.; Kunze, N.; Lehmann, J.; Schüller, K.-H.: Gasturbinenkraftwerke, Kombikraftwerke, Heizkraftwerke und Industriekraftwerke; Köln 1984, 1992

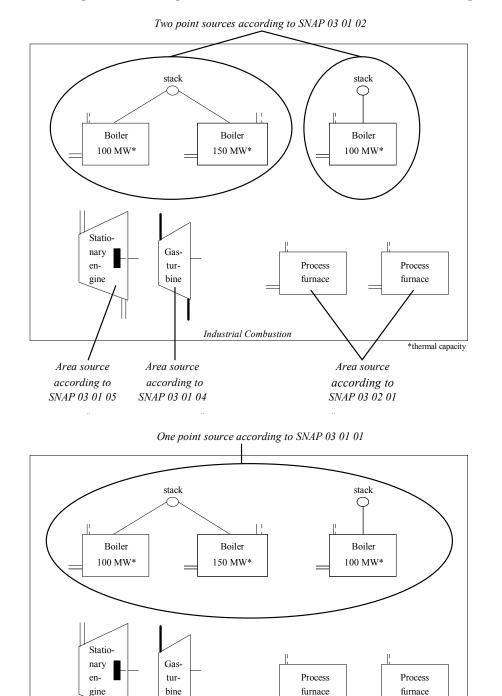
19 RELEASE VERSION, DATE AND SOURCE

Version: 3.1

Date: November 1995

Source: Otto Rentz; Dagmar Oertel University of Karlsruhe (TH) Germany

Updated with particulate matter details by: Mike Woodfield AEA Technology UK December 2006


20 POINT OF ENQUIRY

Any comments on this chapter or enquiries should be directed to:

Ute Karl

French-German Institute for Environmental Research University of Karlsruhe Hertzstr 16 D-76187 Karlsruhe Germany

Tel: +49 721 608 4590 Fax: +49 721 75 89 09 Email: <u>ute.karl@wiwi.uni-karlsruhe.de</u>

Annex 1: Example of different possible considerations for boilers as a common plant

Emission Inventory Guidebook

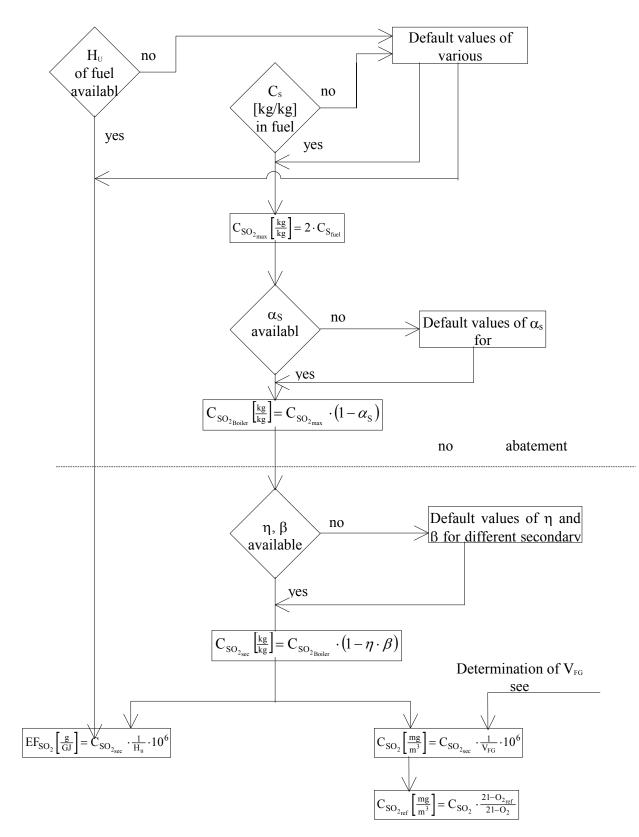
Area source

according to

SNAP 03 01 05

Industrial Combustion

Area source


according to

SNAP 03 01 04

*thermal capacity

Area source according to

SNAP 03 02 01

ps010101

Annex 3: Determination of SO₂ emission factors (description)

The calculation procedure is performed in three steps:

I The fuel sulphur reacts stoichiometrically with oxygen O₂ to sulphur dioxide SO₂. Default values for the sulphur content $C_{S_{fuel}}$ in hard and brown coal are given in Annexes 7 and 8. The result is the maximum attainable amount of sulphur dioxide $C_{SO_{2}max}$ given by:

$$C_{SO_2} = 2 \cdot C_{S_{fiel}}$$
(3-1)

 $C_{S_{fuel}}$ sulphur content of fuel (in mass element/mass fuel [kg/kg])

 $C_{SO_{2\,max}} \quad \mbox{maximum attainable amount of sulphur dioxide (in mass pollutant/mass fuel [kg/kg])}$

II The maximum attainable amount of sulphur dioxide $C_{SO_{2,max}}$ is corrected by the sulphur retention in ash α_s . As a result, the real boiler emission of sulphur dioxide $C_{SO_{2,boiler}}$ fuel is obtained:

$$C_{SO_{2boiler}} = C_{SO_{2max}} \cdot (1 - \alpha_s)$$
(3-2)

 $C_{SO_{2 \text{ boiler}}}$ real boiler emission of sulphur dioxide (in mass pollutant/mass fuel [kg/kg])

C_{SO2,max} maximum attainable amount of sulphur dioxide (in mass pollutant/mass fuel [kg/kg])

 α_s sulphur retention in ash []

The sulphur retention in ash depends e.g. on fuel characteristics and temperature inside the boiler. If there is no data for α_s available, default values for various fuels are given in Table 8.

III The boiler emission of sulphur dioxide is corrected by the reduction efficiency η and availability β (for definition of β see Section 3.2) of the secondary measure installed, according to:

$$C_{SO_{2soc}} = C_{SO_{2boiler}} \cdot (1 - \eta \cdot \beta)$$
(3-3)

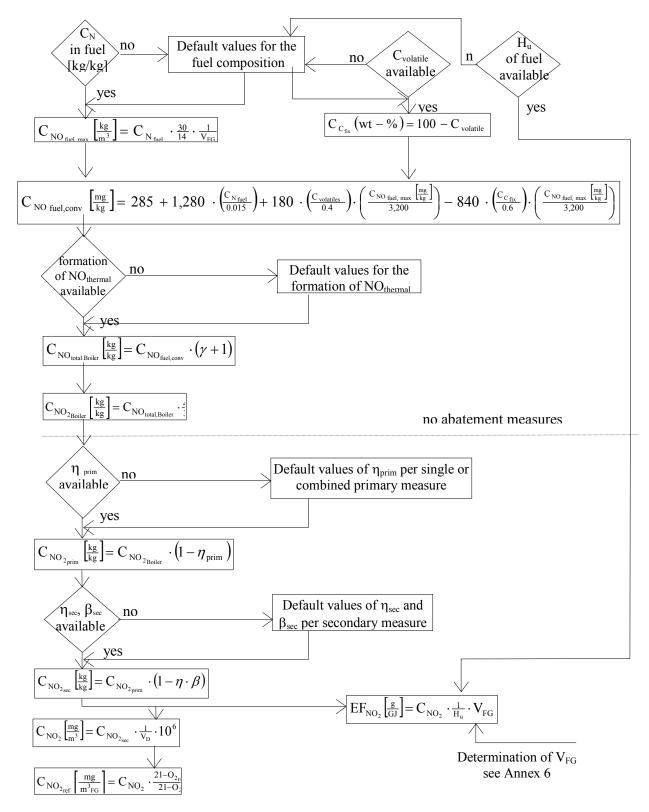
C_{SO_{2ae} sulphur dioxide downstream secondary measure (in mass pollutant/mass fuel [kg/kg])}

 $C_{SO_{2 \text{ holler}}}$ real boiler emission of sulphur dioxide (in mass pollutant/mass fuel [kg/kg])

η reduction efficiency of secondary measure []

β availability of secondary measure []

The result is called secondary sulphur dioxide $C_{SO_{2,sec}}$. If there is no data for η and β available, default values for various flue gas desulphurisation techniques (FGD) are given in Table 7.


The obtained $C_{SO_{2sec}}$ value is converted to C_{SO_2} in flue gas and to the emission factor EF_{SO_2} according to the following Equations:

$$C_{SO_2} = C_{SO_{2sec}} \cdot \frac{1}{V_{FG}} \cdot 10^6$$
 (3-4)

$$EF_{SO_2} = C_{SO_{2sec}} \cdot \frac{1}{H_u} \cdot 10^6$$
 (3-5)

 $\begin{array}{ll} C_{SO_2} & \mbox{sulphur dioxide in flue gas (in mass pollutant/volume flue gas [mg/m^3])} \\ C_{SO_{2see}} & \mbox{sulphur dioxide downstream of secondary measure (in mass pollutant/mass fuel [kg/kg])} \\ V_{FG} & \mbox{dry flue gas volume volume (in volume flue gas/mass fuel [m^3/kg])} \\ EF_{SO_2} & \mbox{emission factor for sulphur dioxide [g/GJ]} \\ H_u & \mbox{lower heating value [MJ/kg]} \end{array}$

The dry flue gas volume V_{FG} can be determined according to Annex 6. Emission data in $[mg/m^3]$ are useful to compare measured and calculated values. The same equations are used for the unit conversion of $C_{SO_{2boiler}}$. Default values for the lower heating values of hard and brown coal are given in Annexes 7 and 8.

Annex 4: Determination of NO_x emission factors (flow sheet, for description see Annex 5)

ps010101

Annex 5: Determination of NO_x emission factors (description)

The determination of NO_x emission factors takes into account the formation of fuel-NO and thermal-NO. The formation of fuel-NO is based on fuel parameters. But the total amount of fuel-nitrogen cannot be completely converted into fuel-NO (as obtained in Equation (5-1)). Therefore, the realistic formation of fuel-NO is described by an empirical relation (see Equation (5-2)). The formation of thermal-NO is expressed by an an additional fraction which depends on the type of boiler.

The calculation procedure of the NO_X emission factor is performed in three steps: In the first step the maximum NO emission resulting from stoichiometric conversion of fuel nitrogen is calculated. The NO emission obtained is further corrected by taking into account the formation of thermal-NO. NO is converted into NO_2 and primary and secondary measures are taken into account in steps two and three.

I The fuel-nitrogen reacts in a stoichiometric manner with oxygen O_2 to form nitrogen oxide. The default values for the nitrogen content $C_{N_{2_{fuel}}}$ in hard and brown coal are given in Annexes 7 and 8. The maximum attainable amount of fuel nitrogen oxide $C_{NO_{fuel,max}}$ is obtained:

$$C_{NO_{fuel_{max}}} = C_{N_{fuel}} \cdot \frac{30}{14} \cdot \frac{1}{V_{FG}}$$
(5-1)

 $C_{NO_{fuel,max}}$ maximum attainable amount of fuel nitrogen oxide (in mass pollutant/volume flue gas [kg/m³]) $C_{N_{fuel}}$ nitrogen content in fuel (in mass nitrogen/mass fuel [kg/kg])

 V_{FG} specific flue gas volume (in volume flue gas/mass fuel $[m^3/kg])^9$

The fuel-nitrogen content $C_{N_{fuel}}$ is not completely converted into $C_{NO_{fuel}}$. The converted part of fuel-nitrogen to fuel-NO $C_{NO_{fuel,conv}}$ can be determined by the following empirical formula /50, 51/ related to zero percent of oxygen in dry flue gas:

$$C_{\text{NO}_{\text{fuel}_{\text{conv}}}} = 285 + 1,280 \left(\frac{C_{\text{N}_{\text{fuel}}}}{0.015} \right) + 180 \left(\frac{C_{\text{volatiles}}}{0.4} \right) \left(\frac{C_{\text{NO}_{\text{fuel}_{\text{max}}}}}{3,200} \right) - 840 \left(\frac{C_{\text{C}_{\text{fix}}}}{0.6} \right) \left(\frac{C_{\text{NO}_{\text{fuel}_{\text{max}}}}}{3,200} \right)$$
(5-2)

 $C_{NO_{final conv}}$ fuel-NO released (in mass pollutant/mass flue gas [mg/kg])²

 $C_{N_{\alpha_{nal}}}$ nitrogen content in fuel (in mass nitrogen/mass fuel [kg/kg]), maf

C_{volatiles} fuel content of volatiles (in mass volatiles/mass fuel [kg/kg]), maf

- $C_{NO_{fielmax}}$ maximum attainable amount of fuel nitrogen oxide (in mass pollutant/mass flue gas [mg/kg])¹⁰
- C_{C_{fix} fixed carbon in fuel (in mass carbon/ mass fuel [kg/kg]), maf}

⁹ The programme calculates stoichiometrically the specific flue gas volume based on the complete fuel composition.

¹⁰ Note: C_{NO.fuel.max} and C_{NO.fuel.conv} are given in the unit (mass pollutant/mass flue gas [mg/kg]). For the conversion between (mass pollutant/mass flue gas [mg/kg]) and (mass pollutant/volume flue gas [kg/m3]) the flue gas density (in mass flue gas/volume flue gas [kg/m3]) has to be taken into account, which is calculated stoichiometrically from the fuel composition within the computer programme.

The fixed carbon in the fuel is determined according to the equation $C_{C_{fix}} = 1 - C_{volatiles}$. Equation (5-2) is valid for nitrogen oxide emissions from premixed flames; the coefficient of correlation is $r^2 = 0.9$ for 20 coals and $r^2 = 0.75$ for 46 coals /51/. The data has been obtained by field and pilot-scale measurements. Basically tests are conducted in a 70,000 Btu/hr (20.5 kW) refractory lined furnace with variable heat extraction. Coal was injected through special configurations. A nozzle produces an uniform heterogeneous mixture of coal and air prior to combustion and represents the limit of intensely mixed flames produced with high swirl. Further tests have been established in large scale furnaces. The results from all measurements combined with additional information based on literature data have been used to establish a correlation which predicts the relative dependence of nitrogen oxide emissions on fuel properties. /51/ Further calculations with Equation (5-2) based on measured data have been provided in /50/. The comparison between measured and calculated values has shown that the results from Equation (5-2) are very good for high volatile coals and are satisfactory for medium volatile coals /50/.

Assuming that the formation of fuel-NO is much more important than the formation of thermal-NO (fuel-NO amounts to 70 - 90 %), the content of thermal-NO formed can be expressed as a fraction γ (where γ depends on the type of boiler) of NO_{fuel}. The total content of nitrogen oxide formed in the boiler C_{NO_{total boiler}} is given by:

$$C_{\text{NO}_{\text{total}_{\text{boiler}}}} = C_{\text{NO}_{\text{fuel}_{\text{conv}}}} + C_{\text{NO}_{\text{thermal}}} = C_{\text{NO}_{\text{fuel}_{\text{conv}}}} \cdot (1 + \gamma)$$
(5-3)

C_{NO_{total boiler} total content of nitrogen oxide formed in the boiler (in mass pollutant/mass flue gas [kg/kg])}

C_{NOfileLonv} fuel-NO released (in mass pollutant/mass flue gas [kg/kg])

 $C_{NO_{thermal}}$ content of thermal-NO formed (in mass pollutant/mass flue gas [kg/kg])

γ

fraction for thermal-NO formed []

The following default values for γ can be recommended: DBB $\gamma = 0.05$, WBB $\gamma = 0.3$. Furthermore, the amount of thermal-NO can be influenced by load (see also Section 11.2).

The total boiler emissions of nitrogen dioxide $C_{NO_{2,boiler}}$ can be calculated as follows:

$$C_{\text{NO}_{2\text{boiler}}} = C_{\text{NO}_{\text{total}_{\text{boiler}}}} \cdot \frac{46}{30}$$
(5-4)

 $C_{NO_{2boiler}}$ total content of nitrogen dioxide formed in the boiler (in mass pollutant/mass flue gas [kg/kg]) $C_{NO_{totalboiler}}$ total content of nitrogen oxide formed in the boiler (in mass pollutant/mass flue gas [kg/kg])

II The total boiler content of nitrogen dioxide given by $C_{NO_{2,boiler}}$ is reduced by taking into account primary measures with the reduction efficiency η_{prim} . The result is the content of primary nitrogen dioxide $C_{NO_{2,prim}}$:

$$C_{NO_{2prim}} = C_{NO_{2_{boiler}}} \cdot (1 - \eta_{prim})$$
(5-5)

 $C_{NO_{2,mim}}$ content of primary nitrogen dioxide (in mass pollutant/mass flue gas [kg/kg])

 $\begin{array}{ll} C_{NO_{2_{boiler}}} & \mbox{total content of nitrogen dioxide formed in the boiler (in mass pollutant/mass flue gas [kg/kg])} \\ \eta_{prim} & \mbox{reduction efficiency of primary measure(s) []} \end{array}$

As there is only incomplete data available for reduction efficiencies, default values are given for the individual and relevant combinations of primary measures for different types of boilers and fuels (see Table 8). In the case of combined primary measures with known individual reduction efficiencies $\eta_{prim,1}$, $\eta_{prim,2}$, etc., the following equation can be used:

$$C_{NO_{2_{prim}}} = C_{NO_{2_{boiler}}} \cdot (1 - \eta_{prim1}) \cdot (1 - \eta_{prim2}) \cdot (1 - \eta_{prim3})$$
(5-6)

C_{NO_{2prim} content of nitrogen dioxide taking into account primary measures (in mass pollutant/mass flue gas [kg/kg])}

 $C_{NO_{2_{boiler}}}$ total content of nitrogen dioxide formed in the boiler (in mass pollutant/mass flue gas [kg/kg]) $\eta_{prim_{k}}$ individual reduction efficiency of primary measure k []

It should be taken into account, that the reduction efficiencies of primary measures are not independent of each other.

III The emission of primary nitrogen dioxide $C_{NO_{2,prim}}$ is corrected by the reduction efficiency η_{sec} [] and the availability β_{sec} [] (for definition of β see Section 3.2) of the secondary measure installed, according to:

$$C_{NO_{2sec}} = C_{NO_{2,prim}} \cdot \left(1 - \eta_{sec} \cdot \beta_{sec}\right)$$
(5-7)

 $C_{NO_{2sec}}$ nitrogen dioxide downstream of secondary measure (in mass pollutant/mass flue gas [kg/kg])

C_{NO_{2,prim} content of nitrogen dioxide taking into account primary measures (in mass pollutant/mass flue gas [kg/kg])}

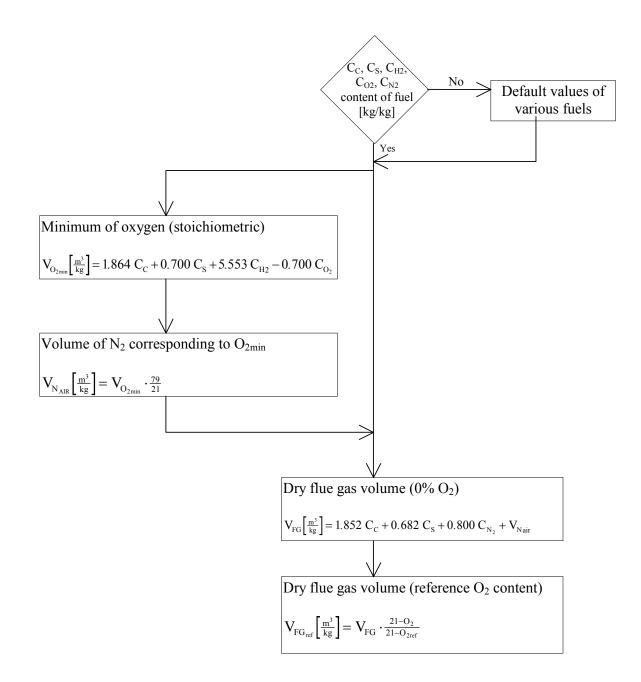
 η_{sec} reduction efficiency of secondary measure []

 β_{sec} availability of secondary measure []

If there is no data for η_{sec} and β_{sec} available, default values for various DeNOx techniques are given in Table 9.

The obtained value of $C_{NO_{2,sec}}$ is converted into C_{NO_2} and into the emission factor EF_{NO_2} according to the following equations:

$$C_{NO_{2}} = C_{NO_{2_{sec}}} \cdot \frac{1}{V_{D}} \cdot 10^{6}$$
 (5-8)


$$EF_{NO_2} = C_{NO_2} \cdot \frac{1}{H_u} \cdot V_{FG}$$
(5-9)

C_{NO_2}	nitrogen dioxide in flue gas (in mass pollutant/volume flue gas [mg/m ³])
$C_{NO_{2.sec}}$	nitrogen dioxide downstream of secondary measure (in mass pollutant/mass flue gas [kg/kg])
V_D	dry flue gas volume (in volume flue gas/mass flue gas [m ³ /kg])
V _{FG}	specific dry flue gas volume (in volume flue gas/mass fuel [m ³ /kg])
EF_{NO_2}	emission factor for nitrogen dioxide [g/GJ]
H_u	lower heating value [MJ/kg]

The specific dry flue gas volume V_{FG} can be determined according to Annex 6. Emission data expressed in [mg/m³] are used for comparing measured and calculated values. Default values for lower heating values for hard and brown coal are given in Annexes 7 and 8.

Annex 6: Determination of the specific flue gas volume (flow sheet and description)

The specific flue gas volume has to be determined in order to convert the emission factors, which have been obtained in [g/GJ], into $[mg/m^3]$, which allows a comparison to measured data. The approach is given in the following flow sheet:

For the determination of the flue gas volume, the elemental analysis of the fuel (content of carbon C_C , sulphur C_S , hydrogen C_H , oxygen C_{O_2} and nitrogen C_N (maf)) has to be known. If no data of the elemental analysis is available, default values of hard and brown coals are proposed in Annexes 7 and 8. The volume of oxygen required for a stoichiometric reaction $V_{O_{2_{min}}}$ can be determined as follows:

$$V_{O_{2_{min}}} = 1.864 \cdot C_{C} + 0.700 \cdot C_{S} + 5.553 \cdot C_{H} - 0.700 \cdot C_{O_{2}}$$
(6-1)

 $V_{O_{2_{min}}}$ volume of oxygen required for stoichiometric reaction (in volume oxygen/mass fuel [m³/kg])

C_c content of carbon in fuel (in mass carbon/mass fuel [kg/kg])

C_s content of sulphur in fuel (in mass sulphur/mass fuel [kg/kg])

C_H content of hydrogen in fuel (in mass hydrogen/mass fuel [kg/kg])

C₀, content of oxygen in fuel (in mass oxygen/mass fuel [kg/kg])

The constants in Equation (6-1) represent stoichiometric factors for the volume of oxygen required for the combustion of 1 kg carbon, sulphur or hydrogen in $[m^3/kg]$. The corresponding volume of nitrogen in the air $V_{N_{eff}}$ is given by Equation (6-2):

$$V_{N_{air}} = V_{O_{2min}} \cdot \frac{79}{21}$$
(6-2)

 $V_{N_{air}}$ volume of nitrogen in the air (in volume nitrogen/mass fuel [m³/kg])

 $V_{O_{2...}}$ volume of oxygen required for stoichiometric reaction (in volume oxygen/mass fuel [m³/kg])

The specific dry flue gas volume at 0 % oxygen V_{FG} can be determined by using Equation (6-3):

$$V_{FG} = 1.852 \cdot C_{C} + 0.682 \cdot C_{S} + 0.800 \cdot C_{N} + V_{N_{air}}$$
(6-3)

 V_{FG} specific dry flue gas volume (in volume flue gas/mass fuel [m³/kg])

C_C content of carbon in fuel (in mass carbon/mass fuel [kg/kg])

C_s content of sulphur in fuel (in mass sulphur/mass fuel [kg/kg])

 C_N content of nitrogen in fuel (in mass nitrogen/mass fuel [kg/kg])

 $V_{N_{air}}$ volume of nitrogen in the air (in volume nitrogen/mass fuel [m³/kg])

The constants in Equation (6-3) represent stoichiometric factors for the volume of oxygen required for the combustion of 1 kg carbon, sulphur or nitrogen in $[m^3/kg]$. The obtained values of V_{FG} at 0 % oxygen are converted to the reference content of oxygen in flue gas according to Equation (6-4):

$$V_{FG_{ref}} = V_{FG} \cdot \frac{21 - O_2}{21 - O_{2ref}}$$
(6-4)

 $V_{FG_{ref}}$ volume of specific flue gas under reference conditions (in volume flue gas/mass fuel [m³/kg])

 V_{FG} volume of specific flue gas obtained (in volume flue gas/mass fuel [m³/kg])

O₂ content of oxygen in the flue gas obtained [%]

 $\rm O_{2_{ref}}$ — content of oxygen in the flue gas under reference conditions [%]

		elemental analysis (maf) [wt%]									volatiles (maf)		H _u ((maf)
country		С		Ν		0		Н		S	[w	t%]	[M.	J/kg]
	value	standard	value	standard	value	standard	value	standard	value	standard	value	standard	value	standard
		deviation		deviation		deviation		deviation		deviation		deviation		deviation
Australia ¹⁾	84.6	2.26	1.8	0.15	7.8	2.08	5.2	0.29	0.6	0.21	34.0	5.94	33.70	1,03
Canada ¹⁾	86.6	1.8	1.4	0.15	6.1	1.5	5.1	0.56	0.9	0.43	33.9	6.34	33.04	2.32
China ¹⁾	81.9	1.95	1.1	0.32	11.4	2.4	4.9	0.21	1.05	0.35	36.3	2.32	32.06	0,80
Columbia ¹⁾	78.5	6.37	1.5	0.13	12.4	4.3	5.2	0.62	0.9	0.19	42.2	2.70	31.83	1.93
Czech Rep. ²⁾	85.98	2.23	1.5	0.17	6.27	2.30	5.09	0.70	1.16	0.68	30.88	8.92	34.00	2.44
France ²)	87.91	1.76	1.29	0.24	5.60	1.58	4.50	0.47	0.70	0.17	22.81	5.82	34.86	1.56
Germany RAG ¹⁾⁶⁾	90.2	1.77	1.6	0	3	1.41	4.4	0.56	0.9	-	15.8	9.60	35.23	0.29
Ger. others ²)	87.00	2.44	1.49	0.27	5.75	1.94	4.76	0.68	1.02	0.32	25.52	6.58	30.10	1.75
CIS ¹⁾	77.5	0	0.7	0	16.1	0	5.4	0	0.3	0	39.0	3.20	31.85	1.66
Hungary ²)	84.10	1.51	1.42	0.69	5.79	0.54	5.09	0.11	3.62	0.55	24.4	3.98	34.16	1.05
India ¹⁾	76.5	3.22	1.3	0.25	16.2	4	5.6	0.4	0.4	0.32	47.9	2.44	29.48	2.25
Poland ⁴⁾	80.0		1.0		7.0		5.0		1.0		38.5		$(21.00)^{5)}$	
Portugal ³)	87.0		0.95		5.4		4.9		0.94		32.1		(27.58) ⁵⁾	
South Africa ¹⁾	80.3	5.78	2.1	0.73	8.8	1.2	4.9	1.19	0.9	0.24	31.9	2.37	32.36	0.73
UK ¹⁾	84.5	0.6	1.8	0	n. a.		5.4	0.06	n. a.		38.2	1.84	33.80	0.58
USA ¹⁾	84.3	2	1.6	0.17	7.5	1.65	5.5	0.38	1.1	0.58	38.1	4.31	33.89	0.88
Venezuela ¹⁾	84.2	1.7	1.5	0.07	7.6	2.19	6	0.49	0.7	0	43.2	3.98	34.00	1.00

Annex 7: Composition and lower heating value (H_u) of hard coal in coal mining countries

1) Association of German Coal Importers 1992 /72

3) Madeira: Personal communication, EDP-Electricielade Portugal, Lisboa, May 1994

⁶⁾ RAG= Ruhr coal

2) Brandt 1981 /47/

4) Debsky: Personal communication, Energy Information Centre, Warsaw, May 1994

n.a. - no data are available

⁵⁾ lower heating value as received (ar)

	element	al analysis	(maf) [v	vt%]							volatiles	(maf)	H _u (maf)
country		С		Ν		0		Н		S	[wt	%]	[]	MJ/kg]
	value		value		value		value		value		value		value	
Czech Rep. ²⁾	70.09	3.324)	1.07	0.224)	21.74	3.424)	5.64	0.64 ⁴)	1.48	0.824)	56.67	4.62 ⁴)	28.2	2.394)
Germany														
-Rheinisch	68	62-725)	1.0	0.7-	25.2	22-305)	5	4.5-	0.8	0.2-	386)	-	27.3	19.4-31.75)
coal ¹)				1.35)				5.55)		1.15)				
-Middle Ger.1)	72		0.8		18.3		5.5		3.4		57.5		28.8	
-East Ger.1)	69.5		1.0		23.1		5.8		0.6		58.7		25.7	
Hungary ¹⁾ - 1	63.8		(1.1)		26.8		4.8		3.5		61.8		35.7	28.8-42.65)
Hungary ²⁾ - 2	69.82	2.624)	1.06	0.45 ⁴)	18.91	2.234)	5.54	0.124)	4.49	2.46 ⁴)	39.30	1.04 ⁴)	28.4	1.20 ⁴)
Poland ⁷)	69.5	66-735)	1.1	0.7-	19	13-255)	6	5-75)	1		50		25	23 - 26 ⁵⁾
				1.55)										
Portugal ²)	67.44	1.014)	0.91	0.184)	22.61	2.894)	4.4	0.744)	4.62	2.434)	54.64	8.844)	24.8	2.64)
Turkey ¹⁾ - 1	61.4		0.8		29.6		5.1		5.1		n. a.		21.2	19.8-22.75)
Turkey ³⁾ - 2	62.6	7.844)	2.0	0.674)	24.0	4.484)	4.9	0.564)	6.2	4.774)	56.0	3.934)	26.6	

Annex 8:	Composition and lower heating value (H _u) of brown coal in coal mining countries
----------	--

¹⁾ IEA coal research - brown coal

²⁾ Brandt

³⁾ Kücükbayrak, S.; Kadioglu, E.: Desulphurisation of some Turkish lignites by pyrolysis, FUEL, Vol. 67, 6/1988

⁴⁾ standard deviation

⁵⁾ range

⁶⁾ value recommended by RAG

7) Debsky: Personal communication, Energy Information Centre, Warsaw, May 1994

n. a. - no data available

ps010101

Annex 9: Conditions for exemplary calculation of NO_x emission factors

Annex 9 presents the values which have been chosen for the calculation of NO_x emission factors (according to Section 4.2.1). The results of the calculations are given in the following Annexes 10 (for hard coal) and 11 (for brown coal). Both annexes contain emission factors in [g/GJ] as well as concentrations in [mg/m³] which have been determined under the conditions given in Table 9-1:

Table 9-1:	Selected input parameters for model calculations determining NO_X emission
	factors as given in Annexes 10 and 11

Type of coal ¹)	Type of boiler	Fraction of thermal NO NO _{th} []	Reduction efficiency of primary measures $\eta_{prim}^{2)}$ []	Reduction efficiency of secondary measures η_{sec} []	Availability β _{sec} []
hc	DBB	0,05	LNB 0,20 LNB/SAS 0,45 LNB/OFA 0,45 LNB/SAS/OFA 0,60	SCR 0,8	0,99
	WBB	0,30	LNB 0,20 LNB/SAS 0,45 LNB/OFA 0,40 LNB/SAS/OFA 0,60	SCR 0,8	0,99
bc	DBB	0,05	LNB 0,20 LNB/SAS 0,45 LNB/OFA 0,40 LNB/SAS/OFA 0,60	-	-

1) Elementary analyses of hard and brown coal are given in Annexes 7 and 8.

²⁾ The reduction efficiency is given as an example for selected primary measures (see Section 4.2).
 Abbreviations: hc = hard coal, bc = brown coal

For individual calculations of NO_X emission factors, the computer programme (users' manual see Section 15 and Annex 14) can be used.

		Un	controlled		Primary con	ntrol ²⁾	Secondary control ³⁾		
Hard coal	Type of	EF	Flue gas concentration	PM ¹⁾	EF	Flue gas concentration	EF	Flue gas concentration	
from	boiler	[g/GJ]	[mg/m ³]		[g/GJ]	$[mg/m^3]$	[g/GJ]	$[mg/m^3]$	
Australia	DBB	568	1620	LNB	454	1300	95	270	
				LNB/SAS	312	893	65	186	
				LNB/OFA	312	893	65	186	
				LNB/SAS/OFA	227	649	47	135	
	WBB	703	2140	LNB	562	1720	117	357	
				LNB/SAS	387	1180	80	245	
				LNB/OFA	422	1290	88	268	
				LNB/SAS/OFA	281	858	59	178	
Canada	DBB	506	1390	LNB	405	1110	84	230	
				LNB/SAS	278	762	58	158	
				LNB/OFA	278	762	58	158	
				LNB/SAS/OFA	202	554	42	115	
	WBB	627	1830	LNB	501	1460	10	304	
				LNB/SAS	345	1010	72	209	
				LNB/OFA	376	1100	78	228	
				LNB/SAS/OFA	251	732	52	152	
China	DBB	413	1180	LNB	331	943	69	196	
		_		LNB/SAS	227	648	47	135	
				LNB/OFA	227	648	47	135	
				LNB/SAS/OFA	165	472	34	98	
	WBB	512	1560	LNB	409	1250	85	259	
				LNB/SAS	281	856	59	178	
				LNB/OFA	307	934	64	194	
				LNB/SAS/OFA	205	623	43	130	
Columbia	DBB	535	1570	LNB	428	1250	89	261	
				LNB/SAS	294	861	61	179	
				LNB/OFA	294	861	61	179	
				LNB/SAS/OFA	214	626	45	130	

Annex 10: Emission factors and flue gas concentrations for NO_X obtained by model calculations (see Annexes 4 and 5) for hard coal (Annex 7)

for footnotes see bottom of this table

		Un	controlled		Primary co	ntrol ²⁾	Secondary control ³⁾		
Hard coal from	Type of boiler	EF [g/GJ]	Flue gas concentration [mg/m ³]	PM ¹⁾	EF [g/GJ]	Flue gas concentration [mg/m ³]	EF [g/GJ]	Flue gas concentration [mg/m ³]	
Columbia	WBB	662	2070	LNB LNB/SAS LNB/OFA LNB/SAS/OFA	529 364 397 265	1650 1140 1240 827	110 76 83 51	344 237 258 172	
Czech Republic	DBB	483	1370	LNB LNB/SAS LNB/OFA LNB/SAS/OFA	387 266 266 193	1100 753 753 548	80 55 55 40	228 157 157 114	
	WBB	598	1810	LNB LNB/SAS LNB/OFA LNB/SAS/OFA	479 329 359 239	1450 995 1080 723	100 68 75 50	301 207 226 150	
France	DBB	374	1080	LNB LNB/SAS LNB/OFA LNB/SAS/OFA	299 205 205 149	863 594 594 432	62 43 43 31	180 123 123 90	
	WBB	463	1430	LNB LNB/SAS LNB/OFA LNB/SAS/OFA	370 254 278 185	1140 784 855 570	77 53 58 39	237 163 178 119	
Germany RAG	DBB	384	1090	LNB LNB/SAS LNB/OFA LNB/SAS/OFA	307 211 211 154	872 600 600 436	64 44 44 32	181 125 125 90	
	WBB	476	1440	LNB LNB/SAS LNB/OFA LNB/SAS/OFA	381 262 285 190	1150 792 864 576	779 54 59 40	240 165 180 120	

Annex 10 continued, for footnotes see bottom of this table

ps010101

		Un	controlled		Primary co	ntrol ²⁾	Secondary control ³⁾		
Hard coal	Type of	EF	Flue gas concentration	PM ¹⁾	EF	Flue gas concentration	EF	Flue gas concentration	
from	boiler	[g/GJ]	[mg/m ³]		[g/GJ]	[mg/m ³]	[g/GJ]	$[mg/m^3]$	
Germany	DBB	495	1240	LNB	396	990	82	206	
others				LNB/SAS	272	681	57	142	
				LNB/OFA	272	681	57	142	
				LNB/SAS/OFA	198	495	41	103	
	WBB	613	1630	LNB	490	1310	102	272	
				LNB/SAS	337	899	70	187	
				LNB/OFA	368	980	76	204	
				LNB/SAS/OFA	245	654	51	136	
Hungary	DBB	401	1150	LNB	320	920	67	191	
				LNB/SAS	220	633	46	132	
				LNB/OFA	220	633	46	132	
				LNB/SAS/OFA	160	460	33	96	
	WBB	496	1520	LNB	397	1220	82	253	
				LNB/SAS	273	835	57	174	
				LNB/OFA	298	911	62	190	
				LNB/SAS/OFA	198	608	41	126	
CIS	DBB	308	923	LNB	247	739	51	154	
				LNB/SAS	169	508	35	106	
				LNB/OFA	169	508	35	106	
				LNB/SAS/OFA	123	369	26	77	
	WBB	382	1220	LNB	305	975	64	203	
	(IBB	502	1220	LNB/SAS	210	671	44	139	
				LNB/OFA	229	732	48	152	
				LNB/SAS/OFA	153	488	32	101	
India	DBB	551	1540	LNB	441	1230	92	256	
				LNB/SAS	303	845	63	176	
				LNB/OFA	303	845	63	176	
				LNB/SAS/OFA	220	615	46	128	

		Unc	ontrolled		Primary con	ntrol ²⁾	Sec	condary control ³⁾
Hard coal		EF	Flue gas concentration	PM ¹⁾	EF	Flue gas concentration	EF	Flue gas concentration
from	boiler	[g/GJ]	$[mg/m^3]$		[g/GJ]	$[mg/m^3]$	[g/GJ]	$[mg/m^3]$
India	WBB	682	2030	LNB	545	1620	113	338
				LNB/SAS	375	1120	78	232
				LNB/OFA	409	1120	85	253
				LNB/SAS/OFA	273	812	57	169
South Africa	DBB	569	1650	LNB	456	1320	95	275
Annea				LNB/SAS	313	910	65	189
				LNB/OFA	313	910	65	189
				LNB/SAS/OFA	228	662	47	138
	WBB	705	2180	LNB	564	1750	117	364
				LNB/SAS	388	1200	81	250
				LNB/OFA	423	1310	88	273
				LNB/SAS/OFA	282	874	59	182
USA	DBB	563	1610	LNB	450	1290	94	268
				LNB/SAS	310	885	64	184
				LNB/OFA	310	885	64	184
				LNB/SAS/OFA	225	644	47	134
	WBB	697	2120	LNB	558	1700	116	353
				LNB/SAS	383	1170	78	243
				LNB/OFA	418	1270	87	265
				LNB/SAS/OFA	279	850	58	177
Venezuela	DBB	588	1670	LNB	471	1340	98	278
				LNB/SAS	324	919	67	191
				LNB/OFA	324	919	67	191
				LNB/SAS/OFA	235	668	49	139

Annex 10 continued, for footnotes see bottom of this table

Annex 10 continued

	Uncontrolled		ontrolled		Primary cor	Secondary control ³⁾		
Hard coal	Type of	EF	Flue gas concentration	PM ¹⁾	EF	Flue gas concentration	EF	Flue gas concentration
from	boiler	[g/GJ]	$[mg/m^3]$		[g/GJ]	$[mg/m^3]$	[g/GJ]	$[mg/m^3]$
Venezuela	WBB	728	2210	LNB	583	1760	121	367
				LNB/SAS	401	1210	83	252
				LNB/OFA	437	1320	91	275
				LNB/SAS/OFA	291	882	61	184

PM = primary measures
 primary measures as mostly used, see Table 8

ps010101

³⁾ taking into account secondary measures mostly used: SCR: reduction efficiency = 0.8, availability = 0.99

Brown coal from	Type of boiler	Uncontrolled			Primary control		
		$\operatorname{EF}\left[\frac{g}{GJ}\right]$	Conc. $\left[\frac{\text{mg}}{\text{m}^3}\right]$	PM ¹⁾	$EF\left[\frac{g}{GJ}\right]$	Conc. $\left[\frac{\text{mg}}{\text{m}^3}\right]$	
Czech Republic	DBB	506	1.480	LNB	405	1190	
				LNB/SAS	278	816	
				LNB/OFA	304	890	
				LNB/SAS/OFA	202	593	
Germany							
- Rheinisch coal	DBB	325	985	LNB	260	788	
				LNB/SAS	179	542	
				LNB/OFA	195	591	
				LNB/SAS/OFA	130	394	
- Middle Germany	DBB	504	1.250	LNB	403	996	
				LNB/SAS	277	685	
				LNB/OFA	302	747	
				LNB/SAS/OFA	202	498	
- East Germany	DBB	539	1.460	LNB	431	1.160	
				LNB/SAS	296	801	
				LNB/OFA	323	873	
				LNB/SAS/OFA	215	582	
Hungary - 1	DBB	379	1.590	LNB	303	1.270	
				LNB/SAS	208	874	
				LNB/OFA	227	953	
				LNB/SAS/OFA	151	635	
Hungary - 2	DBB	379	1.100	LNB	304	879	
				LNB/SAS	209	604	
				LNB/OFA	228	659	
				LNB/SAS/OFA	152	439	
Portugal	DBB	461	1.260	LNB	369	1.010	
U				LNB/SAS	254	696	
				LNB/OFA	277	759	
				LNB/SAS/OFA	185	506	
Turkey - 2	DBB	725	2.240	LNB	580	1.790	
2				LNB/SAS	399	1.230	
				LNB/OFA	435	1.340	
				LNB/SAS/OFA	290	895	

Annex 11: Emission factors and flue gas concentrations for NO_x obtained by model calculations (see Annexes 4 and 5) for brown coal (see Annex 8)

¹⁾ PM = primary measures as given in Table 8

ps010101

Annex 12: Comparison between measured and calculated SO₂ and NO_x emission data

The proposed methodology for the determination of SO_2 and NO_x emission factors is described in the Sections 4.1 and 4.2. Calculated flue gas concentrations in [mg/m³] have been used for the derivation of emission factors in [g/GJ]. A comparison of measured concentrations in combustion plants in [mg/m³] with calculated concentrations in [mg/m³] can be used for verification purposes.

A comparison of measured concentrations with calculated flue gas concentrations downstream of the boiler is given as an example for some power plants in Table 12-1.

Type of	Power plant C_{SO_2} [n		mg/m ³]	$C_{NO_2} [mg/m^3]$	
boiler		measured	calculated	measured	calculated
DBB	Altbach (FRG) ¹⁾	ca. 1,700	1,380 - 1,610	ca. 600	599 - 681
	Münster (FRG) ²⁾	1,644 - 1,891	1,380 - 1,440	800 - 900	1,090
	Karlsruhe (FRG) ³⁾	1,600 - 2,000	1,310 - 1,650	900 - 1,000	923 - 1,140
	Hanover (FRG) ⁴⁾	1,600 - 1,800	1,610	ca. 800	681
	Mehrum (FRG) ⁵⁾	ca. 2,700	1,610	ca. 800	990
	Nuremberg (FRG) ⁶⁾	ca. 1,800	1,610	n. d.	1,240
	Heilbronn (FRG) ⁷⁾	ca. 1,800	1,900 - 2,200	≤ 800	1,050 - 1,070
	IMATRAN (SF) ⁸⁾	n. d.	1,480 - 1,700	ca. 225	516 - 747
	EPON (NL) ⁹⁾	1,429 - 1,577	1,580 - 2,190	363 - 609	999 - 1,010
WBB	Aschaffenburg (FRG) ¹⁰⁾	2,400	1,530	1,000	1,010
	Charlottenburg (FRG) ¹¹⁾	1,800	1,530	1,300	1,080
	Karlsruhe (FRG) ¹²⁾	1,295 - 1,716	1,610	ca. 960	1,460

Table 12-1:	Comparison of measured and calculated flue gas concentrations in raw gas of the
	boiler (taking into account primary reduction measures) ¹³⁾

¹⁾ coal: Germany RAG, Germany others; reduction measures: WS; LNB/SAS, SCR; thermal capacity 1,090 MW

²⁾ coal: Germany others, $\alpha_S = 0.15$; reduction measure: DESONOX ($\eta_{SO2} = 0.94$, $\eta_{NO2} = 0.82$); thermal capacity 100 MW

³⁾ coal: individual data, $\alpha_s = 0.4$; reduction measures: WS ($\eta = 0.85$); LNB/opt. ($\eta = 0.3$); SCR; thermal capacity 1,125 MW

⁴⁾ coal: Germany others; reduction measures: SDA; LNB/OFA, SCR; thermal capacity 359 MW

⁵⁾ coal: Germany others; reduction measures: WS; LNB, SCR; thermal capacity 1,600 MW

⁶⁾ coal: Germany others; reduction measures: SDA; SCR; thermal capacity 110 MW

⁷⁾ coal: individual data; reduction measures: WS ($\eta = 0.95$); OFA, SCR; thermal capacity 1,860 MW

- ⁸⁾ coal: individual data; reduction measures: WS; LNB/OFA; electrical capacity 650 MW
- ⁹⁾ coal: individual data; reduction measures: FGD ($\eta = 0.93$); high temperature NO_x reduction ($\eta = 0.4$), electrical capacity 630 MW
- ¹⁰⁾ coal: Germany RAG; reduction measures: WS; SAS, SCR; thermal capacity 395 MW
- ¹¹⁾ coal: Germany RAG; reduction measures: WS; OFA; thermal capacity 120 MW
- ¹²⁾ coal: individual data; reduction measures: WS ($\eta = 0.88$); SCR ($\eta = 0.9$; thermal capacity) 191 MW
- ¹³⁾ values refer to full load conditions

n. d. = no data available

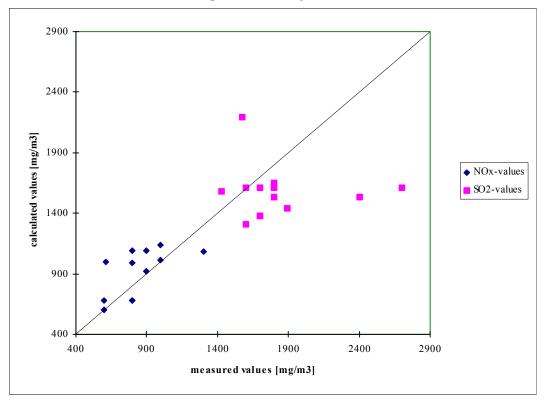
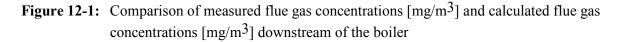

r				1	
Type of	Power plant	$C_{SO_2} [mg/m^3]$		$C_{_{NO_2}} [mg/m^3]$	
boiler		measured	calculated	measured	calculated
DBB	Altbach (FRG) ¹⁾	ca. 250	150 - 176	ca. 200	125 - 142
	Münster (FRG) ²⁾	85 - 181	820 - 859	163 - 176	74
	Karlsruhe (FRG) ³⁾	240 - 300	208 - 261	190	192 - 238
	Hanover (FRG) ⁴⁾	200	176	150	142
	Mehrum (FRG) ⁵⁾	400	176	190	206
	Nuremberg (FRG) ⁶⁾	50 - 140	176	70 - 100	257
	Heilbronn (FRG) ⁷⁾	100 - 200	207 - 240	≤ 200	218 - 223
	IMATRAN (SF) ⁸⁾	n. d.	161 - 186	ca. 225	516 - 747
	EPON (NL) ⁹⁾	ca. 148	113 - 184	ca. 609	999 - 1,010
WBB	Aschaffenburg (FRG) ¹⁰⁾	70	167	200	209
	Charlottenburg (FRG) ¹¹⁾	175	167	163	1,080
	Karlsruhe (FRG) ¹²⁾	47 - 165	207	ca. 150	159

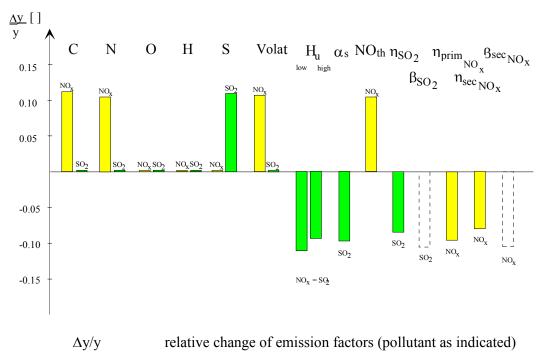
Table 12-2:	Comparison of measured and calculated flue gas concentrations downstream of
	secondary reduction measure (if installed) ¹³⁾

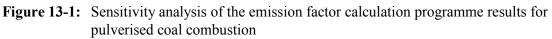

¹⁾ - ¹³⁾ for footnotes see Table 12-1 above

n.d. = no data available

The quality and quantity of data obtained by the power plant operators vary greatly. For unknown compositions of coal and other missing parameters default values have been used (e.g. for coal compositions see Annexes 7 and 8).

The values in Table 12-1 are compared in the Figure 12-1 below:




The comparison of measured flue gas concentrations and calculated flue gas concentrations shows that most values are scattered close to the middle axis.

Good correlations between measured and calculated values have been obtained for calculations which are only based on plant specific data provided by power plant operators. But for most calculations a mixture of plant specific data and default values for missing parameters has been used which leads to deviations from the middle axis. In particular strong differences occur for SO_2 emissions which show a tendency to be overestimated. The tendency can be explained by assumptions with regard to default values; e.g. the sulphur retention in ash varies greatly depending on the data availability.

Annex 13: Sensitivity analysis of the computer programme results

A sensitivity analysis was carried out with all model input parameters used. The 14 input parameters (fuel content of carbon C, nitrogen N, oxygen O, hydrogen H, sulphur S, volatiles Volat, lower heating value H_u, sulphur retention in ash α_s , fraction of thermal nitrogen oxide NO_{th}, reduction efficiency η and availability β of abatement measures) was arranged with respect to their influence on SO₂ and NO_x emissions. Each input parameter was varied by ±10 % except β_{SO2} and $\beta_{sec.NOx}$ which were varied only by - 4 % (dashed line); the variation of the calculated emission factors is presented in Figure 13-1.

For emission factors of SO_2 the sulphur content of fuel and the sulphur retention in ash are highly relevant. For emission factors of NO_x the fuel content of nitrogen, carbon and volatiles as well as the reduction efficiency of primary measures are highly relevant. The fuel contents of oxygen and hydrogen are not relevant. The relative change of emission factors concerning the lower heating value can be described for SO_2 and NO_x as an exponential curve: that means that uncertainties at lower levels of the heating values (e.g. for brown coal) influence the result stronger. The efficiency of secondary measures is of slightly less influence than the efficiency of primary measures. The availability of secondary measures is marked with a dashed line in Figure 13-1; a 4 % variation of this parameter has shown significant influence. Annex 14: Users' manual for the emission factor calculation programme (for September 1995 version)

Determination of SO₂ and NO_x emission factors for large combustion plants

1 Computer specifications

This programme requires MICROSOFT WINDOWS 3.1, a $3\frac{1}{2}$ " floppy disc drive, and at least 200 Kbyte on the hard disc. The programme has been designed in MICROSOFT EXCEL 4.0 - English Version.

2 Installation

The floppy disc received contains 19 files. All these files have to be installed on the hard disc. The following users' guide is stored under README.DOC (written with MICROSOFT WORD FOR WINDOWS 2.1).

The software has to be installed on your hard disk "C" by using the following procedure:

- Create a new sub-directory with the name 'POWER_PL' by following the instructions:
 - in DOS go to C: \setminus
 - type: MD POWER_PL
 - hit the <ENTER>-key
 - change into this sub-directory by typing: CD POWER_PL
 - hit the <ENTER>-key.
- To copy all the files from your floppy disc into the sub-directory 'POWER_PL' proceed as follows:
 - insert your disk into slot A (or B) of your PC
 - type COPY A: (or B:)*.*
 - hit the <ENTER>-key.

The installation of the programme is then complete.

- *3 How to work with the programme*
- 3.1 Start the programme
- Start MICROSOFT WINDOWS 3.1 and MICROSOFT EXCEL 4.0 English Version (or MICROSOFT EXCEL 5.0 English Version).
- In 'FILE' 'OPEN', go to hard disk 'C' and activate the sub-directory 'POWER_PL'. Then you will see all the necessary files in the programme in the left window.
- Choose the file 'POWER_PL.XLW' and hit the <ENTER>-key.
- Then the programme opens all the tables and macros needed.

3.2 Further proceedings with the programme

- When you see the first screen please type 'Ctrl'-'a' (or 'Strg'-'a') to start the programme. By hitting these two keys you start a macro, which takes you through all the levels of the programme. The input data for the programme are divided into background tables for the fuel used, for SO₂-specification and NO_x-specification.

Fuel data input

- First the programme asks for an identification of the model run. You are free to put in the name of the power plant, type of boiler, type of fuel (e. g. Heilbronn dry bottom boiler hard coal).
- The next window requests the type of coal (hard coal or lignite).
- The programme asks you to choose one of the fuel compositions listed. Select one of them by typing the corresponding number and hitting the 'OK'-key on the screen¹). If the default values of the given fuel compositions do not correspond with your power plant, you have the possibility of putting in corrected values by choosing the last line of the table (line 17 or 10). Then the programme asks you to enter in the individual values. The values given by the 'question-window' can be kept by hitting the 'OK'-key on the screen.
- Then the programme asks for the water content of the fuel and the reference-content of oxygen in the flue gas. The value given by the 'question-window' can be retained by hitting the 'OK'-key on the screen.

SO₂ data specification

- The programme asks you to choose one of the listed numbers as a value for the sulphur retention in ash. Please select one of them by typing the corresponding number and hitting the 'OK'-key on the screen1). If the default values for the sulphur retention in ash do not correspond with your power plant, you have the possibility of putting in corrected values by choosing the last line of the table (line 3). Then the programme asks you to put in the value.
- The programme asks you to choose one of the listed secondary measures SO₂. Please select one of them by typing the corresponding number and hitting the 'OK'-key on the screen¹). If the default values of the efficiencies and availabilities of the secondary measures given do not correspond with those of your power plant, you have the possibility of putting put in corrected values by choosing the last line of the table (line 9). Then the programme asks you to put in the individual values.

At this point the calculations for SO₂ are finished.

NO_x data specification

- The programme proceeds with the calculations of NO_2 by asking for a value for $NO_{thermal}^1$. At this stage, the thermal NO (NOthermal) has to be put in as an exogenious value as given in the table. You have the possibility of putting in a new value by following the instructions on the screen.

- The next window requests the type of boiler (wet bottom boiler WBB- dry bottom boiler DBB).
- Then you have to choose a type of combination of primary measure installed. For some primary measures, reduction efficiencies are given as default values¹¹. If you have better data available, you can put in new values choosing the last line of the table (line 17) and follow the instructions on the screen.
- Finally, you have to choose a type of combination of secondary measure installed¹. As mentioned above, you can put in different values of efficiencies and availabilities by choosing one secondary measure from the table (typing the corresponding number). Or else you can put in your own values by selecting the last line of the table (line 6). Please follow the instructions on the screen.

At the end the following message appears on the screen: You can save the data-sheet named 'AINPUSO2.XLS' under a different name.

If you want to do further model runs, just type 'Ctrl'-'a' (or 'Strg'-'a') and the programme starts again.

In order to finish your calculation, just quit EXCEL without saving changes in any of the 19 basic files of this software.

Emission Inventory Guidebook

¹¹ If the tables with the default values are overlapped by a 'question-window' you can move this window: point on the headline of this little window with your mouse-pointer, hold your left mouse-button and move it.

Annex 15: Frame conditions of the detailed investigation concerning start-up emissions and start-up emission factors /based on 116/

Approach

Start-ups have to be considered in a boiler-by-boiler approach. In order to determine the relevance of start-up emissions compared to full load emissions, measured emission data for SO_2 , NO_2 and CO obtained from power plant operators have been analysed. Start-up emissions and start-up emission factors have been determined in principle by using the detailed methodology described in Section 5.

Technical specifications

The analysis of start-up emissions was accomplished by using measured values from dry bottom boilers, wet bottom boilers and a gas fired boiler. The interpretation of start-up emissions and start-up emission factors should take into account specifications in the design of the boilers and in the configuration of secondary measures installed. In the following, particularities of the boilers considered are given:

- Dry bottom boiler (thermal capacity 1,050 MW and 1,147 MW, hard coal fuelled)

The smaller boiler is equipped with a primary measure for NO_x reduction (SAS). The SCR is arranged in a high dust configuration (SCR-precipitator-FGD). This boiler is often started slowly and directly connected to the FGD.

The larger boiler is also equipped with a primary measure for NO_x reduction (SAS). The SCR is also arranged in a high dust configuration (SCR-precipitator-FGD). Due to special arrangements (individual construction of two heat exchangers without any slip between raw and clean flue gas) when this boiler is started up the FGD is by-passed. This boiler is also called "quick" start-up boiler.

- Wet bottom boiler (thermal capacity 499 MW each, hard coal fuelled)

One boiler is equipped with primary measures for NO_x (like OFA and improved coal mills). The other boiler is not equipped with primary measures. Both boilers are equipped with a common FGD. The SCR is arranged in a tail-end-configuration (precipitator-FGD-SCR) and equipped with a natural gas fired additional furnace. The type of FGD is wet scrubbing (WS). Both boilers are started up directly connected to the FGD.

- Natural gas fired boiler (thermal capacity 1,023 MW)

This boiler is rarely used. It is designed for quick start-ups. As a primary measure, special NO_x burners are installed. As a secondary measure an SCR is installed. SO_x abatement is not necessary due to the fact that low sulphur fuels are used.

Boilers without secondary measures show start-up emissions which are below the emissions under full load conditions. During start-ups boilers with secondary measures often show significantly higher SO₂ emissions than during the same time under full load conditions. Start-up emissions are released until the secondary measures are working under optimal conditions (for

 SO_2 and NO_2). CO emissions can be significant up to the time when the boiler operates at minimum load.

The relevance of start-up emissions depends on the following parameters which have to be considered when interpreting measured values (emissions or emission factors):

- the type of boiler (e.g. wet bottom boilers always release higher NO_x emissions than dry bottom boilers, due to higher combustion temperatures),
- the type of fuel used (e.g. SO_x emissions are directly related to the sulphur content of the fuel; fuel-nitrogen also contributes to the formation of NO_x),
- the status of the boiler at starting-time (hot, warm or cold start, see Table 11).
 - the specifications of any individual start-up, like
 - -- the duration and the velocity of the start-up,
 - -- load level obtained (reduced load or full load),
 - -- the configuration of secondary measures (e.g. the start-up time of the high-dustconfigurations (SCR-precipitator-FGD) depends on the boiler load, due to the fact that the SCR catalyst is directly heated by the flue gas; tail-end-configurations (precipitator-FGD-SCR) can have shorter start-up times, due to the fact that the SCR catalyst can be preheated by an additional burner),
 - -- start-up of the flue gas desulphurisation directly or in by-pass configuration,
 - -- emission standards which have to be met (boiler-specific emission standards can be set up below the demands of the LCP Directive).

Annex 16:	List of abbreviations		
a	Content of ash in coal (wt%)		
AC	Activated Carbon Process		
ar	As received		
bc	Brown coal		
BFCB	Bubbling Fluidised Bed Combustion		
CF _n	Correction factor for month n []		
CFBC	Circulating Fluidised Bed Combustion		
CC	Combined Cycle		
CI	Compression Ignition		
$\text{CM}_{\text{HM}_{\text{FA.raw}}}$	Heavy metal concentration in raw gas fly ash $\left[\frac{g}{Mg}\right]$		
$CM_{\rm HM_{FA, clean}}$	Heavy metal concentration in fly ash in clean flue gas $\left[\frac{g}{Mg}\right]$		
\overline{C}	Expected value (mean value) of the flue gas concentration $[\frac{mg}{m^3}]$		
Ci	Concentration $[\frac{\text{kg}}{\text{kg}}], [\frac{\text{g}}{\text{Mg}}], [\frac{\text{mg}}{\text{m}^3}], i = \text{SO}_2, \text{S}_{\text{fuel}} \text{ etc.}$		
CODPOL	Code of pollutants according to CORINAIR		
D_k	Number of days per month		
DBB	Dry Bottom Boiler		
DeNOx	Denitrification unit(s)		
DESONOX	Type of simultaneous process for SO_2 and NO_x removal based on catalytic reaction		
DSI	Dry Sorbent Injection		
E	Emission within the period considered [Mg]		
E^A	Emission during start-up period [Mg]		
E^{V}	Emission for full load conditions during start-up period [Mg]		
EF^{A}	Emission factor for start-up time [g/GJ]		
$\mathrm{EF}^{\mathrm{Reduced \ load}}$	Emission factor for reduced load conditions [g/MWh]		
EF^{V}	Emission factor under full load conditions [g/GJ]		
EFi	Emission factor, mostly in the unit $\left[\frac{g}{GJ}\right]$, i = SO ₂ , NO _x , CO ₂ etc.		
EF_{f}	Fly ash emission factor of raw gas [kg/Mg]		
ESP	Electrostatic precipitator		
\mathbf{f}_{a}	Fraction of ash leaving combustion chamber as particulate matter (wt%)		
f_e	Enrichment factor []		
\mathbf{f}_{g}	Fraction of heavy metal emitted in gaseous form (wt%)		
$\mathbf{f}_{\mathbf{k}}$	Factor of day k		

$\mathbf{f}_{\mathbf{n}}$	Factor for month
$f_{n,l}$	Factor for hour
F^{E}	Ratio for start-up and full load emissions []
F ^{EF}	Ratio for start-up and full load emission factors []
FBC	Fluidised Bed Combustion
FGD	Flue Gas Desulphurisation
FGR	Flue Gas Recirculation
g	Gaseous state of aggregation
GF	Grate Firing
GHV	Gross Heating Value
GT	Gas Turbine
hc	Hard coal
HM	Heavy metal, trace elements
H _u	Lower heating value $\left[\frac{MJ}{kg}\right]$
k ^{load}	Ratio of reduced load to full load emission factor []
K _c	Mean efficiency of dust control equipment (%)
K _t	Share of plant capacity connected to dust control equipment (%)
1	Liquid state of aggregation
L	Actual load
LCP	Large Combustion Plant
LIFAC	Special type of DSI, mostly used in Finland
LNB	Low NOx Burner
\dot{m}^L	Fuel consumption during periods at reduced load conditions [GJ]
\dot{m}^{V}	Fuel consumption during full load periods [GJ]
$\dot{m}_{_{fuel}}$	Fuel consumption per time unit $\left[\frac{kg}{a}\right]$, $\left[\frac{kg}{h}\right]$
\dot{m}_{FA}	Average annually emitted fly ash $\left[\frac{Mg}{a}\right]$
\dot{m}_q^A	Fuel consumption during start-up period [GJ]; q= type of start-up (cold start, warm start, hot start)
maf	Moisture and ash free
NMVOC	Non-Methane Volatile Organic Compounds
No_{fuel}	Fuel based emission of nitrogen oxide
NO _{thermal}	Thermal nitric oxide
OFA	Overfire Air

Р	Daily coal consumption $\left[\frac{Mg}{d}\right]$
PM	Primary Measure
RAG	Coal mined in Rhine area in Germany
S	Solid state of aggregation
SAS	Staged Air Supply
SC	Simple Cycle
SCR	Selective Catalytic Reduction
SI	Spark Ignition
SNAP	Selected Nomenclature of Air Pollutants
SNCR	Selective Non-Catalytic Reduction
SNOX	Technical specification of DESONOX-process
SPA	Spray Dryer Absorption
SPF	Split Primary Flow
ST	Stoker
Stat. E.	Stationary Engine
<i>ν</i> ̈́	Flue gas volume flow rate $\left[\frac{m^3}{h}\right]$
$\overline{\dot{V}}$	Average flow rate $\left[\frac{m^3}{h}\right]$
V_D	Dry flue gas volume per mass flue gas $\left[\frac{m^3}{kg}\right]$
V _{FG}	Dry flue gas volume per mass fuel $\left[\frac{m^3}{kg}\right]$
VOC	Volatile Organic Compounds
WAP	Walter Process
WBB	Wet Bottom Boiler
WL	Wellmann-Lord
WS	Wet Scrubbing
α_{s}	Sulphur retention in ash []
β_{sec}	Availability of secondary abatement technique []
γ	Fraction of thermal-NO formed []
η_i	Reduction efficiency [], i = primary measure, secondary measure