SNAP CODE:

pr040202

040202

SOURCE ACTIVITY TITLE: PROCESSES IN IRON & STEEL INDUSTRIES & COLLIERIES Blast Furnace Charging

NOSE CODE:

NFR CODE:

105.12.02 2 C 1

1 ACTIVITIES INCLUDED

The charging of iron smelters is part of the production process for primary iron and steel.

2 CONTRIBUTION TO TOTAL EMISSIONS.

Blast furnace charging is a potential source of heavy metal emissions. The contribution to total emissions indicated in table 2-2 refers to blast furnace operation in general. Information concerning the contribution of blast furnace charging is currently not available.

 Table 2-1: Contribution to total emissions of the CORINAIR90 inventory (28 countries)

Source-activity	SNAP-code	Contribution to total emissions [%]							
		SO_2	NO _x	NMVOC	CH_4	CO	CO_2	N_2O	NH ₃
Blast Furnace Charging	040202	0	0	0	0	0.7	0.1	-	-

0 = emissions are reported, but the exact value is below the rounding limit (0.1 per cent)

- = no emissions are reported

Table 2-2: Contribution to total heavy metal emissions of the OSPARCOM-HELCOM-
UN/ECE inventory for 1990 (up to 38 countries)

Source-activity	SNAP-code	Contribution to total emissions [%]							
		As	Cd	Cr	Cu	Hg	Ni	Pb	Zn
Blast Furnace	040202	2.7	0.5	1.7	2.7	0.8	0.4	1.9	8.6

3 GENERAL

3.1 Description

In general, the blast furnace process can be subdivided into the following process steps:

- air heating (hot blast stove);
- blast furnace;
- tapping (casting bay);
- slag processing.

The *blast furnace* is a shaft furnace for producing pig iron from iron-containing raw materials, as iron sinter, pellets, and lump ore. The burden of the blast furnace, consisting of iron-containing raw materials and additives (Möller mixture), is fed alternately with coke through the top of the furnace in layers. For the production of a tonne of pig iron, 300-400 kg coke, and 1550-1600 kg of ore are needed. Air, heated up to 1,300°C, is blown through tuyeres into the lower part of the furnace. The combustion of the coke provides both the carbon monoxide (CO) needed for the reduction of iron oxide into iron and the additional heat needed to melt the iron and impurities. Auxiliary fuels such as fine coal, heavy oil, plastic waste and others may also be injected through the tuyeres. As the burden moves downward through the furnace, it is heated by the countercurrent upward flow of gases, that exit at the top of the furnace (Rentz et al., 1996).

The smelter is toploaded and works with an excess pressure of up to 2.5 bar depending on the type of furnace. To render possible energy recuperation, a dedusting of the top gas is necessary. With back-pressure furnaces the top gas is used in back-pressure turbines for power generation. The dedusted top gas is used as fuel for various applications in the iron and steel mill.

3.2 Definitions

Möller mixture The complete package of basic materials for one smelter charge. A charge consists of a number of carriage loadings that are emptied into the smelter according to a specified scheme.

Pressure equalisation The equalisation of pressure in the vapour lock at the blast furnace top with atmospheric pressure.

3.3 Techniques

The main techniques have been specified above in Section 3.1

3.4 Emissions

In the pressure equalisation stage some emissions of blast furnace top gas containing carbon monoxide, carbon dioxide, hydrogen, and hydrogen sulphide occur. The charging of the smelters produces a certain amount of dust during a short period of time. For CIS counties a dust content of 400 g/m^3 in the exhaust gas from the inter-cone space of the vapour lock is reported (Kakareka et al., 1998). The composition of the dust is related to the composition of the Möller mixture. It is a rather coarse dust with a particle size bigger than 10 micron. Although the dust contains heavy metals from the ore and the coke, the dust itself is rather inert due to the extensive pre-treatment activities like pelletising and sintering. In addition emissions may arise from conveying operations.

Table 3-1 shows selected values for the dust and heavy metal content of blast furnace top gas (Rentz et al., 1996).

	Specific dust load m _{Dust} /m _{Pig iron} [kg/Mg]	$ \begin{array}{l} Specific waste \\ gas volume \\ V_{Waste gas} / m_{Pig \ iron} \\ [m^3 / Mg] \end{array} $	Waste gas stream V _{Waste gas} /t [m ³ (STP)/h]	$\begin{array}{l} \text{Dust load} \\ m_{\text{Dust}}/V_{\text{Waste gas}} \\ [g/m^3(\text{STP})] \end{array}$	Weight composition of flue dust [wt%]
Blast furnace top gas	up to 17.5	1,400 - 1,700	100,000 - 550,000	up to 12.5	Pb up to 0.4 Zn up to 1.7

3.5 Controls

To reduce the escape of the basic materials during charging a vapour lock is installed on the top of the smelter. The lock is charged after pressure equalisation. Different constructions for this lock are in use. The sealed charging system can be a bell charging system or a bell-less charging system. In addition, the evacuation of gas at the top of the furnace and connection to the blast furnace gas treatment system can be used to control emissions (IPPC, 1999).

4 SIMPLER METHODOLOGY

The blast furnace charging is a part of the primary iron and steel industry. The simplest method of emissions estimation is their assessment on the basis of the pig iron production from individual iron and steel plants or country production of pig iron in blast furnaces and average emission factors. Appropriate emission factors referring to statistical information on iron and steel production at national level are currently not available.

5 DETAILED METHODOLOGY

If detailed information about an individual situation is available then this should be used.

6 **RELEVANT ACTIVITIES STATISTICS**

Production statistics are available from national or international sources such as the United Nations Industrial Statistics Yearbooks and EUROSTAT Structure and activity of industry - Annual survey.

7 POINT SOURCE CRITERIA

Iron smelters in which the loading process is incorporated should be considered as point sources.

8 EMISSION FACTORS, QUALITY CODES AND REFERENCES

The emission factor for coarse dust is generally about 20 g/Mg pig iron (range 15-25 g/Mg, depending on the construction of the vapour lock). This information is produced by the Emission Inventory in The Netherlands, based on estimations from the steel plant managers.

Emission factors taken from four blast furnaces from four different EU Member States are available in (IPPC, 1999). For dust emissions to air from the charging zone an emission factor of 25 g/Mg liquid steel (LS) is proposed (range: 5-38 g/Mg LS; mean value and standard deviation: 14 ± 13). Other air pollutants are considered to be of low significance. In (IPPC, 1999) a conversion factor of 940 kg pig iron/Mg liquid steel is used as a weighted average of all European basic oxygen steelworks.

Concerning blast furnaces in CIS countries heavy metal emission factors for blast furnace charging are proposed in (Kakareka et al., 1998). Table 8-1 shows these factors related to the removal efficiency of control devices.

	Abatement type and efficiency				
	No Abatement 0 % efficiency	Venturi scrubbers or ESP 95 % efficiency	Includes dust suppression systems such as pressure equalisation 99.6 % efficiency		
Cd [g/Mg pig iron]	0.009	0.0004	0.00004		
Pb [g/Mg pig iron]	0.028	0.001	0.0001		
Zn [g/Mg pig iron]	0.58	0.029	0.002		
Ni [g/Mg pig iron]	0.052	0.003	0.0002		

 Table 8-1: Heavy metal emission factors for blast furnace charging (Kakareka, 1998)

9 SPECIES PROFILES

A composition profile of used ore could give supporting information. No general profiles can be given.

Heavy metal content of dust collected in the charging zone of a blast furnace of a Russian iron and steel plant is given in Table 9-1 (Kakareka et al., 1998).

 Table 9-1: Heavy metal content of dust from batch preparation (Kakareka et al., 1998)

	Cd [mg/kg]	Pb [mg/kg]	Zn [mg/kg]	Ni [mg/kg]	Cu [mg/kg]
Particulate matter from ESP (total sample)	0.15	900	14	5.26	12
Particulate matter from ESP (particle size $< 4 \ \mu m$)	2	7 - 10	145 - 200	10 - 13	15 - 20

10 UNCERTAINTY ESTIMATES

The uncertainty of the dust emission factors is estimated to be about 20%.

11 WEAKEST ASPECTS/PRIORITY AREAS FOR IMPROVEMENT IN CURRENT METHODOLOGY

Information about emissions directly related to the individual process and the abatement methods is scarce. Emission factors for heavy metals should be improved.

12 SPATIAL DISAGGREGATION CRITERIA FOR AREA SOURCES

Iron smelters should be considered as point sources (see section 7).

13 TEMPORAL DISAGGREGATION CRITERIA.

Emissions during charging are a discontinuous process. The temporal disaggregation depends on the production rate but quantitative information is not available.

14 ADDITIONAL COMMENTS

Charging of blast furnaces should be treated in connection with the pig iron tapping.

15 SUPPLEMENTARY DOCUMENTS.

US Environmental Protection Agency. Compilation of air pollutant emission factors AP-42

PARCOM (1992) Emission Factor Manual PARCOM-ATMOS. Emission factors for air pollutants 1992. P.F.J. van der Most and C. Veldt, eds., TNO Environmental and Energy Research, TNO Rept. 92-235, Apeldoorn, the Netherlands.

16 VERIFICATION PROCEDURES.

Comparing the composition profile of the ore used with the metal emissions calculated might serve as a verification process.

17 REFERENCES

European Commission Directorate-General Joint Research Centre, European IPPC Bureau (1999) Integrated Pollution Prevention and Control (IPPC), Best Available Techniques Reference Document on the Production of Iron and Steel, Seville, January 1999. Available at - http://eippcb.jrc.es.

Kakareka S., Khomich V., Kukharchyk T., Loginov V. (1998) Heavy Metal Emission Factors Assessment For The CIS Countries, Institute for Problems of Natural Resources Use and Ecology of the National Academy of Sciences of Belarus, Minsk 1998

Mulder W., Emission Inventory in the Netherlands. Personal Comments, Delft, 1994.

Emission Inventory Guidebook

Rentz O., Sasse H., Karl U., Schleef H.-J. and Dorn R.(1996) Emission Control at Stationary Sources in the Federal Republic of Germany, Volume II, Heavy Metal Emission Control, Umweltforschungsplan des Bundesministers für Umwelt, Naturschutz und Reaktorsicherheit, Luftreinhaltung, 204 02 360

18 BIBLIOGRAPHY

No additional references.

19 RELEASE VERSION, DATE AND SOURCE

Version:	3.1
Date:	March 1999
Updated by:	Otto Rentz; Ute Karl University of Karlsruhe Germany
Original authors:	J. J. M. Berdowski, P.F.J.van der Most, W. Mulder TNO The Netherlands

20 POINT OF ENQUIRY

Any comments on this chapter or enquiries should be directed to:

Ute Karl

French-German Institute for Environmental Research University of Karlsruhe Hertzstr 16 D-76187 Karlsruhe Germany

Tel: +49 721 608 4590 Fax: +49 721 75 89 09 Email: ute.karl@wiwi.uni-karlsruhe.de