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Executive summary

Executive summary

Biomass as a source of energy for Europe

Bioenergy — energy from biomass — can play an
important role in combating climate change as well
as e.g. improving the security of energy supply in
Europe. However, plant biomass is used for a large
number of purposes, as apart from energy it also
provides food, feed, clothing, paper, bioplastics and
building materials. There can therefore be direct
competition between different uses of the same type
of biomass, or competition for land on which to
grow biomass, also with other uses of land, e.g. for
nature protection.

Biomass production (for whatever purpose)
interacts strongly with the environment. Cultivation,
harvesting and collection of biomass from the field
or forest consumes energy and water, and gives

rise to emissions of air and green house gas (GHG)
pollutants. There are risks of soil erosion, and
potential threats to biodiversity and water resources.
The subsequent conversion of biomass into usable
energy and its use for heat, electricity and transport
results in emissions of air and GHG pollutants.
Further expansion of bioenergy production may
cause direct adverse effects on the environment

and indirect effects due to displacement effects
(changes and shifts in land-use, e.g. from grassland
to arable land). These direct and indirect effects

may undermine an important goal society is trying
to achieve with the use of bioenergy — reducing
greenhouse gas emissions — and jeopardise the
achievement of other environmental goals, such as
the protection of biodiversity and water resources.

On the other hand, an appropriate choice and
management of energy crops can also decrease soil
erosion or water pollution risks from agricultural
and pastoral practices and provide certain
biodiversity benefits. Such benefits will only come
about, however, if policy and economic incentives
are in place to steer bioenergy production in this
direction. Strong efforts are therefore required in

a range of policy areas to minimise the potential
negative environmental impacts of bioenergy
production, including the use of harmonised
internationally recognised environmental
sustainability standards. Protecting soil and water
resources as well as avoiding loss of biodiversity
need particular attention at local and regional level
whereas issues such as climate change have a strong
global dimension.

Until such global sustainability standards and
related control mechanisms are in place, it could

be argued that basing EU bioenergy on domestic
resources is preferable from an environmental point
of view. In line with this, the present study focuses
solely on quantifying the benefits that could be
gained through the optimal use of the EU bioenergy
potential.

Bioenergy potential in Europe

The technical potential for bioenergy production
in EU-25 was estimated in an earlier EEA report
How much bioenergy can Europe produce without
harming the environment?. This study assessed
the technical (') maximum potential for utilising
biomass from the waste, forestry and agriculture
sectors under a given set of environmental
constraints. These constraints were developed

to ensure that the resulting potential would in
principle be environmentally compatible, but did
not include potential effects outside the EU.

Exploiting Europe's bioenergy potential

This study assesses the environmental impacts of
various ways of converting the technical bioenergy
potential from the 2006 EEA study into usable
electricity, fuel or heat. It models various European
bioenergy developments up to 2030, using the most
environmentally beneficial technologies. It aims

(*) Technical potential is understood as the theoretical upper potential limited by the demand for land used for other purposes and
based on an assumed level of agricultural productivity. However, in the study conducted in 2006, when estimating the overall
potential, the economic and logistical barriers could not be included.

Maximising the environmental benefits of Europe's bioenergy potential
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to demonstrate what bioenergy can offer Europe,
in terms of climate mitigation and energy security,
and to provide a clear picture of the possible role
of bioenergy in the future energy mix, which

is assumed to be in transition from a fossil fuel
economy to a low carbon energy system. Thus this
study aims to illustrate the implications of different
ways of using Europe's biomass resources rather
than to assess the potential impact of current policy
proposals or practices.

Scenarios used

A specially adapted software tool,
Green-X_, .y roxveny Was used to develop a number
of bioenergy scenarios, building on reference energy
pathways created using the EU-wide PRIMES
model.

The Low Carbon Emission Pathway (LCEP) scenario
developed earlier by the EEA (EEA, 2005a and

b) was used as the reference scenario. The LCEP
scenario assumes that ambitious GHG emission
reduction policies result in a carbon permit price of
EUR 20/ton (by 2020) rising to EUR 65/ton by 2030
(and it assumes low fossil fuel prices). The share

of renewable energy is 13 %, the share of nuclear
energy 12 % and the share of solid fuels only 4.9 %
of the gross in land energy consumption by 2030 in
this scenario.

The Green-X scenarios, all assuming full use is made
of the technical potential for bioenergy production,
include a 'least-cost' bioenergy deployment model
run without policy intervention, which serves as the
main 'reference’ case ('LCEP reference scenario').

To test sensitivity to carbon and fossil fuel prices,
this 'least-cost' reference option was also run with

a relatively low carbon price and higher fossil fuel
price (‘Alternative scenario').

Other scenario cases studied reflect different
energy and environment policy priorities including
prioritisation of Combined Heat and Power (CHP);
minimising CO, emissions; reducing air pollutant
emissions; prioritising renewable energy and
prioritising transport biofuels.

The LCEP reference and alternative reference
scenarios, as well as the different priority scenarios
were evaluated in terms of bioenergy contribution to
total energy demand in the three sectors (electricity,
heat and transport), additional generating costs

(?) December 2007 import prices are applied.

and fossil fuel savings, avoided GHG emissions and
changed air pollutant emissions. Emissions were
calculated as both life cycle and direct assessments,
based on the Global Emission Model for Integrated
Systems (GEMIS).

Key findings

In the following, key findings from some of the
scenarios are presented. In all cases, these build on
the crop mixes assumed in the 2006 EEA study and
the optimal bioenergy pathways calculated by the
Green-X, yronyvenr Model.

The LCEP reference scenario demonstrates that using
the entire environmentally-compatible bioenergy
potential in a 'least cost' manner would avoid 394
million tonnes of annual CO,-equivalent emissions by
2020 and 617 million tonnes by 2030, corresponding
to 7 % of the total volume of GHG emissions in EU-
25in 1990, and to 11 % in 2030. This underpins the
importance of bioenergy for meeting EU's future
GHG reduction targets.

1700 TWh of fossil fuel energy would be saved and
2 700 TWh in 2030, at a value of EUR 25 billion and
EUR 47 billion respectively at predicted 2020/2030
prices (or EUR 42 billion and EUR 70 billion
respectively assuming today's energy prices (?).

This would have a positive affect on Europe's trade
balance as most fossil fuels are imported, and would
help to compensate for the additional generating costs
arising from an enhanced bioenergy deployment.
These are relatively low, at about EUR 19 billion in
2020 and 2030.

By comparison, the alternative reference scenario
with relatively higher fossil fuel prices but on the
other hand lower carbon permit prices result in

a reduction of 426 million tonnes (8 %) of GHG
emissions in 2020 and 695 million tonnes (13 %) in
2030. Higher emissions reductions and cost savings
occur due to the fact that absolute GHG emissions are
higher in this alternative reference scenario, so that
the use of bioenergy has a greater positive impact.

Comparing the two reference scenarios demonstrates
that while the specific numbers change, the overall
picture remains the same. Substantial reductions in
GHG emissions accrue from the use of bioenergy,
and the additional generating costs associated with
the use of bioenergy are smaller than the value of the
fossil fuels replaced.

Maximising the environmental benefits of Europe's bioenergy potential
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Bioenergy would also make a substantial
contribution to achieving the EU renewable energy
target for 2020. If all the theoretical potential
estimated in the EEA 2006 study would be viable
in economic and logistics terms, around 10.5 % of
Europe's gross energy consumption (9.5 % of final
energy demand) in 2020 could be met with biomass
alone (compared to 4.5 % of gross energy demand
in 2005), nearly half of the target of 20 % as defined
in terms of final energy. In 2030, 16 % of the EU-25
gross energy demand would be met by bioenergy.
Bioenergy would meet 18.1 % of European demand
for heat, 12.5 % of electricity demand and 5.4 % of
transport fuel demand(corresponding to 7 % of the
diesel and gasoline demand in road transport).

Finally, to the extent that bioenergy is replacing
imported fuels, e.g. gas from Russia, it would also
contribute to ensuring the security of EU's energy
supply (see also below).

If additional priorities and investments were
implemented to increase the use of heat from
combined heat and power systems, the CHP
scenario indicates that overall GHG emissions
reductions would increase (454 million tonnes in
2020, 695 million tonnes in 2030), and the bioenergy
share of heat would increase to 23 % in 2030.
Additional generating costs would be substantially
lower and fuel savings slightly higher than in the
LCEP reference scenario, but it was not possible to
include the costs of additional investments in district
heating networks in the analysis.

Giving priority to the achievement of the proposed
10 % target for renewable energies in the transport
sector by 2020 with an imposed constraint of using
EU biomass resources leads to GHG emissions
reductions in 2020 and 2030 of the same order

as in the LCEP reference scenario, but with
substantially higher additional generating costs
(about EUR 27 billion on 2020 and EUR 28 billion in
2030) and similar fossil fuel savings (EUR 26 billion
in 2020 and EUR 44 billion in 2030). Intra-European
trade in refined biofuels and a fast development
and introduction of second generation technologies
are imperative for achieving the 2020 target, given
the modelling constraints of using solely domestic
biofuels and prioritising the environment. Only
second generation technologies could successfully
employ the large share of woody biomass in total
European potential that was assumed in the 2006
EEA study for transport biofuels.

Changing levels of bioenergy use will have different
effects (positive or negative) with respect to Europe's
air quality depending on the scenario. The LCEP

reference scenario implies a significant switch from
coal to natural gas, generally leading to improved
air quality. The various scenarios analysed indicate
that additional bioenergy deployment would result
in increased NO, and SO, emissions compared

to the reference scenario, but these emissions are
lower than current emission levels. To improve the
understanding of the potential impacts of bioenergy
on air quality further studies are needed.

Review of certain key modelling
assumptions

a)  Modelling the potential role of transport
biofuels

In assessing the key findings it is worthwhile
highlighting that in the scenarios it is assumed

that using biomass for transport fuels will become
more attractive in the future from an environmental
viewpoint:

e Second generation biofuels from low impact,
high-yield perennials will give higher avoided
GHG emissions than first generation biofuels.
Second generation biofuels are assumed to be
readily available by 2020 and penetration rates
for second generation biofuels of 80 % of total
biofuels are assumed.

¢ The assumed fuel switching from coal to gas in
the electricity and heat sectors could reduce the
avoided GHG emissions resulting from using
biomass in those sectors. Currently Europe's
energy mix is based on 24 % natural gas and a
little over half of its total energy consumption is
based on imported energy. The share of natural
gas in the fuel mix used in this study is projected
to increase significantly in the future with for
example, around 80 % of the natural gas being
imported, mainly from Russia. By 2030 the main
fossil fuel substitutes will be gas (60 % of the
total volume replaced) followed by oil (30 % of
the total volume avoided).

However, it is likely that these assumptions
overstate the potential role of biomass-based
transport fuels compared to using biomass in
electricity and heat generation. Firstly, there is
considerable doubt at the present time as to whether
second generation biofuels meeting stringent
sustainability criteria will be readily available by
2020. Secondly, the trend of switching from coal
to gas might be reversed or limited by the need to
ensure security of energy supply, EU coal being
more attractive than imported gas in this regard.

Maximising the environmental benefits of Europe's bioenergy potential
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b)  Implications of high fossil fuel prices

The 2006 study assumed far lower fossil fuel costs
than currently observed on world markets. Rising
fossil fuel prices could bring down the relative

cost of bioenergy production compared to fossil
fuels. Increasing oil prices, in particular, may be
perceived as transport biofuels becoming more
competitive against electricity and heat generation
from biomass. However, this might be outweighed
as the high fossil fuel prices are likely to increase
both the feedstock production costs (especially the
arable crops due to increased fertiliser prices) and
the capital costs. Thus, a more thorough assessment
is required in order to understand the full impact of
rising fossil fuel prices, in particular the prices for oil
on bioenergy systems.

c) Modelling agricultural markets and indirect
effects

The modelling approach employed by the EEA in
2006 had to set its system boundaries at Europe's
borders. The area needed to grow food and feed

in Europe was assumed to fall due to productivity
improvements and reduced production as a
consequence of an opening up of European
agricultural markets to increased competition.
This approach did not include feedback loops
with global agricultural or bioenergy markets and
did therefore not take account of the recent price
increases for food/feed on the world markets.

Furthermore, in the real world Europe's
agricultural production makes a significant
contribution to supplying world agricultural
markets, which is likely to increase in importance
given strong growth in future world food demand.
Given this fact and the interactions between world
food and biomass markets a change in Europe's
imports of biomass for energy or in its agricultural
export potential is likely to have implications

for global land-use trends. Such effects and

the associated GHG emissions or biodiversity
impacts were not part of the original analysis.
Consequently, an update of the 2006 modelling
exercise would ideally be required for estimating
the likely environmental effects and CO, efficiency
of European bioenergy policies.

Maximising the environmental benefits of Europe's bioenergy potential
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Introduction

The EU is seeking to increase the use of renewable
energy in order to limit climate change and

enhance the security of energy supply. In 2005,
renewables accounted for 6.7 % of EU's gross energy
consumption; of which two thirds were biomass
and waste (see Figure 1.1). Significant amounts

of additional bioenergy are likely to be needed to
reach the legally binding renewables target of 20 %
of the overall EU final energy consumption by

2020 proposed by the Commission (EC, 2008a) to
implement the agreement reached by the European
Council last year. There is also a proposal that each
Member State should introduce a national minimum
target of 10 % for renewables in the transport

sector — under the condition of production being
sustainable and second generation technologies
being commercially available.

As a contribution to assessing the potential for
increased use of renewable energy in Europe, the

European Environment Agency (EEA) published

a report that provides assessment of Europe's
technical potential to produce bioenergy without
negative environmental impacts (EEA, 2006). The
report identified the environmental pressures
arising from the increased bioenergy demand

and sought to eliminate them as far as possible

by applying various environmental criteria to
biomass production strategies. Thus, it identified
the quantities of bioenergy Europe could potentially
produce in 2010, 2020 and 2030, whilst protecting its
environment.

Having assessed a significant bioenergy potential

in Europe, the next step has been to identify the
most environmentally efficient and cost-effective
ways of using the biomass. There are many different
sources of biomass and many different ways to use
it for energy. It can be converted into electricity,

heat or transport fuels (hereinafter called 'biofuels’).

Figure 1.1 Share of energy consumption by fuel type in 2005, EU-27

Other fuels 0.2 %

Nuclear 14.2 %
Natural gas 24.6 %

Coal and
lignite
17.7 %

Renewables
6.7 %

Oil 36.7 %

Source: EEA, 2007a.

Solar 0.7 %

Wind 5.0 %

Municipal solid
/ waste 12.0 %

Wood and
wood wastes
77.2 %

\ Geothermal 4.5 %
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This means that there will be competition for the
significant, but finite, primary bioenergy feedstocks
that can be produced in Europe. As the different
processes and types of end use have different
economic and environmental consequences, it is
important to use the available biomass as effectively
as possible in a climate change and the energy
supply perspective.

Several studies have examined different biomass-

developed for the previous study identifying the
environmentally-compatible biomass potential

in Europe. Three factors in particular need to be
discussed in the light of current knowledge and
recent economic trends: the environmental effect
of indirect land-use change linked to bioenergy
production, assumed trends in yield increase for
food and energy crops as well as the recent strong
increase in fossil fuel prices compared to scenarios
utilised in the study.

to-energy pathways. But most are either limited to a
few feedstock types and conversion technologies, or a)
their focus was solely on either electricity or biofuel
production. This study looks at the efficient pathways
of using the environmentally compatible bioenergy
potential for all energy purposes in Europe.

Modeling boundaries and potential indirect
effects

The modelling boundaries of the 2006 EEA
study were set at Europe's borders for modelling
reasons and lack of data and knowledge for
estimating effects beyond the EEA member
countries. It focused therefore on the biomass
potential that could be produced in Europe in an
environmentally-compatible manner if certain
rules to minimise impacts on soil, biodiversity,
landscapes and water resources in Europe were
followed. Within these environmental conditions
biomass could be produced on land not required
to fulfil European demand as the area needed to
grow food and feed in Europe was assumed to fall

Realising the environmental benefits of bioenergy and
reducing the negative impacts requires an integrated
approach. The figure below (Figure 1.2) summarises
approaches applied both in previous and the present
studies of the bioenergy potential.

1.1 Limitations of this study

The main limitations relate to some of the

modelling boundaries and input parameters

due to productivity improvements and reduced

Figure 1.2 Analytical framework applied in this study

Identify critical environmental Ambitious Determine the
resources waste promising technologies
(soil-water-biodiversity) minimsation ﬂ

Determine the feedtsock|

a a a
technology matrix

Environmentally compatible biomass potential ﬂ

Waste
(solid agricultural residues +
other agricultural residues +

Climate friendly {——] re’?eprzlr’]’ .

Forestry wet manure + dry manure + nd -
(residues municipal solid waste + # :ffeci?:e energy
Agriculture | + from + | black liquor + sweage sludge + pathways to scenarios
harvest packaging waste + use biomass (LCEP and
operations) wood processing + waste potential for PRIMES)

wood + construction/demolition
wood + household waste
wood + food processing waste)

i i) il i

energy

Select the No intensification No energy LCA GHG and
crops that on protected recovery from air pollutant
have least area; leave waste currently emissions data
impacts on foliage and used for from GEMIS
environment roots on site; recycling or
apply site reuse; land fill
specific residue and incineration
extraction rates with energy
recovery

Note:

The previous study (done in 2006) is on the left and the current study is on the right. The white arrows show the flow of data
and/or constraints.
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production as a consequence of an opening

up of global agricultural markets to increased
competition. For the purposes of the 2006 study,
therefore, impacts on societies and the environment
outside Europe were assumed to be negligible.

In a more detailed technical perspective it should be
noted that the land-use figures underlying the 2006
study are derived from the CAPSIM (The Common
Agricultural Policy SIMulation) model runs which
assumed full competition of EU agriculture with the
world market. The land which in those model runs
was 'freed' from agriculture is a function of assumed
food and feed price developments, and the CAPSIM
runs did not include the recent price increases

for food/feed on the world markets. The CAPSIM
results would therefore benefit from a revision that
includes today's perspective. Such a revision would
either reduce the amount of 'freed' land, or make
the competition between food/feed production and
bioenergy production on that land depending on the
price ratio (i.e. higher oil prices vs. higher food/feed
prices).

Thus, the development of markets and prices for
agricultural commodities (OECD-FAOQ, 2007),
world population growth, climatic conditions
and changes in diet (°) that influence supply and
demand for food, feed and bioenergy crops could
change overall demand and the agricultural trade
balances between Europe and other world regions.
Therefore, recognising that large-scale production
of bioenergy requires considerable land areas,

an evaluation of bioenergy policies should take
into account direct and indirect impacts on global
land-use change, even if the focus is on home-
grown biomass.

This matters as indirect land-use change, in
particular deforestation, affects the overall
greenhouse balance of bioenergy production
(Fargione et al., 2008; MNP, 2008). Deforestation
and associated land-use change were responsible
for about 17 % of global greenhouse gas emissions
in 2004 (IPCC, 2007). In fact, deforestation is a more
important factor at the global level than emissions
from transport (Stern, 2006). Deforestation and
the combustion of vegetation happens mainly in
the tropical countries of the world linked to legal
and illegal logging (FAO, 2005), the expansion of
cropping and pasture areas (FAO, 2003; Morton

et al., 2006) and the use of woody biomass for

fuel (UN-Energy, 2007). The issue of land-use
change, preservation of indigenous forests, and

expansion of forest resources as a mechanism for
establishing carbon sinks, has therefore gained
considerable attention (Righelato and Spracklen,
2007; Kindermann et al., 2006), also in the context of
global climate change negotiations.

In conclusion, there are strong agricultural

and land-use trends that impact on the world's
ecosystems (e.g. OECD, 2008), including their
capacity to act as carbon sinks. These trends
would continue independent of bioenergy
production. On the other hand, care needs to be
taken that biomass production for energy does

not aggravate the environmental issues associated
with global land-use trends (Searchinger et al.,
2008; MNP, 2008). Future revisions of the EEA 2006
modelling work should therefore address potential
indirect effects of EU bioenergy production and
consumption, in particular on land use.

b)  Assumed yield increases

The yield increases included in the 2006 modeling
exercise for agricultural as well as energy crops
matter as they influence the overall biomass
potential that was estimated. In any given
modeling system yield increase can be treated

as an exogenous variable (i.e. imposed on the
modelling run on the basis of external factors) or
as endogenous, meaning that yield trends would
be influenced by other variables in the modeling
system itself, e.g. increased food demand or prices
in the case of in agricultural yields.

The 2006 study based its agricultural feedstock
calculations on the yield figures estimated in the
CAPSIM model which used trend predictions on
a range of modelling exercises carried out for DG
Agriculture, the US Department for Agriculture
and FAO. Yields for energy crops were estimated
from published field research quoted in previous
bioenergy studies. The yield increase trends used
in the study were developed as a combination of
historic yield trends for food and 1st generation
energy crops as well as yield trend estimates as a
function of increased demand and active breeding
and research, in particular for novel energy crops.
The following yield trends were applied:

e For 'Ist generation' oil crops in the EU, a
constant 1 %/year increase of the energy yield
over the whole period which is a function of
the moderate demand increase, and historic
developments.

(®) An increase in worldwide demand for animal products will significantly increase the area of land needed to feed the population.

Maximising the environmental benefits of Europe's bioenergy potential
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* For 'Ist generation' starch crops in the EU,
a constant 1.5 %/year increase of the energy
yield over the whole period which is due to the
assumed higher demand increase for ethanol.

e For "2nd generation' starch crops (i.e. whole
plant material use), two-culture schemes and
all lignocellulose (short rotation coppice and
perennial grasses) produced in the EU, a1 %
per year increase of the energy yield from 2000
to 2010, and 1.5 %/year from 2010 to 2020, and
2 % per year from 2020 to 2030. This dynamic is
based on the demand increase which develops
over time.

These figures, however, can only be considered as
estimates as there are a number of uncertainties that
may affect them, e.g. the impact of higher energy
and other input prices, the success of new breeding
technologies as well as climatic and environmental
limitations in the future. Variations in the total
estimated available biomass due to differential
yield increases should, however, not significantly
affect the results of the main modelling objective in
this study, that of determining an optimum use of
available biomass in Europe.

c) Possible impacts of increased fossil fuel prices

This modeling work is based on the 2004/2005 fossil
fuel price assumptions which do not reflect the
current perceptions of future energy and agriculture
market. The impact of rising fossil fuel prices, in
particular the oil prices, however, require a more
thorough assessment as they will affect the extra
costs to produce biofuels, bio-electricity and bio-heat
(in comparison to the conventional energy systems).
Particularly the soaring oil prices may change the
potential role of biomass based transport fuels
compared to using biomass in electricity and heat
generation. On the other hand bioenergy production
costs will rise as capital costs, fuel costs and the
feedstock production costs are likely to increase

due to increasing fossil fuel prices. Depending on
the feedstock type the production cost increase may
counterbalance the positive impact of high fossil
fuel prices on the competitiveness of bioenergy over
fossil fuels.

1.2 Outline of this report

This report presents various ways to optimise the
benefits of bioenergy use in Europe by the years
2020 and 2030 — by identifying GHG and air
emissions, and also cost-efficient methods of using
biomass for each energy sector: electricity, heat and
fuel.

Chapter 2 reviews the available data on the various
bioenergy resources that Europe can provide and
discusses life cycle analysis (LCA) approaches to
estimating emissions of greenhouse gases and air
pollutants related to different bioenergy pathways.
Chapter 3 outlines the structure and assumptions of
the Green-X , ronaenr Model. The model is set up

to find out how well bioenergy can deliver against
the targets of reduced greenhouse gas emissions and
increased energy security — two major objectives

of European policy. Chapter 4 presents the model
results, showing how the European biomass can be
used in a cost-effective and environmentally efficient
way. It also analyses the emitted air pollutants
within the life cycle of bioenergy production.

The analysis is done for individual European
Member States for the years 2010, 2020 and 2030.
Then the model is used to analyse the impacts of
different policy strategies and priorities on the
future bioenergy market, and their consequences in
respect of the energy security and emissions. This
chapter also analyses the possible consequences

of prioritising the use of biofuels in the transport
sector. Finally, the last chapter discusses the future
challenges to achieving the environmentally efficient
bioenergy pathways as presented in the previous
chapters.

Maximising the environmental benefits of Europe's bioenergy potential
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2 The biomass potential of Europe
and the life cycle GHG emissions of
different bioenergy pathways

2.1 EEA estimates of biomass potential

Biomass is the world's fourth largest energy
source, providing around 10 % of the demand for
energy worldwide. Most of it is used in developing
countries for cooking and heating. Only around
4.4 % of the EU's primary demand for energy is met
through the use of biomass, equivalent to around
6.5 % of the global biomass primary energy supply
(IEA, 2006a). In 2005, primary energy production
from biomass in Europe was around 80 MtOE
(Eurostat, 2007), most of which was from wood or
wood waste.

A number of studies have assessed the biomass
potential in Europe and the world as regards energy
and material purposes (see Annex 1). This study is
making use of the bioenergy potential estimated by
the EEA in 2006, because it is the only study that
explicitly includes environmental considerations

in its assessment of how much bioenergy could be
produced. The study assumed that the following
environmental measures have been taken (see

Box 2.1):

With these restrictions in place, in the short term
biomass comes largely from the waste sector, with
bioenergy crops reaching their full potential in the
longer term (due to expected yield increases and a
reduction in agricultural exports).

These figures represent Europe's technical potential
for biomass production, restricted by environmental
considerations. They do not allow for economic

or logistical constraints on production. It should

be noted that even a much lower total bioenergy
production can lead to significant environmental
pressures — if the EEA assumptions of the choice of
energy crops, energy pathways and the EU policy
framework are not met.

2.2 The life cycle approach

The life cycle assessment (LCA) approach takes
into account both direct and upstream emissions
like mining, processing and transport as well as the
materials and energy needed for manufacture at

all stages. This study focuses on the life cycle of the
greenhouse gas and air pollutant emissions from
different energy chains. It is an unambiguous way to
analyse the environmental performance of different
energy systems, so they can be compared with
conventional fuels, in the light of the global and EU
objectives to reduce greenhouse gas emissions.

Comprehensive data on life cycle emissions

from fossil fuels and bioenergy systems in the

EU Member States are provided by the Global
Emissions Model for Integrated Systems (GEMIS),
used in this study. It was first developed in the late

Box 2.1 Environmental assumptions implicit in the assessment of biomass potential

e At least 30 % of agricultural land is retained
under environmentally oriented farming.

e Important types of extensive farming, including
grassland areas, are maintained.

e By 2030, 3 % of intensively farmed land is set
aside as areas for ecological compensation.

e Bioenergy crops with low environmental
pressure are favoured.

e Currently protected forest areas are maintained
and the area of protected forest is increased by
5 % in each country.

e Forest residue removal is adapted to local site
conditions. Foliage and roots are not removed.

e At least 5 % of the deadwood is left in all forests.

Source: EEA, 2006; EEA, 2007b.
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1980s, and is continuously updated. The data used
from the GEMIS database can be found in Annex 2.

Although LCA methodology is generally quite
well-defined, results from different LCA studies may
vary significantly, depending on the assumptions
used and the methodological choices made. The
main differences are mostly due to:

* assumptions regarding important input data
describing the biofuel and bioenergy chains;

* treatment of by-products;

e treatment of emissions due to land-use and
vegetation change.

Some important factors which can vary between
studies, and subsequently create different results,
include: the amount of fertilizer use and crop yield,
N,O emission factors during crop cultivation, energy
efficiency of the processes and the type of fuel used
for the bioenergy/biofuel production process.

In view of these variations in methodology and LCA
results, it is useful to see how the GEMIS modelling
results used in this report compare with results from
other LCA studies.

As regards biofuel, GEMIS data used in this analysis
have been compared with the CONCAWE/JRC/
EUCAR, (2007) results for similar biofuel chains (see
Figure 2.1).

In certain cases GEMIS results match JEC results
quite well, except for rapeseed biodiesel (RME)

and biomass-to-liquid (BtL) processes. Emission
reductions calculated by GEMIS are higher than
from JEC — due to by-product substitution applied
(i.e. glycerine by-product is substituted as synthetic
glycerine) (*). It should be noted that none of these
models include emissions due to land-use change (°).

In general, fewer international LCA studies have
been conducted concerning bioenergy — compared
to those for biofuels, because biomass utilization as a
fuel for heat and/or power is much more of a country-

Figure 2.1 The net life cycle greenhouse
gas emissions of fossil fuels and
various biofuels

Diesel

Gasoline

EtOH, sugarbeet

EtOH, wheat

EtOH, sugarcane

Ligno-EtOH, straw

RME

BtL, wood

-100 O 100 200 300 400
g CO,-equivalent/kWh (output)

- 200

Bl GEMIS EEA calculations
[ JEC study*

Note: * CONCAWE/IJRC/EUCAR, 2007 is referred to as JEC
study.
Source: CONCAWE/JRC/EUCAR, 2007.

specific issue than that of biofuels. Furthermore,
LCAs for bioenergy routes are difficult to compare,
since there are many more feedstocks and process
configurations possible for bioenergy than for
biofuels, each leading to different emission results.

An accurate comparison of the GEMIS results

with that of other models would, thus, require a
very specific analysis of the configurations used,
which has not been possible within the scope of

this project. However, in general it is clear from
GEMIS and other models that the net GHG emission
reduction increases significantly where CHP is
applied and credits for the heat are included in the
calculations.

More information on the LCA approach (and results)
can be found in Annex 3.

(*) In LCAs of biofuels, relatively modest differences in assumptions may lead to significant differences in outcome.
(°) If land-use change occurs due to biofuels production, this may cause significant GHG emissions, both from above and below

ground, see, e.g. JRC (2008) or Fargione (2008).
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3 Applying the Green-X

bioenergy

environment Model to bioenergy

environment Model to

3.1 Background and aims

The Green-X model is a simulation tool developed by
the Energy Economics Group at Vienna University

of Technology, from 2002 to 2004, as part of a joint
European project, Green-X. It allows quantitative
analysis of interactions between renewable energy
sources, conventional energy systems and policies to
reduce GHG emissions, both for the EU as a whole as
well as for individual Member States.

In this study, the Green-X model is adapted to
provide an analysis of the entire European bioenergy
market from both an economic and environmental
viewpoint, including the energy uses of biomass:
biofuels for transport and solid biomass for heat

and electricity generation. The new model is called
Green-X_, yronven L€ detailed coverage of Europe's
biomass resources, the corresponding conversion
technologies and the derivation of scenarios to
identify environmentally beneficial ways of using
biomass for energy purposes are the strengths of this
new model.

This model is used in this study to obtain a thorough
understanding of the potential for bioenergy
deployment in the European energy sector and

the environmental and economic consequences
associated with different strategies. The study had the
following objectives:

a) Identify an environmentally optimised bioenergy
deployment with a least cost approach (°). This
means modelling deployment of biomass across
the electricity, heat and transport sectors, using
only environmentally compatible European
biomass resources, the most environmentally
favourable technology options and assuming a
relatively high carbon price.

b) Assess the greenhouse gas emissions and air
pollutant emissions reduced (from a life cycle

perspective) by the optimised deployment;
evaluate how these changes with different
priorities.

c) Analyse the impact of the environmentally
optimised bioenergy system on the security of
supply (import dependency).

d) Derive the additional generation costs of
the environmentally optimised bioenergy
system and the costs of imposing different
environmental priorities.

The aim of the analysis is to give policy makers

an idea of different future options, in terms of the
contribution of biomass to each bioenergy sector
(electricity, heat and transport), to get the most
environmental benefit. Thus, this study neither
aims to analyse the current renewable energy
policy proposals nor the transport fuel policy
proposal. However, it includes an assessment of

10 % biofuel target in the transport sector by 2020
with an imposed constraint of using solely EU's
domestic biomass resources. Nevertheless this
model run should not be interpreted as a thorough
assessment of the Commission's alternative
transport policy, nor does it aim to identify the best
(environmental, economic, social) ways to reach the
proposed target. Such an analysis was beyond the
scope of this study.

In each case, the analysis is done for individual EU
Member States for the years 2010, 2020, and 2030.

3.2 Methodology

3.2.1 How the model works

The Green—XEI\IVIROI‘\MH\IT model uses the modelling
concept of dynamic cost-resource curves. These

allow static cost-resource curves, technological

(°) This is an artificial instrument that looks for the cheapest way of achieving a set target, across all energy sectors. It could not
be applied in the real world, but it allows showing an economically optimal outcome. The model assumes full competition among
market actors, and minimises additional generation costs, relative to conventional options.
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change and technology diffusion to be linked (see
Figure 3.1).

Biomass is characterised in the model as a limited
resource. Cost dynamics should be considered since
costs can rise with increasing utilization because the
cheaply available fractions of the overall potential
will be exploited first. As a consequence, rising
generation costs occur. The static cost-resource
curve is a proper tool to describe these costs and
potentials.

Changes in resource conditions and conversion
technologies are represented in the model as aspects
of technological change and technology diffusion.
Costs and efficiency data are adapted to this model
dynamically on technology level. Thus, standard
cost forecasts are applied to reflect the expected
technological progress with reference to the GEMIS
database in case of bioenergy and the PRIMES (7)
energy scenarios for the conventional energy
systems applied.

The model uses 'S-curve' patterns to describe the
impact of market and administrative restrictions,
which are the most important non-economic barriers
to deployment of a new energy technology.

The Green-X, , ronnens Model covers 37 fractions

of biomass that can be converted to electricity,

heat or transport fuel. They comprise dedicated
energy crops on agricultural land (crops used

for conventional first generation (°) biofuels,
short-rotation coppice, perennial grasses and biogas
feedstock), various fractions of biogenic waste (such
as municipal solid waste, wood processing residues
or straw) and forestry resources. The primary
potentials for each feedstock, and the corresponding
fuel costs, are based on an in-depth assessment

of the biomass resources in all EU Member States
(EEA, 2006; EEA, 2007Db).

The model dedicates a broad but limited set of
conversion technologies and upstream processes to
each biomass feedstock. The promising bioenergy

Figure 3.1 Methodology regarding dynamic cost-resource curves by means of dynamic

bioenergy feedstock/technology bands (for the model Green-X

ENVIRONMENT)

The Green-X_ .. ... @aPProach:
Dynamic cost-resource curves
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(technological change)
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Source: Energy Economic Group (EEG), Vienna University of Technology, www.green-x.at.

(7) PRIMES is a market equilibrium model of the European energy market, designed to predict changes in energy demand, supply and
technology. It was developed at the National Technical University of Athens, funded by the European Commission.

(8) First generation feedstocks are the conventional crops(such as sugar can, sugar beets, corn, wheat, rapeseed, soybean, palm
oil) harvested for their sugar, starch and oil content and they are converted into biofuels using conventional technologies. Second
generation feedstocks, on the other hand, comprise cellulosic biomass (such as wood, tall grasses, forestry and crop residues) that

require advanced technologies to be converted into biofuels.
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pathways in terms of their efficiency and GHG
emissions are pre-selected (see Annex 4).

The Green-X,, ronvenr Model forecasts bioenergy
deployment under various scenarios, their
corresponding greenhouse gas and air pollutant
emissions, and additional generation costs, up

to 2030. The emissions comprise the LCA (direct
and upstream) emissions of different technologies
and pathways, provided from the adapted GEMIS
database.

3.2.2 The feedstock potential and costs

The total biomass potential, as estimated in EEA
(2006), has the components as described below.

(i) Agricultural biomass from dedicated bioenergy
crops. These can be 'conventional’ bioenergy
crops such as starch crops (cereals, sugar beets)
or oil crops (rapeseed, sunflower) as well as
perennial grasses or short rotation forests (SRF)
on agricultural land. Agricultural residues
(straw, green tops and manure) are assigned to
‘biowaste'.

(ii) Forestry biomass comprises residues from
harvest operations that are normally left in
the forest after stem wood removal, such as
stem top and stump, branches, foliage, and
roots. Additional sources of forestry bioenergy
potential are described as complementary
fellings. These represent the difference between
the maximum sustainable harvest level and the
actual harvest needed to satisfy round wood
demand.

(iii) Biowaste/residues comprise residues,
by-products and types of wastes of biological
origin arising from agriculture, industry and
households. The following specific waste
streams were considered:

(a) solid agricultural residues — cereal and
rapeseed straw, stalks from sunflowers and
prunings from vineyards and olive trees;

(b) other agricultural residues — green tops
from potatoes and beets;

(c) wet manure — manure from cows, pigs and
laying hens;

(d) dry manure — manure from fattening hens;

(e) municipal solid waste (MSW) — the
biological component of municipal solid
waste (mainly kitchen and garden waste,
paper and cardboard);

(f) black liquor — liquid by-products from
pulp and paper production;

(g) wood-processing waste wood —sawdust
and off-cuts from primary wood processing
(sawmills) and secondary wood processing
(furniture manufacture, for example);

(h) construction and demolition wood —
wood off-cuts from construction and wood
recovered during demolition;

(i) packaging waste wood — from the
packaging and palettes industry (palettes,
crates, etc.);

(j) household waste wood — items such as old
furniture, fencing;

(k) sewage sludge;

(I) food processing wastes — wastes from the
dairy and sugar industry and wine and beer
production.

Figure 3.2 shows the contribution of the different
biomass sources to the total biomass potential,
up to 2030. Notice the increasing share of
second-generation energy crops (short-rotation
coppice, perennial grasses and biogas feedstock).

Figure 3.2 Development of the European
(EU-25) environmentally-
enhanced bioenergy potentials
(in terms of primary energy), by
source category
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Source: EEA, 2006.
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The corresponding feedstock costs were calculated
for the same study (EEA, 2006). However, before
conversion to bioenergy, a feedstock has to

be processed to meet the specifications of the
conversion technology, for example, in terms of
size or moisture content. To get from biomass to
final conversion, a pre-conversion stage is required
that includes pre-processing. The pre-conversion
costs for various pathways in the EU are shown in
Figure 3.3, derived from the GEMIS database.

3.2.3 Technologies

Available technologies were screened with
respect to their efficiency, life cycle emissions

and costs. Bioenergy technologies with high
emissions or costs were excluded, so only the
most promising technologies were included in the
model. This screening was done using data from
a comprehensive study on sustainable bioenergy
in Germany, which used peer-review and expert
workshops to assure data quality (Fritsche et al.,
2004). Below is a brief summary of the technologies
after the screening. A detailed overview of the
selected technologies is given in Annex 4.

e Electricity

- Co-firing in non-combined power plants
— biomass is added to the conventional
fuel (coal) as a percentage of <5 % straw
or 10 % wood. Attention is given to the
availability of appropriate filters in these
plants.

— Combined heat and power (CHP)
generation — plant sizes from 1 to 20 MWel
are characterised, as are those fed with
biogas, wood and various waste streams.
CHP co-firing also includes gas-CHP fed
with a mix of natural gas and biogas after a
series of pre-treatment processes.

Both types of electricity generation are based on
almost all biomass resources — forestry, energy
crops and waste streams.

¢ Heat, non-grid
— DPellets
- Wood chips

Both mainly based on forestry, selected energy
crops and wood-based waste streams.

Figure 3.3 Cost ranges of pre-conversion options for bioenergy feedstocks in the EU-25

Cost of pre-conversion (EUR/MWh)
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* Heat, grid-connected
— Heat plants
- CHP

Both based on various biomass resources — forestry,
energy crops and waste streams.

e Transport fuels
—  First generation feedstocks (such as
sugarcane, sugar beet, sweet sorghum,
oilseeds, and starch crops) are already

being converted into liquid fuels using the

following conventional technologies:

- Fermentation. Sugar extracted from sugar
crops is easily fermented into ethanol.
Starch crops such as wheat and corn are
also hydrolysed into sugar, which is then
fermented into ethanol. These processes
are called ethanol in our model.

- Transesterification to FAME (fatty acid
methyl ester). This process converts oil
from oil seed crops into biodiesel.

- Second generation feedstocks, including

the whole body of the crop (crop residues),

wood, tall grasses and forestry residues

are jointly referred to as cellulosic biomass.

Cellulosic biomass is composed of cellulose,

hemicellulose and lignin, with smaller

amounts of proteins, lipids (fats, waxes and
oils) and ash. They are naturally resistant

to being broken down, so they require

advanced technologies to be converted into

fuels. Cellulosic biomass can be converted to
fuel either by thermochemical or biochemical
conversion:

- Thermochemical conversion. Biomass
can be gasified into syngas (at 600 to
1100 °C), which can then be converted to
biodiesel using the Fischer-Tropsch (F-T)
process. This process is called Biomass
to Liquids (BtL) and can be applied
to woody or grass-derived biomass.
Currently there are no commercial
plants producing fuels in this way. The
first commercial BtL plant is under
construction in Freiberg, and is expected
to produce 18 million litres biodiesel a
year from mid-2008. Cellulosic biomass
can also be converted to a liquid
fuel called bio-oil or pyrolysis oil, by
heating to around 475 °C. However,
pyrolysis oils are not currently used for
transportation.

- Bio-chemical conversion. This involves
breaking biomass into its component
sugar molecules, followed by
fermentation to covert sugar into ethanol

fuel. There are three demonstration
cellulosic ethanol plants in the EU: in
Sweden, Spain and Denmark. In our
model, this process is called Ethanol+.

3.2.4 Allocating the feedstocks among the
technologies

In theory, there are manifold ways to combine
different biomass feedstocks with bioenergy
conversion technologies. Since not all of these
combinations are likely to be applied at full scale
commercially by 2030, and since the model could
not handle every possible combination, we selected
a set of process chains to use in the model. As shown
in Figure 3.4 each chain starts with a feedstock,
which is transformed by a pre-conversion path, then
enters the final conversion technology.

These pathways are listed in Annex 5. Some
potential pathways were excluded because the
literature and expert knowledge suggests they will
not be commercially viable in our timeframe to 2030.

For example, using pellets made from forest residues
and complementary fellings in residential heating
systems are excluded because pellets can be made
easily from numerous materials with small particles,
such as sawdust. It would be financially very costly
and energetically not efficient to make pellets from
wood chips or stems. By contrast, chipped wood is
considered a viable option for use in medium- to
large-scale decentralized heating systems.

Among the bioenergy pathways for transport
biofuels, conversion of lignocellulosic biomass to
ethanol, referred to here as ethanol+, does not use
wood or perennial grasses in the model. According
to Fritsche ef al. (2004), the pre-treatment of wood
and the amount of enzymes needed to convert
woody biomass to ethanol will incur prohibitive
costs, even in 2020. As for perennial grasses, costs
and potential yields for converting them to ethanol
are unknown, and the process would leave residues
that must themselves be burned or gasified. While
there is potential for hybrid schemes, combining
ethanol production with BtL routes or possibly
electricity generation and raw material production,
this 'bio-refinery' concept is at a very early research
stage and it is unlikely that it reaches fruition in the
time frame applied (10 to 20 years).

Amongst BtL processes for producing biofuels,

the use of black liquor as a feedstock is excluded,
although this would in principle represent one

of the cheapest options. According to industry
experts, this is unlikely to be available for transport
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Figure 3.4 The bioenergy process chains
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biofuels production, as it is already used for 3.2.5 Assumptions of the model
electricity generation within the pulp and paper
industry. Thls study uses the Greerl—.X]N:IWIROI\H\4ENT model to

illustrate how the future bioenergy deployment

The suitability of the different technologies for might look like, if it delivers the best possible
each country depends on the amount of primary outcome for meeting the general objectives in a least
biomass that is potentially available. For example, cost manner including;:
a small country like Cyprus has limited potential
for large-scale biomass power plants or large-scale (i) reducing greenhouse gas emissions;
BtL plants, so these would not appear as a suitable (if) reducing air pollutant emissions;
option. (iii) increasing fossil fuel substitution.
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Strong policies and environmental standards will

be required at a European, national, regional and
sectoral level, to ensure the market is focussed on
achieving these outcomes. However, the model

does not assume a specific policy framework. The
purpose of this report was to look at the potential of
bioenergy to deliver these objectives in Europe, if the
domestic biomass resources are fully exploited in an
environmentally beneficial manner.

The only specific policy applied in the modelling is
the use of quotas for biofuels (10 % by 2020), in the
case of biofuel prioritisation (Chapter 6). In addition
to that, in one case biomass exploitation is derived
from the model run carried out for DG Environment
to assess the effects of the 20 % renewable energy
target set for the year 2020 (Ragwitz et al., 2006).

Some conditions of the model are listed below:

(i) time horizon: 2004 to 2030. Results are derived on
a yearly basis;

(ii) geographical coverage: European Union as of
2006 including 25 Member States (referred to as
the EU-25 (%));

(iii) reference energy system: the model uses
scenarios for how the overall EU energy system
will develop, in terms of fuel and carbon prices,
taken from the PRIMES model of the European
energy market. In particular the Low Carbon
Energy Pathway (EEA, 2005a, 2005b) and the
‘alternative' scenarios are used (EC, 2006).
Some details of these scenarios are given in
Section 3.2.6;

(iv) use of domestic resources: the model assumes
that converting domestic biomass to other energy
carriers is the best use of the resource.

3.2.6 Scenario parameters and priority cases

The bioenergy scenarios are based on the projected
development of the overall EU energy system. The
key reference scenario is the low carbon energy
pathway (LCEP) scenario, which is characterised by
moderate fossil fuel prices but a high carbon permit
price up to EUR 65/tonne by 2030 (EEA, 2005b). This
scenario was chosen due to the fact that it describes
an energy system with significant GHG emission
reduction.

For a sensitivity analysis, the alternative scenario is
used (EC, 2006), which is characterised by relatively
high fossil fuel prices and a moderate carbon permit
price (EUR 20/tonne).

Details of these two scenarios, including energy
prices, energy demand, efficiency figures and
generation structure can be found in Annex 6.

The cross-sectoral least-cost approach is applied

to all the model runs within the environmental
system boundaries of each model run. The model
assumes full competition among market actors, and
minimises additional generation costs, relative to
conventional options.

Competition for biomass occurs on three levels:

e among biomass feedstocks (depending on their
cost);

e among technological pathways for the use of
each feedstock;

® among energy sectors — heat, transport and
electricity.

Table 4.1 gives a short description of the cases
investigated in this report. Cases 1 to 4 impose
environmental priorities. For example, in Case 1, the
deployment of CHP is encouraged by assuming the
market for heat produced by CHP plants functions
perfectly, and all heat produced can actually be

sold. This assumes the removal of major barriers
that currently limit the economic attractiveness of
CHP. Case 5, on the other hand, gives priority to a
key EU policy objective. In this case priority is given
to the achievement of a 10 % target proposed for
renewable energies in the transport sector by 2020 —
using solely EU's domestic biomass resources (*°).

More details on how the model works and how the
priorities were applied can be found in Annex 7.

3.2.7 Assessing the environmental and economic
impacts of the model runs

Environmental impacts

To assess the specific environmental benefits of the
bioenergy scenarios simulated by this model, they
had to be compared with the 'conventional’ energy
scenario (for the reference scenario, for instances,
it should be compared with the PRIMES LCEP).

(°) The model covers EU-25 Member States, but does not include Bulgaria and Romania.
(1°) Following the Commission's proposal for a 10 % RE target in transport by 2020, imported biofuels are expected to make a
significant contribution. Consequently, as preconditions differ substantially, this investigation shall not be misinterpreted as a

thorough impact assessment of the 10 % target.
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Table 3.1

Overview of the investigated cases

General assumption for all cases

Biomass potential fully exploited

e Least-cost approach
e Energy economy as described by PRIMES LCEP (EEA, 2005a, 2005b),
except Case 6 (alternative reference scenario) which uses the PRIMES

baseline scenario, for comparison

e  Full competition among technology pathways, feedstocks and energy

sectors

Case

Name

Optimisation

Prioritisation

Assumptions

based on
Reference . S
scenario Primary energy None No weighting amongst sectors
- . . Heat produced in CHP plants is
Casel Optimised CHP case  Primary energy Optimised CHP assumed to be sold completely
Decreased
Case 2 Avoided GHG Avqldgd GHG greenhgu;e Emissions of greenhouse gases
emissions gas emissions are decreased
(CO,-equivalent)
Emissions of SO,, NO, and
particulates were converted to
Air pollutant Avoided air Decreased particulate matter equivalent
Case 3 N . ; ) .
emissions decrease pollutant emissions  PM-equivalent (PM-equivalent), using factors
of 0.7 for SO, and 0.88 for NO,
(based on de Leeuw, 2002)
Accelerating
the bioenergy
deployment to
o allow a meeting The target of 20 % renewable
Case 4 Renewables 20 % RE by 2020 of the overall energy by 2020 takes priority
renewable target
(in line with
Ragwitz, 2006)
e The target of 10 % for RE in
Transport sector, the transport sector by 2020
Case 5 Biofuels Primary energy no trade of bio takes priority
energy from
outside the EU e EU domestic biomass feedstock
use
: This scenario uses the PRIMES
Alternative . )
. baseline scenario, so assumes
reference Primary energy None . : :
scenario a high price for fossil fuel and a

much lower carbon permit price

'Environmental benefits' in this study relate to the
impact of different feedstock types and bioenergy
pathways on total emissions of greenhouse gases

and air emissions.

For greenhouse gas emissions, avoided emissions
were calculated, based on the fossil fuel substituted
in the bioenergy model. The net avoidance is the
total life cycle emissions of fossil fuel produced and

Maximising the environmental benefits of Europe's bioenergy potential



Applying the Green-X

environment Model to bioenergy

used, minus the life cycle emissions from producing
the bioenergy. Emissions from electricity generation
are calculated including the generation of electricity,
but do not include transfer of the electricity, or its
domestic and commercial use. Calculation of the
emissions from transport fuel includes the production
of the fuel, but it does not include the steps that take
place after conversion of feedstock to biofuels (e.g.
use of the fuel in road transport).

For air pollutants, emissions were compared with
emissions from a conventional energy system model
(described in detail in EEA, 2005b), in which coal
power generation switches significantly to gas in the
years leading up to 2030. Calculations of air pollutant
emissions are also taken from the GEMIS database,
derived in exactly the same way and with the same
scope as the life cycle assessments for greenhouse gas
emissions.

Economic impacts

Economic impacts are assessed by means of
deriving the (additional) generation costs imposed

by the enhanced bioenergy deployment. As no
explicit policy analysis is conducted, policy cost
— i.e. the consumer expenditures arising from
financial support offered to stimulate bioenergy
deployment — are not assessed within this study.

The generation costs are calculated based on the
cost data provided in Annex 4 (feedstock cost,
investment cost, operation and maintenance costs,
technology specific life time (15-25 years), etc.).
Thereby, all cost and performance data for the
selected conversion technology options are taken
from the GEMIS database. The calculation of
generation cost is based on a (real) interest rate of
6.5 %, and all cost data are expressed in real terms
using EUR, ..
The conventional energy system price figures are
presented in Annex 6. The additional generation
cost is calculated as the difference between the
total generation cost of bioenergy systems and
conventional energy systems provided from the
reference and alternative reference scenarios.

Maximising the environmental benefits of Europe's bioenergy potential
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4 Model results

This chapter presents the main results obtained from
modelling the reference scenario. This is followed
by the alternative reference scenario (as sensitivity
case) and the scenario cases where prioritisation

of different options are applied: priority for CHP,
reducing greenhouse gas emissions, reducing air
pollution or meeting Europe's proposed renewable
energy target. In the last model run the case of
prioritising biofuels (in order to meet the 10 %
target by 2020) is considered. This case is analysed
separately, because the environmental implications
of the 10 % biofuel target are the subject of
considerable debates at present, and require extra
attention. However, as mentioned earlier, not all
relevant aspects of biofuel enhancement have been
analysed in this study:.

4.1 The reference scenario

4.1.1 Bioenergy deployment

In this scenario, primary bioenergy deployment
increases linearly with time and reaches a value of
10.5 % of total primary energy consumption (7.7 %
of final energy consumption) in 2020; and finally —
15.9 % (13 % of final energy consumption) by 2030
(see Figure 4.1). This corresponds to 2 202 TWh in
the year 2020 and 3 355 TWh in the year 2030. As
stated in Section 1, the share of bioenergy in the
total energy consumption within EU-25 in the year
2005 was around 4.5 % (EEA, 2007a), whereas this
modelling work calculates the environmentally
compatible bioenergy deployment as approximately
2.5 % by the year 2005 (see Figure 4.1) ().

Figure 4.1 Evolution of bioenergy deployment and bioenergy potential in EU-25 — energy
expressed as share of gross primary energy consumption

% share on gross inland consumption (in terms of primary energy)
18 ~

16

14

12

10

15.9 %

Bioenergy potential

Source: EEA, based on Green-X modeling.

‘environment

=@ Cross-sectoral quota

(1) The comparatively large difference to current bioenergy use is caused by the widespread use of bioenergy for heating purposes,
where old small-scale stoves mostly do not meet stringent criteria with regard to air pollutant emissions as used for the technology

pre-selection in this study.
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Figure 4.2 shows what proportion of the total energy
demand in each sector is supplied, according to

the reference case, by biomass. By 2030, bioenergy
compromises 18.1 % of the overall demand for heat,
and a 12.5 % share of the gross electricity demand.

By 2030, only a moderate share — 5.4 % — of the
total transport energy demand is met with biofuels.
This corresponds to about 7 % of the demand for
road transport fuels (diesel and gasoline). Second
generation biofuels become an option with a large
share from 2010 onward. In this scenario, the share
of second generation biofuels is about 30 % by 2015
and reaches more than 65 % by 2030.

The results show that bioenergy can make a major
contribution towards achieving current European
renewable energy targets. The projection is that

7.3 % of electricity can be generated from biomass by
2010 (*?) — just over one third of the 21 % renewable
electricity target set for the EU-27. By 2020, around

8 % of the EU's overall final energy demand can be
met with biomass — nearly half the 2020 target of

20 %.

All these results represent averages across the
European Union. The details vary significantly

between Member States. For example, the largest
heat deployment rates (> 40 %) are reached in
Lithuania, Estonia, Latvia, Sweden and Slovenia,
while Poland and Lithuania generate the largest
electricity deployments from bioenergy in 2030.
The model shows that in Lithuania, Latvia and
Estonia by 2030 more than 20 % of transport energy
will be coming from biofuels. However, those high
shares correspond to substantial amounts of second
generation biofuels. Model results for individual
Member States are presented in Annex 8.

Figure 4.3 illustrates, by sub-sector, the yearly
development of electricity, heat and biofuel
generation from bioenergy. Further details on

the technology-specific deployment are given

in Figure 4.4, which offers a breakdown of the
produced electricity, heat and biofuels into
technology clusters for certain years (2010, 2020 and
2030).

In this scenario, bioenergy is clearly used primarily
for heat and electricity. By 2030, the bioenergy
allocated to district and decentralised heating
systems and CHP is 1 660 TWh (fuel input), which is
approximately 49 % of the total bioenergy used. This
demonstrates the economic attractiveness of biomass

Figure 4.2 Bioenergy deployment as a share of gross sectoral demands (electricity, heat and

transport)

% bioenergy — as share of gross sectoral demands (electricity vs. heat. vs. transport)
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Source: EEA, based on Green-X_ . . modeling.

(*2) This value is presented for the EU-25.
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for heating purposes. CHP plants offer significant
benefits, through increased efficiency of power
generation, fuel flexibility (many plants are designed
to burn more than one fuel), reduced greenhouse
gas emissions per unit of energy output and reduced
transmission costs. However there are limitations

on the development of this sector. In addition,
district heating systems are expensive to install and
have a long lifetime, once they are in place. In some
countries there are barriers to the deployment of
district heating systems with CHP plants. These
include a lack of infrastructure to provide fuel, lack
of access to national grids to sell surplus electricity,
absence of a secure heat demand, and difficulties
related to legislation and taxation.

The other prevailing cheap option for bioenergy

is electricity generation, where 1239 TWh primary
bioenergy is used by the year 2030. Electricity
generation is the dominant option in the period

up to 2020, but with a decreasing availability of
economically attractive technology options, such as
co-firing or large-scale CHP plants, the deployment
has been saturating in the final years. According to
the reference scenario, by 2030, around 60 % of the
electricity produced from bioenergy will be generated
in CHP plants, whilst pure electricity plants will

generate 37 %. The remaining gap of 3 % refers to the
by-product electricity arising from second generation
biofuel production. By 2010, the biomass electricity
produced from CHP will contribute only 4 % of the
total electricity demand.

Around 14 % of the bioenergy is used in transport
sector which contributes, by 2030, around 456 TWh in
terms of primary bioenergy.

4.1.2 Climate change mitigation potential

The reference scenario indicates that up to 394 million
tonnes of CO,-equivalent emissions could be saved
per year by 2020, and 617 million tonnes per year —
by 2030 (the EU-25), as a result of the full exploitation
of the assessed bioenergy potential (see Figure 4.5).
These figures refer to net balances where arising
bioenergy life cycle emissions are taken into account
similarly to the substituted conventional ones.

To put this in perspective, according to the recent
EC greenhouse gas inventory (EEA, 2008); the
EU-27 total greenhouse gas emission in 1990 was
around 5 572 million tonnes CO,-equivalent.
Total GHG emissions, without LULUCE, in the
EU-27 decreased by 7.7 % between 1990 and 2006

Figure 4.3 Yearly development of electricity, heat and biofuel generation by sub-sector
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Figure 4.4 Breakdown of electricity, heat and biofuel generation by technology cluster for

2010, 2020 and 2030

Breakdown of electricity generation Breakdown of heat output Breakdown of transport output
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(429 million tonnes COZ-equivalent). In 2007,
however, EU made a firm commitment to achieve at
least a 20 % reduction of greenhouse gas emissions
by 2020 compared to 1990. Thus, reaching the 20 %
greenhouse gas reduction target by 2020, compared
to 1990, means reducing around 1 114 million
tonnes CO,-equivalent. per year. Even though

the Kyoto Protocol and the unilateral 2020 target
applies to direct emissions (thus, the life cycle GHG
emissions cannot be compared to this target), one

MSW landfilling

MSW incinerat.

Cofiring CHP (coal)
CHP large > 1 MW

CHP medium 0.5-1 MW

CHP small 0.1 MW

can conceive that bioenergy deployment can play
an important role in decreasing GHG emissions
and reaching the target.

Electricity and heat together contribute 91 %

of total net avoided greenhouse gas emissions
while the rest (9 %) is from transport (mostly due
to second generation biofuels). The highest net
avoided emissions are projected in the heat sector,
reaching almost 368 million tonnes CO,-equivalent.
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Figure 4.5 Net avoided emissions of CO,-
equivalent due to the enhanced
bioenergy deployment

Net avoided CO,-equivalent LCA emissions —
conventional reference and bioenergy (Mt CO,/year)

700+

600+

500+

400+

3001

200+

100+

04
2005

2010
[ Electricity

2015
[ Heat

2020
O Transport

2025 2030

Source: EEA, based on Green-X modeling.
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per year, approximately 60 % of the total by 2030.
In comparison to the high CO, intensity of the
conventional energy systems, the types of biomass
allocated for heat and electricity production (such
as biomass residues and waste chains) cause
comparatively low life cycle emissions. In contrast
to this, first generation transport biofuels demand
dedicated biomass crops with higher life cycle
emissions from the conversion chain.

Table 4.1 shows the net avoided greenhouse

gas emissions per unit of primary fuel for each
sub-sector. Clearly, biomass heating systems are
the most attractive option for reducing greenhouse
gas emissions, followed by electricity generation.
However, in the early years up to 2010, power
generation achieves the highest greenhouse gas

reduction. This shows the effectiveness of co-firing in
power generation as an option to reduce greenhouse
gas emissions.

This assessment is based on an energy system (LCEP)
where the introduction of carbon permit prices
changes the energy mix in favour of low carbon fuels.
Thus, the use of conventional solid fuel in the LCEP
scenario is 80 % lower, and the use of oil is 10 % lower
than the 1990 levels. In a 'business as usual' scenario,
on the other hand, the bioenergy deployment may
become more important. The oil market may remain
tight — due to the gap between the oil supply and
demand in the coming years, as stated in the World
Energy Outlook (IEA, 2006a). This might give
incentives to coal-to-liquid (CtL) technologies or use
of unconventional oils (i.e. tar sand).

4.1.3 Air pollutant emissions

The modelling assessment shows that after
2010-2015, there may be an increase in air pollutant
emissions relative to conventional energy systems,
as a result of the increased bioenergy use.

Emissions of SO,, NO, and particulate matter from
bioenergy production are presented in Figure 4.6,
Figure 4.7 and Figure 4.8, respectively.

By 2030, enhanced bioenergy deployment causes
annual emissions of almost 363 kilotonnes of SO,.
The heat sector is the most important source of

SO, (76 %), followed by electricity (20 %). Biofuels
in the transport sector account for only 3 %, or
approximately 12 kilotonnes of SO, per year in 2030.
However, it is important to note that the emissions
from car use are not included in these calculations.

NO, emissions from bioenergy show that across
the three sectors, the highest share comes from

Table 4.1
per unit of energy

Net avoided life cycle CO,-equivalent emissions from different energy subsectors,

Net avoided greenhouse gas emissions

Unit 2005 2010 2015 2020 2025 2030
Pure power generation kg CO,-equivalent/MWh_, 264 274 246 214 195 187
CHP — electricity and heat kg CO,-equivalent/MWh . = 166 150 138 130 119 119
District heat kg CO,-equivalent/MWh = 258 265 261 263 265 266
Decentralised heat kg CO,-equivalent/MWh_, _~ 265 263 265 265 263 261
Transport kg CO,-equivalent/MWh_, 68 57 84 122 128 138
TOTAL (average overall) kg CO,-equivalent/MWh 201 194 180 179 177 184

primary

Source: EEA, based on Green-X modeling.

environment
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Figure 4.6 SO, emissions from different
bioenergy sectors

Figure 4.7 NO, emissions from different
bioenergy sectors
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the electricity sector, which is responsible for
approximately 50 % of the total 774 kilotonnes per
year of NO, emissions by 2030. Bioenergy in the heat
sector accounts for 290 kilotonnes of NO, per year
by 2030 — about 37 % of the total.

Biofuels in the transport sector contribute 12 %, or
94 kilotonnes, of NO, emissions per year by 2030.
This is higher than their contribution to emissions
of other air pollutants. One main cause of high NO,
emissions from the biofuels sector is the deployment
of dedicated biomass crops, which are grown

using fertilisers and create NO, emissions during
growing and harvesting. However, a switch from
conventional transport fuels to biofuels in the EU

is roughly neutral in terms of direct air pollutant
emissions from car use. Moreover, these emissions
are comparatively small — due to the stringent
controls imposed by EU on vehicle standards,
whereby in countries with currently lower
standards, the switch will tend to have beneficial
effects.

The electricity sector makes the highest contribution
to emissions of particulate matter (PM) from
bioenergy, with about 18 kilotonnes per year in
2030. A smaller amount, approximately eight
kilotonnes comes from the heat sector. Even lower
particulate emissions — of about two kilotonnes in
2030 — come from the production of biofuels in the
transport sector.

To ensure that the technologies applied in this
modelling work are not violating the relevant air
pollutant emission legislations, the direct emissions
from the different technologies are compared

NO, LCA emissions — bioenergy (kt NO,/year)
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Figure 4.8 Particulate matter (PM)
emissions from different
bioenergy sectors

Particulate matter (PM) LCA emissions — bioenergy (kt PM/year)
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against limits set in the legislations. In the case

of smaller plants, where national rather than
Europe-wide legislation often applies, the strictest
limit in national legislation or voluntary codes are
used as a benchmark. The legislation used to check
the emissions for each fuel type and pollutant is
shown in Annex 9. Several emissions standards were
used in each category to reflect the range of sizes of
plant modelled. In all cases, modelled emissions are
below the limits set by legislation.

In addition, a reality check was performed to
see how the predicted emissions from this study
compare to national emissions reported by Member

Maximising the environmental benefits of Europe's bioenergy potential
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States and their respective future national emission
ceilings. National ceilings for 2010 (for SO, and NO,
only) from the National Emission Ceilings Directive
(EC, 2001) and indicative 2020 ceilings (for SO, and
NO, only) designed to match the environmental
interim targets of the European Commission's
Thematic Strategy on Air Pollution (IIASA, 2007)
were used in this reality check (*%).

In all instances, emissions estimated in this study
are below present levels of reported emissions
and future emission ceilings. There are only a few
instances where the reference scenario emissions
make a relatively high contribution to reported
emissions. For example, reference scenario
emissions of SO, for Latvia are 33 % of the reported
(2005) emissions for Latvia for the relevant sectors.
A number of Member States have modelling
emissions in 2010 in the order of 10 to 20 % of the
indicative 2020 emission ceilings. In particular,

for Lithuania, Green-X estimated emissions are
larger than 50 % of the indicative ceilings for SO,

Figure 4.9 Net avoided emissions as share
of emissions from a conventional
energy system

Net avoided LCA emissions as share of conventional
reference emissions (% — deviation to reference)
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Figure 4.10 Air pollutant emissions from
different sectors of bioenergy
and the conventional energy
system, per unit of energy

Output-specific PM-equivalent LCA air pollutants —
conventional reference and bioenergy (g PM/MWh-out)
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and NO, in 2020. This reality check, however, is
based on a comparison of life cycle air pollutant
emissions from this modelling work with annual
emission ceilings. Thus, the annual contribution of
air pollutant emissions from relevant sectors (in this
model run) is anticipated to be lower in percentage
terms (compared to the national ceilings) than these
illustrative values.

The net effects of bioenergy deployment on
pollutant emissions relative to the LCEP energy mix
are presented in Figure 4.9. In this figure, a positive
value means a net improvement, or reduction in
emissions, whilst a negative value means an increase
of emissions. The figure includes net life cycle
greenhouse gas emissions, for comparison.

After 2015, air pollution from bioenergy appears
to be worse than the conventional energy. This is
mainly because the LCEP scenario already shows
very large reductions of air pollutants, particularly

(*3) Reported emissions from Member States and the national emission ceilings of the NEC Directive represent total annual emissions
of air pollutants from anthropogenic activities. In contrast, the emission values available from this work comprise life cycle air
pollutant emissions. A comparison of the two can, therefore, be performed as an illustrative exercise only.
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Table 4.2

Avoided fossil fuels at European level (EU-25) — breakdown by sector in energetic

(above) and monetary terms (below)

Supply security — avoided

Avoided fossil fuels in energetic terms — by sector

fossil fuels
Unit 2005 2010 2015 2020 2025 2030
Electricity TWh/a 264 628 799 890 960 1073
Heat (grid-connected) TWh/a 137 213 346 538 782 1016
Decentralised heat TWh/a 10 13 58 125 195 325
Transport TWh/a 3 35 111 172 232 277
Total TWh/a 415 889 1315 1725 2 168 2 691
fs:sz?llyf(us;:urity — il Avoided fossil fuels in monetary terms — by sector
Unit 2005 2010 2015 2020 2025 2030
Electricity MEUR/a 2 313 6 044 8 718 11 055 13 605 15959
Heat (grid-connected) MEUR/a 1632 2761 5067 8 727 13782 19 086
Decentralised heat MEUR/a 128 176 876 2 008 3383 5908
Transport MEUR/a 43 520 1815 3073 4 486 5771
Total MEUR/a 4116 9 501 16 476 24 863 35 256 46 724
Note: In the reference scenario the fossil fuel prices applied for 2020 are: EUR 5.2/MWh for hard coal and lignite, EUR 17.9/MWh

for oil and EUR 15.3/MWh for gas. According to the recent data (import prices at the German wholesale energy market as
observed in December 2007), hard coal and lignite prices are EUR 10/MWh, oil EUR 40/MWh and gas EUR 21/MWh.

Source: EEA, based on Green-X modeling.
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NO, and SO, in the conventional energy system. In
the final years leading up to 2030, the conventional
energy system applied (taken from EEA, 2005b)
assumes a switch from coal to gas in the power
sector.

In case of particulate matter, a net saving in air
pollutant emissions occurs over the whole period
with enhanced bioenergy deployment. But by 2030,
particulate emissions are only about 20 % less than
those from the conventional energy economy. This
is because the particulate emissions from electricity
production using biomass are comparatively high.

Figure 4.10 compares the projected air pollutant
emissions from bioenergy and the conventional
reference system in specific terms, per unit of energy
generated. It includes all three specific pollutants
considered (SO,, NO_and particulates) converted to
PM-equivalent. Bioenergy air pollutant emissions
remain stable over time, with a slight decrease over
the full time period. In contrast, emissions from the
conventional energy system are projected to decrease
significantly over time, a drop that is entirely due to
changes in the electricity sector. Overall, there is no

net avoidance of air pollutant emissions due to the
enhanced bioenergy deployment, in the final years up
to 2030.

Such figures would differ in a 'business as usual'
scenario where the energy mix does not follow a low
carbon energy pathway. The results, thus, would
show a sharp decline in bioenergy air pollutant
emissions for an enhanced bioenergy deployment, as
the bioenergy deployment would substitute hard coal
instead of the natural gas, as is the case in the LCEP
scenario.

4.1.4 Security of energy supply

In the reference scenario, enhanced bioenergy
deployment significantly reduces the demand for
fossil fuel and substantially improves the security of
energy supply in Europe ().

The modelling analysis shows that by 2030, around
2 691 TWh of fossil fuels can be saved, an amount
of fuel worth almost EUR 47 billion a year at the
predicted 2030 prices. Table 4.2 shows the fossil fuel

(**) In general, a reduction of EU's domestic demand for fossil fuels may lead to either a decline of primary fuel imports or a rise of
exports of refined products (diesel, gasoline). In both cases, a positive impact on supply security and Europe's trade balance is

apparent.
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Table 4.3 Substituted fossil fuels at European level (EU-25) — fuel-specific breakdown in
energetic (above) and monetary terms (below)
Avoided fossil fuels in energetic terms — by fuel
Unit TWh/a 2005 2010 2015 2020 2025 2030
Hard coal 91 200 236 191 141 156
Lignite 37 85 73 69 54 53
Qil 74 147 278 446 646 844
Gas 213 457 728 1019 1327 1639
Total 415 889 1315 1725 2 168 2 691
Avoided fossil fuels in monetary terms — by fuel
Unit MEUR/a 2005 2010 2015 2020 2025 2030 2030*
Hard coal 495 1 069 1 246 997 737 815 1508
Lignite 199 454 385 357 279 274 507
Oil 1 045 2190 4 549 7 960 12 509 17 579 33 459
Gas 2 376 5787 10 295 15 549 21732 28 057 34 808
Total 4116 9 501 16 476 24 863 35 256 46 724 70 282
Note: * with prices as of December 2007.

Source: EEA, based on Green-X modeling.

environment

savings in each energy sector, in terms of energy and
money diverted. In this scenario, heat and electricity

generation account for 88 % of the expenditure saved
on fossil fuels.

Table 4.3 shows the types of fossil fuel saved. Gas
accounts for more than half (about 60 %) of the
fossil fuel substituted. Oil accounts for 31 % of

the fossil fuel energy substituted, but in monetary
terms it contributes to a significant amount; 37 % of
the money not spent on oil. When the cost figures
are calculated based on the today's price levels
(December 2007), oil substitution is much more
favourable from an economic view point.

Figure 4.11 Total generation costs for
bioenergy

Total generation cost — bioenergy (MEUR/year)
140 000+

120 000+

100 000+

80 000+

60 000+

40 000+

20 000+

2005 2010 2015 2020 2025 2030

[ Electricity [ Heat O Transport

Source: EEA, based on Green-X modeling.
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4.1.5 Cost of enhanced bioenergy deployment

Bioenergy costs are an important aspect to
consider when assessing possible enhanced
bioenergy deployment. This section presents
bioenergy generation costs and compares them
with conventional energy systems.

Figure 4.11 shows the total generation cost for
European bioenergy, split across the sectors of
electricity, heat and transport. The heat sector
comprises the highest cost, amounting to almost
EUR 66 billion a year in 2030, followed by the
electricity sector, which costs about EUR 39 billion
a year at the same time. Generation of biofuels
costs around EUR 17 billion by 2030. These costs
are about 20 % higher than the equivalent costs of
a conventional energy mix.

Table 4.4 compares these generation costs with the
corresponding costs in the reference conventional
energy system. The figures are presented as
additional generation costs per unit of fuel

input ('input-specific' — i.e. per unit of primary
bioenergy) as well as per unit of energy output
(‘output-specific' —i.e. referring to the produced
electricity, heat or transport fuel). Thereby, the
terminology 'additional (generation) cost' shall
mean the cost of bioenergy production minus the
cost of using conventional (fossil) energy. Negative
numbers indicate a cost saving from bioenergy.

Maximising the environmental benefits of Europe's bioenergy potential
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Table 4.4 Additional generation costs for bioenergy
Output-specific additional generation cost
Unit 2005 2010 2015 2020 2025 2030
Total EUR/MWh-o 11.7 11.4 13.6 15.6 12.3 9.1
Pure power generation EUR/MWh-o -1.1 11.9 15.0 17.6 10.8 7.6
CHP — electricity and heat EUR/MWh-o 11.7 10.2 14.0 17.6 13.5 12.7
District heat EUR/MWh-o 13.8 10.8 8.2 8.1 5.6 3.4
Decentralised heat EUR/MWh-o 25.1 23.1 17.3 18.3 18.9 11.8
Transport EUR/MWh-o 20.0 15.2 19.3 23.5 21.6 15.9
Input-specific generation cost
Unit 2005 2010 2015 2020 2025 2030
Total EUR/MWh-p 5.9 5.5 7.1 8.6 7.2 5.6
Pure power generation EUR/MWh-p -0.4 5.0 6.4 7.4 4.6 3.2
CHP — electricity and heat EUR/MWh-p 4.8 4.1 5.7 7.3 5.7 5.4
District heat EUR/MWh-p 11.7 9.2 7.0 6.9 4.9 3.0
Decentralised heat EUR/MWh-p 21.4 19.8 14.9 16.0 16.6 10.4
Transport EUR/MWh-p 11.5 8.7 10.9 13.0 12.1 9.2
Source: EEA, based on Green-X_ . . modeling.

Relative to conventional energy, (pure) power

and district heating and electricity generation
(CHP) are the most cost-attractive options for
bioenergy. However, cost figures do not include the
distribution network costs following to the power
plants. Decentralised heat and biofuel production
are the more cost-intensive options, which explain
their dependence on support incentives to achieve
market penetration. However, this depends largely
on the price assumptions in the conventional
energy system used for reference. Also, the costs of
bioenergy given here are averages. There are cost
ranges within each sub-sector.

4.1.6 Differences at national level — a case study
of Spain and Poland

The modelled bioenergy deployment differs

across Member States, because it depends on the
available domestic biomass resources as well as

the climate conditions within each country. The
additional costs of bioenergy vary too, depending
also on the projected conventional energy economy
(in the LCEP scenario) in each country. Here, the
examples of Spain and Poland, two countries that
differ widely in their relevant circumstances, are
presented to give an indication of the effects of these
differences. The key results for all 25 Member States
are given in Annex 8.

In the Green-X model, bioenergy is deployed very
differently across the energy sectors in Spain and

Poland. Table 4.5 shows a summary of the national
bioenergy developments in these two countries, and
what the impacts are on emissions of greenhouse
gases (CO,-equivalent), air pollutants and energy
costs, relative to the reference scenario (LCEP).

The figures on emissions and costs represent

what proportion of the net pollution caused by a
conventional energy system is reduced by taking the
enhanced bioenergy route. Negative figures mean
that bioenergy causes greater emissions — emissions
have not been avoided but increased.

In terms of additional cost, a negative figure means
there is no additional cost, and consequently
bioenergy costs less than the conventional energy.

The two countries make similar use of biomass for
heat supply. But in Spain biofuels dominate over
electricity, while in Poland the electricity sector takes
a leading role. This is mainly due to the feedstock
characteristics in each country.

Because Spain has a much lower deployment of
electricity from bioenergy than Poland, it reduces
less greenhouse gas emissions overall, but adds
less to the air pollutant burden. Conversely, Poland
achieves better climate mitigation, but pollution
by NO, and SO, is substantially worse than with
conventional energy.

Both countries benefit from comparatively
favourable low-cost bioenergy feedstocks. The result

Maximising the environmental benefits of Europe's bioenergy potential
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Table 4.5 Reference scenario results for Spain and Poland in the year 2030
Net LCA emission avoidance Additional
Deployment expressed as share of reference emisions generation
cost
% % — deviation to reference % of reference
cost
CO,-equivalent SO NO, PM
Spain
Electricity 6 % 72 % 27 % - 69 % -8% -7%
Heat 22 % 95 % -38% 5% 64 % -14 %
Transport 10 % 43 % 48 % -25% 38 % 19 %
TOTAL 15 % 77 % -17 % -18 % 46 % -5%
Poland
Electricity 42 % 79 % 35 % -89 % -7% -5%
Heat 23 % 94 % -327 % -8% 58 % -11%
Transport 12 % 89 % 82 % -14 % 86 % 3%
Total 38 % 85 % -50 % -56 % 13 % -6%
Note: This table shows bioenergy deployment, life cycle emissions of greenhouse gases and air pollutants, and the additional costs

of bioenergy, relative to a conventional energy system applied in the modelling work (PRIMES LCEP).

Source: EEA, based on Green-X modeling.

environment
is negative additional cost in 2030, which means that
by that time bioenergy would be more cost-effective
than the conventional market options.

4.2 Alternative reference-scenario case
and the environmental priority
cases

In order to illustrate the impacts of carbon permit
prices and the energy prices on the results, an
alternative reference scenario is presented here. This
case uses the data from the scenario developed for the
European Commission (EC, 2006). In the alternative
reference scenario case, the carbon permit price

was assumed constant over time and lower than in
the LCEP reference scenario (EUR 20/tonne for the
alternative reference scenario, whereas it increases
from EUR 20/tonne to EUR 65/tonne in 2030 for the
LCEP reference scenario). Moreover, the fossil fuel
prices in the alternative reference scenario were
projected to be higher than the reference scenario
(LCEP). The projected prices for both scenarios can be
found in Annex 6. Nevertheless, the projected fossil
fuel prices for both scenarios were lower compared to
the current real world prices.

In addition to the comparison of LCEP reference
scenario with the alternative reference scenario
case, various other model runs were conducted to
find out whether imposing certain priorities would
improve the reduction of greenhouse gas and air

pollutant emissions. In this section, four scenarios
with environmental priorities are presented.

They prioritise CHP, decreasing CO, emissions,
decreasing air pollution and meeting the 2020 20 %
renewables target.

When analysing the LCEP reference scenario case in
comparison with the alternative reference scenario
case (Figure 4.12, left side of the figure), one can
observe a slight shift of biomass contribution

from the heat sector to the transport sector in the
alternative reference scenario. This shift can be
understood by the fact that the alternative reference
scenario is characterised by higher primary energy
prices and lower CO, allowance prices, whereas

the latter do not affect the heat and biofuels sector.
Therefore, the relative competitiveness of renewable
biofuels is higher for the alternative reference
scenario. Additionally, the relative share of bioheat
is much lower — due to the higher energy demand
under the alternative reference scenario — than

in the corresponding LCEP case, which affects
especially the heat sector.

In Figure 4.12 the case, which prioritises CHP, gives
the highest overall bioenergy deployment, mostly
in the heat sector. This case assumes that all heat
produced in CHP plants is completely sold on the
market. It leads to an increased deployment of CHP
plants — around 52 % of biomass electricity and
heat come from CHPs by 2030. For comparison, it
was around 28 % in the reference case. Also, the
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share of gross electricity demand derived from
biomass CHP reaches 8.6 % (6.1 % for reference)

by 2020, and 10.8 % (7.5 % for reference) by 2030.
However, relative to the reference scenario, the
shares of co-firing, large-scale electricity generation
and biofuels are reduced, as the overall bionergy
potential is kept equal in all cases. When the
least-cost optimisation is conducted to increase
GHG savings (CO, optimised), there are hardly any
differences applicable in comparison to the reference
case (where the economic optimisation purely aims
to increase bioenergy deployment). This can be
explained by the fact that LCEP reference scenario
already includes an important carbon price.

When the model is optimised to keep air pollutant
emissions as low as possible, the use of biomass in the
electricity sector increases, while the use of bioenergy
for heating purposes decreases. There is a shift
towards large-scale power plants, including CHP. The
biofuel share is unaffected by this optimisation, but
the selected technology options differ. There is more
second generation lingo-cellulosic bioethanol, less
first generation biofuel and BtL.

4.2.1 Avoided greenhouse gas emissions

Figure 4.13 shows the avoided life cycle greenhouse
gas emissions for each of the environmental priority

Figure 4.12 Bioenergy deployment as share of conventional gross energy consumption

Bioenergy — as share of corresponding gross sectoral demand (electricity vs. heat vs. transport) by 2030 (%)

Avoided air
pollutant (LCEP)

20 % RE by 2020
(LCEP)

254
20
15
10
5
0
Reference Alternative Optimised CHP Avoided CO,
scenario (LCEP) scenario (LCEP) emissions (LCEP)
[ Electricity [ Heat [ Transport M Total (primary energy)

Source: EEA, based on Green-X modeling.
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Figure 4.13 Net avoided greenhouse gas emissions in 2030, in four cases with environmental
priorities, compared to the reference (least-cost only) PRIMES LCEP and

alternative scenario

Net avoided GHG (CO,-equivalent) emissions by 2030 (Mt/year)

800 A
695 695
700+

617
600 -
500 A
400 -
300+
200+

100 A

0_

Reference Alternative Optimised CHP

scenario (LCEP) scenario (LCEP)
[ Electricity [ Heat [ Transport M Total
Source: EEA, based on Green-X_ . modeling.

Avoided CO2
emissions (LCEP)

627
585 609

Avoided air
pollutant (LCEP)

20 % RE by 2020
(LCEP)

Maximising the environmental benefits of Europe's bioenergy potential 35



36

Model results

cases. It also compares the alternative reference
scenario to the LCEP reference case. Optimising
CHP leads to the highest greenhouse gas benefits.
This is largely because more energy is produced
from biomass in this case, especially in the heat
sector, so demand for fossil fuels is lower. The
result demonstrates that more efficient ways of
using bioenergy also leads to the most significant
reductions of greenhouse gas emissions.

When the avoided GHG emissions are analysed,
the alternative reference scenario and the optimised
CHP case give the highest figures. The higher GHG
emission reduction in the alternative reference
scenario is caused by higher reference emissions in
conventional energy supply. Another factor is the
shift of bioenergy use from pure electricity and heat
generation towards CHP (as feasible in this scenario
— due to an increased demand for (grid-connected)
heat. Thus, this increase is the same as it happens in
an optimised CHP case.

When the priority is to reduce air pollutant
emission, the resulting GHG emission reduction

is lower. This is mainly due to the decrease of

the amount of energy produced from bioenergy,
especially in the heating sector. Giving priority to
the 2020 targets for renewables may lead to slightly
higher greenhouse gas emissions in 2030 (*°).

4.2.2 Avoided air pollutant emissions

The total life cycle of SO,, NO, and particulate
emissions from bioenergy, and the emissions avoided
by enhanced deployment of bioenergy are depicted
for the alternative reference scenario and different
environmental priority cases in Figure 4.14. The
rationale behind presenting those figures based on
2005 reference emission intensities is to show the

air emission resulting from bioenergy deployment

— compared to the current energy mix. Since the
scenarios applied assume that a significant shift from
coal to natural gas occurs by 2030, and also, that the
best available pollution abatement options are in
place, the results for those years would appear to be
negative, even though the air pollutant emissions
from bioenergy deployment do not increase
compared to 2005 emission figures.

Not surprisingly, the best avoidance of air pollutants
happens when the model is prioritised to minimise
them. A closer look at the assessed air pollutants
shows that only comparatively small differences occur
between the different cases with regard to particulate
matter emissions, whilst with regard to NO, deviations
are getting apparent. The highest net avoidance of SO,
emissions (compared to 2005 emission levels) or lowest
increase (compared to the projected future reference
emissions), respectively, occurs (besides the above

Figure 4.14 Air pollutant emissions (net) avoided by enhanced bioenergy deployment in 2030
(based on 2005 reference emission intensities), in four cases with environmental
priorities, and the reference (least cost only) PRIMES LCEP scenario

Net avoided air pollutants by 2030 (kt/year) — avoided reference emissions based on current (2005) intensities

1 200
1 000 A —
800
600 -
400 1
]
0 Reference ' Alternative Optimised CHP '
scenario (LCEP) scenario (LCEP)
O so, E NO, B Particulate matter
Note: The calculation is based on current (2005) intensities.

Source: EEA, based on Green-X modeling.
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(*%) This minor difference is caused by the accelerated bioenergy deployment in the period up to 2020, and, consequently, less
deployment in the final period of novel technology options, such as second generation biofuels offering higher GHG reduction

potentials.
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mentioned case of prioritising the avoidance of air
pollutants) for alternative scenario case. The primary
reason is that this scenario contains relatively higher
solid fuels in the conventional energy mix compared
to LCEP scenario.

4.2.3 Generation costs

Figure 4.15 presents the cost dynamics for each
scenario and cases for the years 2010, 2020 and 2030.
This figure offers a depiction of the average additional
generation (for electricity, heat and transport fuels)

in relative terms, expressing them as share of the
conventional reference generation cost at sectoral
level. Optimising bioenergy deployment to avoid air

pollutant emissions entails a tremendous cost increase.

Compared to the reference case, total generation costs
are 19 % higher, whereas when additional generation
costs are compared, these costs are 59 % higher on
average, and up to 75 % higher by 2030.This is mainly
due to the exclusion of relatively cheaper but dirtier
bioenergy pathways from the system. For instance,
there is a significant reduction in the bioheat sector. It
is especially true when the small scale bioheat plants
are eliminated and the number of large scale (i.e. pure
power plants as well as CHPs) plants is increased.
Subsequently, the generation costs are increased.

In contrast, prioritising CHP reduces the additional
generation costs substantially. Nevertheless, one

needs to bear in mind hat those cost figures do not
include the required distribution systems, as the cost
comparison refers to conventional CHP or district
heating system. Thus, the cost figures presented,
especially for the CHP, are possibly underestimated.

Despite the fact that technological learning takes
place, in the scenarios and cases considered the
output-specific additional generation costs do not
decrease between 2010 and 2030. It is particularly
obvious during the period between 2010 and 2020, as
the more expensive biomass resources and technology
options lead to sharp increase of the generation costs.
However, between 2020 and 2030, there is a decline
in this increase due to the fact that, on the one hand,
the prices for energy and carbon are rising (in the
reference energy system) and on the other hand,
technological advances are taking place.

Accelerating bioenergy deployment in the years up to
2020 to meet the 20 % target for renewables initially
brings about a 10 % rise in the additional costs —
compared to the reference scenario, which describes a
steady linear penetration of bioenergy into the energy
markets. However, by 2030, there is only a minor
difference in average costs (approximately 4 %).

The development of additional generation costs over
the time period shows a similar pattern in all cases,
except for the alternative reference scenario case (see
Figure 4.16 (*)). This scenario shows the situation

Figure 4.15 Output-specific generating costs over time for each scenario

Development (2010 to 2030) of average output-specific generation cost (EUR/MWh-out)
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(*¢) This figure offers a depiction of the average additional generation (for electricity, heat and transport fuels) in relative terms,
expressing them as a share of the conventional reference generation cost at the sectoral level.
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Figure 4.16 The average additional generation cost of bioenergy, as a percentage of the

conventional cost

Average (2005 to 2030) additional generation cost — as share of corresponding reference cost
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Source: EEA, based on Green-X modeling.
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based on the assumption of lower additional

costs due to higher fossil fuel prices, which affects
especially biofuels in the transport sector. The case
where priority is given to CHP also shows lower
additional generation costs — as compared to the
reference scenario. These figures are used due to
technological progress in CHP (meaning that all the
heat would be sold in the market), and the fact that
prices for conventional energy are rising, which is
particularly important for CHP deployment.

4.3 Prioritising biofuels

In yet another case presented here, the prioritisation
is applied to the transport sector. The bioenergy
deployment is analysed from the point of view of
a prerequisite of achieving the 10 % biofuel target
by the year 2020 (the LCEP scenario is used as the
reference). The imposed constraint is using solely
domestic biofuels. In contrast to the Commission
proposal, this analysis excluded the option of
importing bioenergy from other regions of the
world. The main reason for this decision is the
current debate on sustainability criteria and the
uncertainties around this discussion. Until robust
and globally agreed sustainability criteria are in
place, we prefer to exclude this option from our
analysis and, thus, focus this analysis on the use of
domestic EU biomass resources.

Figure 4.17 shows the penetration over time of

biofuels into the transport fuel market — compared

to the biofuel development in the reference
scenario. This figure also presents the breakdown

Figure 4.17 Biofuel deployment over time in
case of biofuel prioritisation
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Source: EEA, based on Green-X modeling.
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of the overall biofuel deployment (as first and
second generation biofuels (dotted lines)).

It is becoming apparent that if the ambitious
policy target of 10 % were to be met — and this in
observing the imposed constraint of using solely
European (EU-25) environmentally compatible
biomass resources, the market penetration would
require a substantial share of second generation
biofuels (more than 80 %). This is due to increase in
better performing woody crops that were applied
in the previous EEA report (EEA, 2006). Currently,
however, there are no commercially available
second generation technologies in the market.
Additionally the current (2007) share of biofuels in
Europe is 2.6 % (EurObserver, 2008). Consequently,
it can be concluded that in order to meet the
proposed policy objective, it appears necessary to
import biofuel from abroad.

Moreover, if the target were achieved and the share
of biofuel in the European feedstock reached 10 %,
it could lead to a decreased biomass deployment in
the other energy sectors, whereby the heat sector
may be affected most. According to our modelling
exam, the use of bioenergy for heating purposes at
the European level would decline by approximately
46 % in comparison to the reference case. Thus, the
share of bioheat in the corresponding gross heat
demand would be decreased to 6.6 % by 2020, and
to 9.7 % — by 2030.

Figure 4.18 shows the additional generation
costs, per unit of energy output, associated with
attempting to meet the 10 % RE target with

solely domestic biofuels — in comparison to the
biofuel costs calculated in reference scenario case.
Obviously, this attempt will lead to an increase

of the additional generation costs. This is mainly
because of using more expensive feedstock to
achieve the target. This explains the relatively
higher additional generation costs for the same
type of technology applied (both for the first
generation and second generation biofuels).
However, this figure clearly illustrates how the
generation costs are expected to go down over the
years due to increasing reference cost figures for
the conventional energy systems. In addition, there
are also the learning effects and economies of scale,
especially for the second generation technologies
(see the right side of the figure). In the reference
scenario case, the second generation biofuels do
not appear by 2010, and since there is no push

for biofuels. Thus, the available feedstock in this
scenario is then used for other means of energy
generation, which appears more cost effective
under the applied assumptions.

In the 10 % biofuel priority case, the production
costs of second generation biofuels are calculated
to be around EUR 77/MWh output by 2020. For
comparison: the conventional transport system
cost figure is assumed to be EUR 36/MWh in the
same year. It is important to highlight the fact
that the LCEP scenario projections assumed much
lower fossil fuel prices than the current (2007)
fossil fuel prices (i.e. the 2020 oil price projections
are 50 % lower than the prices in 2007). In the case
of prioritising biofuels, total generation costs for
biofuel production is calculated as EUR 29.5 billion

Figure 4.18 Output-specific additional generation costs in 2020 — prioritisation of biofuel vs.

reference case

Development (2010 to 2030) of output-specific additional generation cost (EUR/MWh-out)
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Box 4.1 Cost assumptions — comparison to other studies

Cost parameters are a crucial input for the
economic assessment of bioenergy technologies
and pathways. A broad range of studies have
been conducted in the past for bioenergy in
general or focussed on certain pathways like
bioheat, bioelectricity or biofuels. The GEMIS
database builds on consolidated outcomes and
aims to present a comprehensive overview on

conversion technologies among all energy sectors.

However, for assessing the robustness of the
GEMIS data used in this analysis, a comparison
of these data with the recently conducted
comprehensive 'Well-to-Wheels Analysis of future
automotive fuels and powertrains in the European
context' (JEC, 2007) (*7) was undertaken. As the
focus of this study was on the transport sector,
similar biofuel chains were compared in details

in Table 4.6 and the resulting biofuel generation
costs are illustrated in Figure 4.19.

As demonstrated in the graph, the data

from GEMIS and JEC are comparable with
regard to Bioethanol and BtL, but significant
differences are observed for biodiesel and
lignocellulosic bioethanol. In the case of biodiel,
GEMIS demonstrates higher cost figures as

the investment costs are about 20 % higher
compared to JEC and a broader range with regard
to fuel cost. Thus, these deviations may arise
from varying plant sizes (i.e. data from GEMIS
refers to small-scale plants) and the country-
specific assessment of yields and, consequently,
fuel costs as conducted within the GEMIS/EEA
work. With respect to lignocellulosic bioethanol

Figure 4.19 Bandwith of generation cost
for various biofuel chains —
comparison of data used in
this study with results from

JEC study
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Source: CONCAWE/JRC/EUCAR, 2007; EEA, 2008.

GEMIS indicates a broader cost range whereby the
upper limit matches well to JEC data. Significant
differences are seen for investment cost, possibly
caused by a differing timely reference (8).

(*7) The JEC study applies a certain (but low) correlation between cost data for assessed biofuel chains and the assumed oil price
development. Thus, the indicated data is taken from the low oil price case (at 4.6 EUR/GJ) which matches well to the oil price

assumptions applied in this study.

(*®) GEMIS data on second generation biofuels (i.e. lignocellulosic bioethanol and BtL) represents cost expectation for 2020, whilst for

JEC data the timely reference appears unknown.
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Model results

by 2020 (for comparison: conventional transport
system generation costs are calculated as
EUR 14.5 billion).

Figure 4.20 shows the level of reduced GHG
emission in the transport sector as compared to the
conventional transport system described by the
reference scenario. Significant amounts of GHG
emissions can be avoided if second generation
biofuels come to comprise a large share in the
total biofuel system. The presented figures show
the potential for reducing the life cycle GHG
emission. It is possible to save significant amounts
of GHG if using second generation biofuels, since
the by-products are credited (see Annex 3). Solid
agricultural products (i.e. short rotation coppice
(SRC) of poplar or willow) and forest residues

are used as feedstock for the second generation
biofuels. The effects of any potential change in

the land use and the impacts on GHG emissions
are not included in this study. In the EEA 2006
study, utilisable agricultural land that will be made
available for bioenergy purposes was matched
with potential biomass crops. The crops under
consideration are those which neither create
environmental pressures nor lead to soil carbon
emissions.

Figure 4.20 Net avoided greenhouse gas
emissions by 2030, in case of
biofuels prioritisation

Development of net avoided GHG (CO,-equivalent) emissions
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Source: EEA, based on Green-X modeling.
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5 Outstanding issues and research

challenges

5.1 Introduction

Enhancing bioenergy deployment in Europe can
help with both combating climate change and
improving the security of energy supply. On

the other hand, its production, processing and
consumption may create possible environmental
impacts that can outweigh its environmental
benefits if a less effective bioenergy strategy is
chosen. This study presents the most promising
bioenergy pathways, along with their potential

to reduce GHG and air pollutant emissions. Even
though the current analysis does not cover other
environmental consequences (i.e. impact on soil and
water, or biodiversity), the modelling assumptions
are based on the European potential in terms

of environmentally compatible bioenergy. This
potential previously estimated. Consequently, such
potential impacts are implicitly considered and

are assumed to have been avoided. Nevertheless,
environmental impacts resulting from EU bioenergy
targets are not limited to Europe only, even in the
case of using only domestic biomass resources.

Even though Europe holds significant amounts

of biomass to support strong renewable energy
targets, it is not yet clear if these large amounts

can be completely mobilised. Moreover, the strict
environmental constraints applied in this study and
the environmentally favourable pathways modelled
are yet to be realised. To quote the 2006 EEA report
'An appropriate policy framework, combined with
advice and guidance to bioenergy planners, farmers
and forest owners on environmental considerations,
needs to be in place to steer bioenergy production
in the right direction'. The following two sections
briefly discuss outstanding issues and research
challenges that have to be tackled for realising the
full potential of the European bioenergy policies as
regards GHG savings.

5.2 Realising the most efficient
pathways

The modelling results in this study show that the use of
biomass in heat and power pathways leads to greater

GHG efficiency — in comparison to transport fuels.
The model also includes assumptions of a strong
reliance on second generation crops and the use of
woody biomass in combined heat and power (CHP)
plants. Overall, attention is increasingly being paid
to bioenergy pathways but in most cases a range of
important barriers still needs to be overcome. These
barriers can be grouped under the following three
sections.

5.2.1 Achieving the required shift to novel
perennial energy crops;

Achieving the required shift to perennial energy
crops faces several challenges. For instance,
farmers and policy-makers are unsure of the crop's
nutrient or water requirements, how to create
optimum conditions for maximising yields, or how
to develop dedicated crop breeding initiatives.
Moreover, farmers are reticent to lose their
flexibility when switching from annual to multi-
annual crops. The following factors need to be
overcome:

(a) lack of established practices for harvesting
and marketing;

(b) lack of public awareness of the advantage of
perennial energy crops in an environmental
perspective;

(c) lack of mid- to long-term demand for
woody biomass by processing industries;

(d) risk aversion amongst farm and forest
owners;

(e) lack of capital and logistics to establish
harvesting and processing businesses
related to novel energy crops.

In order to overcome the above barriers and secure
a sufficient, reliable and long term bioenergy
supply, further research and development

are required. In addition to public awareness
campaigns, it is important to promote the need to
improve cooperation among farmers and bioenergy
industries (Eppler et al., 2007).

Maximising the environmental benefits of Europe's bioenergy potential
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5.2.2 political support and financial incentives;

One important factor for political support is suitable
legislation. At the EU level, the Directive on the
Promotion of High Efficiency Cogeneration (CHP)
(EC, 2004) encourages Member States to promote
CHP take-up and help overcome barriers. The EU's
strategy aims to increase the CHP market share to
18 % of gross electricity generation by 2010.

Financial incentives include relative price levels and
taxation policies. CHP plants are sensitive to energy
prices, especially fuel prices. With liberalisation,
electricity prices in many countries decreased,
creating a barrier to investments in new CHP plants.
During the early part of this century, growth of
CHP was relatively slow: mainly because natural
gas prices were increasing and electricity prices —
decreasing.

A number of EU Member States have introduced
laws or other support mechanisms to promote new
CHP. Such measures include (EEA, 2007a- EN20):

* legal provisions prescribing a mandatory
CHP-oriented energy audit in the case of new
installations or major reconstructions above
a given capacity (e.g. 5 MW in the Czech
Republic);

* statutory duty to connect particular types of
CHP to the grid and purchase their electricity
(Germany, 2002); provisions obliging the utilities
to provide CHP access to the networks, adopted
in many new Member States;

* fiscal measures to provide support to CHP.

However, in 2004, renewable energies and wastes
provided only 18 % of the fuel input in CHP plants
in the EU-15 and 2 % — in the EU-10 (EEA, 2007a).
Natural gas accounted for half of the fuel input in the
EU-15 (10 % in the EU-10), while solid fossil fuels such
as coal and lignite provided 77 % of the fuel input in
the new Member States (18 % in the EU-15).The use of
bioenergy in CHP can be encouraged by the support
measures for renewable fuels as a whole (such as feed-
in tariffs), as these can help to develop the necessary
supply chains. In some countries, such as Germany,
there is a premium for the use of bioenergy in CHP
compared to heat or power-only production, which
further encourages growth in this sector. The price
for carbon determined by the EU ETS also provides
incentives for replacing conventional fuels in CHP.
Measures demonstrating the governmental support
for the bioenergy supply chain as a whole will also
improve the situation for CHP.

5.2.3 development of suitable energy infrastructure.

The development of energy infrastructure capable
of the optimal use of the type of biomass assumed
to be grown in this modelling study is particularly
geared towards the combined production of heat
and power. However, Member States are facing a
number of barriers that must be overcome in order
to increase the share of CHP as estimated. Some of
the barriers to CHP listed by Gochenour (2003) are
listed below.

®  Fuel infrastructure. Introducing CHP to the
existing infrastructure for electricity and
heating can be difficult, especially in the
countries where infrastructure is based on
energy systems with an inexpensive fuel source
(such as nuclear and hydropower). Introducing
new district heating systems with CHP may
require expensive reconstruction.

* A secure and stable demand for heat. Improved
building standards and insulation, especially in
Western Europe, have brought about a decrease
in the demand for heat. Existing district heating
(DH) networks are not expected to grow. CHP
plants using solid biomass need to be sited
near both the supply of fuel and the heat users.
Nordic countries have been successful in using
biomass for CHP district heating schemes —
since the infrastructure is available both to
supply fuels and to use heat on a large scale.
Such infrastructure is more limited or lacking
in other countries.

*  Delays and costs caused by authorization and
issue of permits. The process of issuing licences,
permits and consents by various authorities
can be slow and expensive. This barrier is
particularly difficult for small-scale CHP plants.

5.3 Options for the future development
of the Green-X modelling
framework

ENVIRONMENT

The analytical possibilities that are offered by
the Green-X , ronvenr Model are substantial. The
quality of results obtained, however, depends

to a large degree on the reliability of input data

as well as on relevant framework assumptions.
Three possible areas for future work emerge in this

context.

(i) Further development of better input data
regarding available biomass. Further
knowledge has been and will be gained
concerning the relative environmental

Maximising the environmental benefits of Europe's bioenergy potential
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advantages and constraints of different energy
crops as well as the likely patterns of adoption
of these crops by farmers and other growers.

In addition, the potential consequences of
indirect changes in land use for the GHG
balance of different bioenergy pathways
constitute an important factor that must be
taken into account when calculating the land
area likely to be available in the EU under the
strict environmental criteria. Thirdly, the likely
impact of climate change on the conditions for
growing biomass feedstock also needs to be
included in future projections. Lastly, economic
and logistic constraints need to be applied to an
(improved) estimate of the technical biomass
potential.

(ii) Improvement of assumptions regarding the
likely technical and economic penetration
of different bioenergy pathways, including
the required investments into the public
infrastructure. This should also include
improved analysis of the likely competition
with other societal uses of biomass, e.g. for
biomaterials. Other relevant framework
conditions include the development of future
oil prices, societal energy demand, etc.

(iii) A range of scenarios could be developed that
analyse the effect of different political or global
framework conditions on modelling results.
These scenarios could help to evaluate policy
options. Such options could include: a scenario
where Europe becomes a net exporter due to
increased food prices and another — where the
opposite assumptions are applied; priority to the
use of biomass for transport fuels, etc. Any of
these scenarios would influence the assumptions
made about available land area, crop choices as
well as preferred bioenergy pathways.

In conclusion, there is clearly a wide range of
opportunities for the further development and
employment of the Green-X, . oxaeny Mmodelling
framework. Such exercises could be very useful

in evaluating the costs and benefits of different
policy choices and bioenergy options. On the other
hand, before these opportunities can be realised,

a considerable investment would be required in
data collection and suitable modelling capacity.
They would seem useful, though, for the further
development of a bioenergy policy that could
minimise societal costs and maximise the potential
gains from producing energy from biomass inside
and outside of Europe.

Maximising the environmental benefits of Europe's bioenergy potential
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List of abbreviations

List of abbreviations

BAU
BER
BtL
CAPSIM

CHP
co

2

CO,-eq.
Cogen
CtL
DDGS

EFISCEN

EJ
ETS
EU
FAME

FAO

FC

GDP
GEMIS

GHG
GLUE
IEA
ITASA

IPCC

JRC

Business as usual
Bioethanpol Rotterdam
Biomass-to-liquid

The Common Agricultural Policy
SIMulation

Combined Heat and Power

Carbon dioxide: The principal
greenhouse gas

Carbon dioxide equivalent (emissions)
Cogeneration
Coal to liquid

Distiller's Dried Grain with Soltubles: a
residue arising from ethanol production
from wheat grain

The European Forest Information
Scenario Model

Exa Joule (energy unit)
Emission Trading System
European Union

Fatty acid methyl ester: scientific name
for biodiesel produced from vegetable
oil and methanol

Food and Agriculture Organization,
United Nations

Fuel cell

Fischer-Tropsch: A process to convert
syngas to hydrocarbon chains, named
after its inventor

Gross Domestic Product

Global Emission Model for Integrated
Systems

Greenhouse gas
Global-land-use-and-energy model
International Energy Agency

International Institute for Applied
Systems Analysis

Intergovernmental Panel on Climate
Change

Joint Research Centre of the European
Commission

ktonnes
kw
kWhe

LCA
LCEP
LFO
MSW
Mtoe

0&M
ORC
PM
PT
R&D
RE
SME

SRC
TGC

Kilotonnes (mass unit)
Kilowatt (power unit)

Kilowatthour of electrical energy
(energy unit)

Life cycle analysis

Low Carbon Emission Pathway
Light fuel oil

Municipal solid waste

Million tonnes oil equivalent
(energy unit)

National Emission Ceilings
Natural gas

A mixture of various nitrogen oxides
as emitted by combustion sources

Operation and Maintenance
Organic Rankine Cycle
Particulate matter

Payback time

Research and Development
Renewable energy

Sunflower Methyl Ester: biodiesel
derived from rapeseed oil

Short rotation coppice
Tradable Green Certificate

Year
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Annex 1

Annex 1 Assessments of bioenergy
potential (literature review)

The variation in results between the various studies e Fischer et al. (2007) only assess biomass for

is due to differences in assumptions (e.g. regarding biofuels potential, and exclude municipal waste

agricultural yield improvements, costs, etc.), and forestry residues;

models used and variations in scope. Some of the

key differences are summarized in the table below, e Van Dam et al. (2007) only made an assessment

and include: of Central and Eastern Europe;

e Ericsson and Nilsson (2006) exclude waste in e the high outcome of Smeets et al. (2007) might
their assessment; be caused by high expectations concerning the

efficiency of food production.

Table 8.1 Summary of the literature

Study Period Region Source
EEA, 2006 2010-2030 EU-25 A, FFW
Ericsson & Nilsson, 2006 2010-2050 EU-25 A F
Viewls, 2005 2030 EU-25 A Fw
BTG, 2006 2010-2020 EU-27 A FWwW
Fischer et al., 2007 2030 EU-27 + A, F, (W(*))
Smeets et al., 2007 2050 World A FW
Fischer and Schrattenholzer, 2001 2050 World A, FFW
Dam et al., 2007 2030 HU, SK, CzZ, PO, LT, LV, EE A F
Hoogwijk et al., 2005 2050-2100 World A FFW
Yamamoto et al., 2001 2050-2100 World A F
Note: A = Agriculture; F = Forestry; W = Waste.

(*°) Only crop residues, no municipal and forestry waste.
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Comparison of the bioenergy potential studies

Table 8.2
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Annex 1

Figure 8.1 EU bioenergy potential (literature review)
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Figure 8.2 Global bioenergy potentials (literature survey)
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Annex 2

Annex 2 GEMIS database figures on LCA
emissions from bioenergy
pathways

Figure 8.3 Upstream/LCA GHG (CO,-equivalent) emissions for bioenergy life-cycles in
EU Member States
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Source: Based on Fritsche et al., 2006.

Figure 8.4 Upstream/LCA SO, emissions for bioenergy life-cycles in EU Member States
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Source: Based on Fritsche et al., 2006.
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Figure 8.5 Upstream/LCA NO, emissions for bioenergy life-cycles in EU Member States

Upstream/LCA NO, emissions of bioenergy (g/MWh)
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Source: Based on Fritsche et al., 2006.

Figure 8.6 Upstream/LCA particulate matter emissions for bioenergy life-cycles in EU
Member States

Upstream/LCA particulate matter emissions of bioenergy (g/MWh)
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Source: Based on Fritsche et al., 2006.

Conventional energy systems life cycle assessments  to their coal extraction, transport distances,

from GEMIS power plant efficiencies, and emission control
technologies. In contrast, lesser differences can be

The following figures illustrate the data on observed in the case of gas or oil based systems,

greenhouse gas and air pollutant emissions from either for electricity generation or heating. The

conventional energy in EU Member States for 2010.  results for air pollutant emissions will be quite
Fritsche et al. (2006) supplies an in-depth discussion  different between countries by 2010. It is expected

of the figures as well as their evolution up to that these differences will get smaller up to 2030
2030. The coal-to-electricity fuel cycles vary to a due to improvements in efficiency as well as
large extent between EU Member States according improved control technologies.
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Figure 8.7 LCA greenhouse gas (CO,-equivalent) emissions for conventional energy
life-cycles in the year 2010 in EU Member States

Output-specific CO,-equivalent LCA emissions of the conventional reference system (kg/MWh-out)
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Source: Based on Fritsche et al., 2006.

Figure 8.8 LCA SO, emissions for conventional energy life-cycles in the year 2010 in
EU Member States
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Figure 8.9 LCA NO, emissions for conventional energy life-cycles in the year 2010 in
EU Member States

Output-specific NO, LCA emissions of the conventional reference system (g/MWh-out)
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Source: Based on Fritsche et al., 2006.
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Figure 8.10 LCA particulate matter emissions for conventional energy life-cycles in the year
2010 in EU Member States

Output-specific particulate matter LCA emissions of the conventional reference system (g/MWh-out)
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Annex 3

LCA GHG emissions of biofuels

and bioenergy — methodological

discussion

Although the LCA methodology is generally quite
well defined, results from different LCA studies may
vary significantly, depending on the assumptions
used and the choice of method. The main differences
are mostly due to:

a) assumptions regarding important input data to
the biofuel and bio energy chains;

b) treatment of by-products;

c) treatment of emissions due to land-use and
vegetation change.

Some important factors that can vary between
studies and subsequently create different results
are the amount of fertilizer use and crop yield,
N,O emissions during crop cultivation, the energy
efficiency of processes and the fuel used for the
bioenergy/biofuel production process.

There may be several reasons for differences in input
data:

e actual physical and economic differences
between regions; e.g. soil fertility, precipitation,
sunlight availability, temperature, regional
market conditions, and regional energy
infrastructure;

* use of information referring to different
situations (e.g. a different year of reference);

e differences in technology and management,
(e.g. field management and production plant
configuration and specifications);

* the fact that some input parameters are not
known exactly and can only be given with a
relatively large degree of uncertainty.

Ethanol, for example, may be produced from wheat
in the classical way, fermenting only the C6 sugars
and supplying heat for fermentation and distillation
by a gas fired boiler with a back pressure turbine.
The still wastes are sold as feed. Alternatively,
production plants like BER in Rotterdam apply
industrial residual heat or CHP, digest the still
wastes for methane production and may also
capture CO, from fermentation and digestion

for geological storage. This already optimized
configuration could be improved further by

pretreatment of the feedstock, for example by steam
explosion to make the organic material more readily
available for conversion.

The same potential diversity also applies to biomass
utilization for power and/or heat production, where
biomass may be co-fired or applied in stand alone
plants that may differ with respect to scale and
thermal and electric efficiencies.

Uncertainties in the data can be quite large,
especially regarding the GHG emissions from crop
cultivation. These are very difficult to determine
accurately and the ranges of N,O emission factors
provided in the scientific literature are therefore
very large.

Treatment of by products

Crops are a complex combination of various
components (sugars, proteins, fats). This means
that by-products arise when physical or biological
processes are applied for biofuel production.
Examples are pulp from sugar beet or press cake
from rape seed.

The treatment of these by products in the various
LCA's differs in two aspects:

The application of these by-products;

The appraisal of these by-products, as expressed
in the methodology used by which part of the
environmental impact related to crop cultivation
and biofuels production is allocated to the
by-products.

Since LCAs aim to include the GHG emissions saved
due to the reduced need for alternative products, the
result will depend on these two aspects, which are
further elaborated as follows:

Effects of by-product use on GHG emissions

The by-products of biofuel chains can often be used
for different applications, for example for animal
feed or for energy generation. These products then
replace other products, such as grain or natural gas,
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which would have also caused GHG emissions.
The emissions thus prevented by the by-products
should be accounted for in the biofuel LCA. LCA
results therefore depend on the assumed use of the
by-products.

An illustration of the effect of different uses of the
by-product on the LCA results is shown in Table 8.3
(from EC, 2008b), where GHG savings of a number
of biofuels are shown for two different by-product
applications: animal feed and energy.

Clearly, in all cases considered here, the calculated
GHG savings are higher if the by-products are

used for energy than as animal feed. However, in
practice, the majority of by-products are currently
used for animal feed since that generates the highest
market value. As pointed out in EC (2008b), using
the by-products as animal feed is also optimal from
a land-use perspective. Cultivating wheat, soy, corn
or other comparable animal feed crops requires land
for agriculture, and causes GHG emissions due to
land-use conversion that is not currently included in
LCAs for these crops.

Effects of LCA methodology on GHG emissions

The environmental impact of utilizing the
by-products, and substituting primary products

in the process, may be taken into account by

using system extension, analysing in detail the

GHG emissions prevented by the by-product.
Alternatively, an allocation methodology can be
applied. Part of the GHG emissions in the product
chain are then allocated to the by-products, reducing
the emissions allocated to the biofuel. Allocation

can be based on product characteristics, such as

energy content, mass or market value. Considering
the latter as an example for how allocation works; if
the financial value of the by-products is 30 % of the
value of the biofuel, 30 % of the GHG emissions of
the product chain up to the by-product production
should be allocated to the by-product.

System extension is generally considered to be the
most accurate methodology and is applied in the
JEC WTW study for biofuels (CONCAWE/JRC/
EUCAR, 2007) for example. However, allocation is
usually easier to implement as the data required are
generally much easier to gather. Because of this, the
EU (EC, 2008b) and some of the EU Member States
that currently develop default values and/or tools to
calculate the GHG emissions of specific biofuels sold
(Germany, Netherlands), have opted for allocation.
Discussions have been ongoing between the

various countries to arrive at a common allocation
methodology (*). A discussion on the pros and cons
of substitution and the various allocation options
can be found in (EC, 2008b).

The different methods to account for by-products in
a biofuel LCA lead to different GHG emission results.
Substitution and allocation by energy content, mass
or market value all lead to a different share of GHG
emissions in the biofuel chain being allocated to the
by-products. Clearly, the results differ significantly
depending on the methodology used, as Table 8.4
illustrates (from (EC, 2008b)).

Treatment ofemissions due to land-use and vegetation
change

Land-use change and the vegetation change
resulting form crop cultivation for biofuels or

Table 8.3
different by-product applications

GHG savings of various biofuels, according to the substitution approach, for two

Biofuel production pathway By-product GHG savings according to substitution
approach
By product used for By product used for

animal feed energy
Rape seed biodiesel Press cake 38 % 69 %
Sunflower biodiesel Press cake 64 % 86 %
Sugar beet ethanol Beet pulp 31 % 65 %
Wheat ethanol (processing: Distillers dry (DDGS) 29 % 40 %

conventional natural gas burner)

Source: EC, 2008b.

(*°) These discussions so far have not led to a common methodology for by-product treatment in the various CO,-tools calculations
tools. However, we would expect that the Member States involved will follow the proposal of the European Commission to use
allocation by energy content (EC, 2008b), or any other methodology to be defined in the final renewable energy EU directive.
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Table 8.4 LCA results for different allocation methods and the substitution approach: GHG
emission reductions of various biofuel chains
Substitution Allocation, by

By product to By product to Mass Energy Economic value

animal feed energy
Rape seed biodiesel 38 % 69 % 60 % 44 % 36 %
Sunflower biodiesel 64 % 86 % 69 % 59 % 49 %
Sugar beet ethanol 31 % 65 % 60 % 49 % 29 %
Wheat ethanoll (conventional 29 % 40 % 57 % 45 % 19 %
natural gas boiler)
Sugar cane ethanol n.a. 88 % 77 % 77 % 75 %

Source: EC, 2008b.

bioenergy that has not been met through yield
increases, can result in massive GHG emissions.
As with by-products the issue has several different
aspects that have to be taken into account in LCA's:

® the sheer size of the resulting GHG emissions;

* how should 'a once only' event be accounted for
in an LCA covering a period of time of at least
several decades?

* should indirect land-use changes resulting from
the first order land-use change induced by crop
cultivation, be taken into account and how this
should be done?

The issues are discussed in the three paragraphs
below.

GHG emissions from land-use change
Cultivation of crops for biofuels or bioenergy may

require extra land when increased demand for
agricultural commodities, such as that caused by

bioenergy, can no longer be met by increasing yields.

All land on earth already has a function, whether
for economic activities, for nature conservation or
as area under common exploitation (which can lead
to degradation). In such cases cultivation of crops
for biofuel or bioenergy production automatically
means land-use change and also changes in
vegetation, since the original vegetation will have to
be cleared.

Change in vegetation can have both adverse and
beneficial effects depending on the relative size of
the carbon stock present in the original vegetation
and soil, and in the vegetation and soil in the case of
crop cultivation for biofuels.

Natural forests and grasslands contain significant
amounts of carbon in the vegetation and soil. Hence,
when natural grassland or forest is converted to
agricultural land for biomass production, the carbon
in the soil and in the original plants (roots, tree
trunks, stems, branches, humus, etc.) is released.
These emissions may amount to hundreds of tonnes
of CO,-equivalent per hectare.

On the other hand, a new forest established

to produce wood for bioenergy on an area of
previously barren soil, may lead to increased carbon
sequestration.

The type of soil and its management also have a
significant impact on GHG emissions arising from
land-use change. Peat soils store enormous amounts
of carbon and drainage for crop cultivation starts
the oxidation of these stocks, making this kind of
soil as poor an option for biofuel or bioenergy crop
cultivation as for food crops if GHG emissions are to
be avoided.

Intensive tillage of other soils without the addition of
organic materials (e.g. crop residues, green manure,
manure) will ultimately result in the oxidation of

a large percentage (up to 50 %) of soil carbon. On

the other hand, adding large quantities of organic
material in combination with no tilling or a limited
number of cultivation furrows will probably result in
the accumulation of extra carbon in the soil.

Studies differ as to whether they include any or all
of these emissions or carbon sequestrations in the
emission factors, the depreciation methodology
used and in their assumptions regarding whether
or not biomass cultivation led to land conversion.
The following sections, provides some examples to
illustrate how large these effects can be.
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The potential importance of land-use change
emissions in the LCA

The second issue examines how to take into account
'once only' emissions related to land-use change in
studies that consider initiatives that span at least
several decades.

A significant part of land-use change GHG
emissions may occur during or shortly after the
conversion of the land, although some of the carbon
stock will take much longer to release. Since the
carbon stock is emitted during or shortly after
conversion of the land, it is generally not considered
to be realistic to allocate the specific land-use change
emissions that take place in one year to the biomass
produced in that specific year. After all, the land

has not been converted for this one year of biomass
production only, but for the biomass produced
during the lifetime of the plantation. If the initial
emissions were allocated to the biomass produced
in the first year only, the year's biomass would
probably score extremely negatively on the GHG
balance, whereas the biomass in later years would
score much better. Therefore, if an LCA takes these
emissions into account, a decision has to be made
regarding how they will be allocated to the biomass
produced. Some LCA studies spread these emissions
over 100 years of biomass production (i.e. 1/100th

of these emissions will be allocated to the annual
biomass produced on that land). Other LCAs opt

for other time frames such as 10, 20 or 50 years. The
IPCC has provided a methodology to calculate the
annual effect of land-use change on the soil carbon
balance (kg/ha/year) (IPCC, 2006), using a standard
time period of 20 years (*).

The effect of land-use change emissions on the GHG
savings by palm oil and the sensitivity of the results
to soil type and depreciation period are illustrated
in Figure 8.11 (WWE, 2007). In this graph, the GHG
savings are shown for palm oil biodiesel for two
different soil types and three different depreciation
periods. In these calculations it is assumed that the
land is degraded after the time period considered.
The results show that these biofuels are expected

to lead to GHG emissions reductions if the
plantation is replacing tropical fallow land, even if
a depreciation period of 25 years is chosen. If the
soil used to be natural forest but not peat soil, GHG
emissions are still saved if the conversion emissions
are depreciated over 100 or 500 years. However,

the emissions are found to increase if a 25 years
depreciation period is used.

The potential importance of indirect land-use change

More recently, the effects of indirect land-use change
are receiving more attention. The basic premise
behind this effect is that, since the increasing
demand for biofuel is not compensated for by a
reduced demand from the food industry, increased

Figure 8.11 Effects of different depreciation periods and original soil type on the GHG savings

of palmoil biodiesel
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Source: IFEU, 2006.

(') The purpose of the IPCC work was to decide after how many years one can reasonably assume that land has reached its new
carbon stock equilibrium. This differs from the question asked here, which is how many years to allow for the greenhouse gas
savings from the use of bioenergy to pay back the greenhouse gas damage caused by the land-use change.
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biofuel crop cultivation increases global demand
for agricultural production. On a global scale, this
increased demand can be met by:

* increased productivity of existing agricultural
land;

e Dbiofuel feedstock cultivation on previously
uncultivated land;

e Dbiofuel producers buying feedstock from
existing agriculture, forcing other users to shift
to other products or regions.

The first option will not cause any significant effects
arising from land-use change. The second will cause
direct land-use changes that have to be taken into
account in the LCA according to standard LCA
methodology. The last option leads to indirect land-
use changes: even though the feedstock used for the
biofuel production is harvested from land that is
not changed the increased biofuel demand leads to
new agricultural cultivation somewhere else in the
world. For example, where rapeseed is bought by
biofuel producers from land that used to produce
rapeseed for food the short fall in food will have

Figure 8.12 The net life cycle greenhouse
gas emissions of fossil fuels and
various biofuels — comparison
of data used in this study with
results from JEC study

1

j—

Diesel

Gasoline

EtOH, sugarbeet
EtOH, wheat
EtOH, sugarcane
Ligno-EtOH, straw
RME

BtL, wood

-200 -100 O 100 200 300 400
g CO,-equivalent/kWh (output)

[0 GEMIS EEA calculations

[ JEC study
Note: Data shown are net GHG emissions, i.e. credits for
by-products are included. In both calculations, the
by-product of ethanol (DDGS) is used as animal feed,
in the RME routes the glycerine is used as a chemical
and the rapeseed cake is used as animal feed.

Source: CONCAWE/IJRC/EUCAR, 2007.

to be replaced from elsewhere,. This effect is much
harder to quantify, since cause and effect relationships
can really only be evaluated through agro-economic
modelling. However, if indirect land-use change
occurs due to increased biofuel demand, the biofuel
LCAs should take this into account methodologically.

It is not yet clear how large these indirect effects
are, since the effects of biofuels and bioenergy on
the (global) agricultural market are not yet well
understood, and researchers have only recently
started to investigate this topic. In addition, results
will depend on what the starting point is for

the calculation of potential indirect effects from
bio-energy cultivation, as the pressure from global
food demand on world land resources is currently
much lower than can be expected by 2030, for
example (e.g. OECD, 2008).

In a recent memorandum on the issue Farrel and
O'Hare (2008) roughly estimate the upper boundary
of indirect emissions. They conclude that indirect
land-use change can be expected to be a very large
contributor to the global warming impact of biofuels.

Comparison of different LCA studies

In view of the variations in methodology and the LCA
results, it is useful to see how the GEMIS modelling
results used in this report compare with results from
other LCA studies.

Biofuels

In the past 5 to 10 years, various research institutes
have assessed the life cycle GHG emissions of biofuels
for transport in the EU and in other world regions. In
the EU, the JRC, Eucar and Concawe (JEC) published
a comprehensive Well-to-Wheel analysis of various
biofuels currently available and under development,
in which various specific process configurations

are considered. The JEC study is updated regularly
and therefore incorporates recent data on feedstock
production, production processes, etc. Its results are
used for most analyses of biofuels by the European
Commission. In addition, many other studies have
been published that assess specific biofuel routes

(e.g. ethanol from sugar beet or wheat, biodiesel from
rapeseed, etc.) and/or countries or regions.

A comprehensive literature analysis on the
environmental impact of biofuels for transport was
carried out in 2004 (IFEU, 2004). In this report, results
of 63 detailed studies were compared and.showed
that results varied significantly, mainly depending on
the assumptions and data used, regarding fertilizer

Maximising the environmental benefits of Europe's bioenergy potential

65



66

Annex 3

use, yields, process technology and co-product
assessment (as discussed in Section 1.1.1).

In order to assess the robustness of the GEMIS data
used in this analysis, we have compared these data
with the JEC results for similar biofuel chains, the
results of which are shown in Figure 8.11. A more
extensive comparison with results in the literature
is provided in Table 8.5, where the GHG emission
reduction used in this report (referred to as EEA or
GEMIS), is compared to the results of (CONCAWE/
JRC/EUCAR, 2007), (IFEU, 2004) and other recent
studies (taken from Biofuels for Transport, IEA,
2004).

As these data show, GEMIS results match JEC and
other results from the literature quite well in some
cases, but differ significantly in others. The GHG
emission reduction of the ethanol (EtOH) routes

for GEMIS are in general slightly lower than the
estimates from JEC and other sources, whereas

the emission reductions from rapeseed biodiesel
(RME) and BtL as calculated by GEMIS seem to be
higher than other results in the literature due to the
by-product substitution applied (i.e. the by-product
glycerine is substituted as synthetic glycerine) (*). It
should be noted that none of these models include
emissions due to land-use change (*).

Table 8.5

An overview of greenhouse gas emission reduction data in the literature,

compared to the data used in this study (referred as EEA, 2007)

Type of biofuel and feedstock

Literature source

Percentage GHG emission

reduction
Ethanol from sugar beet EEA 26 %
CONCAWE/JRC/EUCAR, 2007 29-37 %
IFEU, 2004 32-88 %
GM, 2002 41 %
Ethanol from wheat EEA 22-48 %
JEC, 2007 22-54 %
IFEU, 2004 9-70 %
Levelton, 2000 29 %
ETSU, 1996 47 %
Ethanol from cellulosic feedstock EEA (straw and short rotation coppice) 74-81 %
CONCAWE/IRC/EUCAR, 2007 (wheat straw) 90 %
IFEU, 2004 (various feedstocks) 70-117 %
GM, 2002 (wood, poplar plantation) 51 %
Wang, 2001 (wood) 107 %
GM, 2002 (straw) 82 %
Levelton, 2000 57 %
Rape methyl ester (rme) EEA 59-90 %
CONCAWE/IJRC/EUCAR, 2007 24-71 %
IFEU, 2004 17-86 %
GM, 2002 49 %
Levelton, 2000 58 %
'Biomass-to-liquid' (btl) EEA 100-138 %
CONCAWE/JRC/EUCAR, 2007 84-95 %
IFEU, 2004 77-94 %
Little, Novem/ADL (eucalyptus), 1999 108 %

Note:

Ranges in the results from EEA are due to regional differences within Europe.

(??) In LCAs of biofuels, relatively modest differences in assumptions may lead to significant differences in outcome.
(%) If land-use change occurs due to biofuels production, this may cause significant GHG emissions, both from above and below

ground.
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Bioenergy

In recent years there have been fewer international
LCA studies on bioenergy than those for biofuels.
The main reason is probably that the use of biomass
as a fuel for heat and/or power is more of a country
specific issue than its use for biofuels. Furthermore,
because the use of biomass for heat and power has
traditionally been a matter of waste processing or has
evolved naturally from biomass based industries such
as the wood industry and the paper industry its use
for heat and power production has been less of an
issue than its use for biofuels.

LCAs for different bioenergy routes are often difficult
to compare. Many more feedstocks and process
configurations are possible for bioenergy than

for biofuels, and each leads to different emission
results. Biomass can, for example, be co-fired in a
coal power station, replacing coal. Power production

in a stand alone power plant based on the same
biomass fuel, however, will substitute average
electricity production in the region considered.

Plant configuration (e.g. CHP or power only, net
efficiencies) and regional reference power production
will determine net reductions in GHG. In addition,
results may vary significantly depending on the
reference use of the feedstock (e.g. would the biomass
decay, or would it be burned). Finally, LCAs tend to
differ with respect to the methodologies adopted.

An accurate comparison of the GEMIS results with
those of other models would, therefore, require a very
specific analysis of the configurations used, which has
not been possible within the scope of this project.

The LCAs of bioenergy routes that have been carried
out consistently show that this use of biomass

may indeed lead to very high reductions in GHG
percentages. A brief overview of results from several

Table 8.6 An overview of GHG emissions of various bioenergy routes, as found in literature

Biomass/Bioenergy route

CO, emissions (g CO,—equivalent/kWh_ )

GEMIS (EEA)

Incl. credit for
by-products (net)

Excl. credit (gross)

Wood chips SRF poplar Cogen ORC SNCR - 1340 125
ATC 2010
Straw bales cogen ORC SNCE ATC 2010 -1 406 59
Biogas (double crop) ICE cogen PAN 2010 - 24 148
EU, 2005 Bioenergy based energy supply (EU mix) 60
FZKA, 2007 Emissions biomass CHP plant - 740
Emissions biomass Cogen (500 MWel), or 30
20-47 MWel biomass plant
CE, 2006 and Eucalyptus wood pellets (waste), cofiring 970
CE, 2007 in existing coal fired power station,
substituting coal 1 G] + 1 GJ
Reference is pile burning
Forest industry waste streams (Canada), - 1295 18.4
cofiring in modern coal fired power station
substituting coal 1 GJ + 1 GJ.
Reference is landfilling
1IEA, 2006b Co-combustion of saw mill residues based -1.3 Not relevant
(Task 38) pellets and Mountain Pine Beetle invested
pines based pellets in a Dutch coal power
plant, which also provides heat for district
heating
WWEF, 2007 Utilization of palm oil in different types of
power plants:
CHP — substituting NG -390 to - 180
CHP — substituting LFO - 270 to - 60
Undefined power plant, substituting av. -230to - 30
electricity mix
Undefined power plant, substituting power -230to-20

produced by NG power plant
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studies is provided in Table 8.6 to illustrate how the
data used in this report compare with results from the
literature.

As stated previously, comparison between the
different studies is difficult without an in-depth
analysis of the calculations, and the basic and
methodological assumptions applied in each study.

However some general observations can be made:

e the largest variations in these results are due to
the impact of CHP in the GHG balance: the net
reduction of GHG emission increases significantly
where CHP is applied and credits for the heat
are included in the calculations (these cases are
indicated in grey);

e the CE Delft studies illustrate that utilizing
organic waste is beneficial if the alternative is
landfill or uncontrolled burning;

e the WWF study for palm oil applications in
power production illustrates two effects;

e direct substitution of a fuel in a power plant
yields larger reductions in GHG emissions than
producing electricity in a dedicated power plant.
In the latter case there is also competition with
low carbon electricity production technologies,
such as wind, hydropower and nuclear energy;

* good management practice in plantations can
significantly reduce the GHG emissions related to
the production of a particular biomass fuel.

The IFEU study considers a time horizon of

100 years. Emissions resulting from land-use
change — e.g. from forest clearing to make space
for palm oil plantation — are spread over this
period of time. As shown earlier, the chosen time
horizon has a very large impact on the resulting
net GHG emission because it is the denominator
for such 'once-only' emissions. Completely
different but equally logical choices other than

100 years could also be made. For example, the
IPCC methodology, applies a horizon of 20 years,
because most emissions related to land-use change
occur within this timescale. On the other hand, in
some regions land has been used for agriculture for
hundreds or even more than 1 000 years, so it could
be argued that the former is still a legitimate time
horizon.

The effects of allocation on the net GHG emissions
allocated to electricity in CHP power plants have
already been mentioned but the effects depend

on the allocation methodology. In the Ecolnvent
LCA database, for example, GHG emissions have
been calculated for a wood fired small CHP plant
with a net electric efficiency of 15 % and a net
thermal efficiency of 65 %, applying three different
allocation methodologies: distribution according
to energy content, exergy content or heat content.
The resulting GHG emissions per kWhe amount
to 4, 9 and 1 grams respectively for biomass
production (avoided fossil fuel related emissions
not being taken into account). Other allocation
rules that might be applied are economic value or
system expansion.
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description of selected

Annex 4 Selected technologies

conversion technologies

Table 8.7a Main characteristic of applied conversion technologies (electricity and CHP)
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* Based on default settings with regard to W.A.C.C. (6.5 %) and technology-specific lifetime (15-25 years). In case of

combined heat and power etc. a heat bonus is taken into account.

*E (MWh /MWh_ ).

Note

Based on Oko, 2006.
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ty and CHP) (cont.)
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Table 8.7a Main characteristic of applied conversion technologies (electr
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* Based on default settings with regard to W.A.C.C. (6.5 %) and technology-specific lifetime (15-25 years). In case of

combined heat and power etc. a heat bonus is taken into account.

Note

Based on Oko, 2006.
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Table 8.7b Main characteristics of applied conversion technologies (heat and transport)
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* Based on default settings with regard to W.A.C.C. (6.5 %) and technology-specific lifetime (15-25 years). In case of

Note

combined heat and power etc. a heat bonus is taken into account.

A (MWh MW )

Based on Oko, 2006.
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Annex 4

Table 8.7b Main characteristics of applied conversion technologies (heat and transport) (cont.)
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* Based on default settings with regard to W.A.C.C. (6.5 %) and technology-specific lifetime (15-25 years). In case of

combined heat and power etc. a heat bonus is taken into account.

Based on Oko, 2006.
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Annex 5 Feedstock-technology matrix

Applied combination of feedstocks and technologies
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Annex 5

Applied combination of feedstocks and technologies (cont.)

Table 8.8

Jayiseb woy Ngr

(+H013) 1ued [ouBYIB0Iq PRDURAPYT

(HO33) ueld joueyipolg

(3Wv4) Jueld [ssaipoig

auibua bulpnis yum waisAs buneay 3a|j2d poom

jue|d uoneJauUPUl MSIW

sjun ajeas-abue| 03 |jews — (aulbua |9salp) JWY uo paseq jueld dHD

syjun ajeds-abue| 03 [|ews — (auibua [2salp) |10 passadel uo paseq jueld dHD

DYO U0 paseq melss 4oy jueld dHD [ed07

mens 1oy jued dHD (8207

x
x
x

(@94 yam auiginy wesls)
jueld Jamod pauly-|eod mau e ul (9% § :Mes3s ‘o, QT :Adlsadoy) Buuyod

(D94 yam (a4nssaud >oeq) auigin} wes)s)
jue|d dHD padiy-1eod e ul (% § :Mells ‘9, QT :A43sa.0y) bunyod

x

>

x

DYO Uo paseq sdiyd poom 1oy ueid dHD [ed07]

sdiyd> poom 4oy jueld dHD |e207]

X | X | X | X
X | X | X| X
X | X|X| X

x

jue|d Jamod 3J9Ad paulquiod padly-seb (jeanjeu) e ul buuyod

(uonsnquiod paq paziiny
Bune|noan ym — aulbus seb) snyjuedsiw payiseb uo paseq jue|d dHD

sjlun 9|eds-||ews — (paq paxy — auigan) seb oojw) juejd dHD sebpoop

S)un 3jeds-jjlews — (paq paxiy — aulbua seb) jueid dHD sebpoom

sjun sjeds-sjews — jue|d Jjamod pady-sen

X | X | X | X | X

X | X | X |X| X

sjun a|eds-sjews — jue|d dHD paJy-ses

(0S 10 DIW — s|1®2 [2ny) 3ueld dHD SebpoomT

XX | X | X |X|X
XX [ X | X |X|X
XXX | X | X|X

sjun ajeds-abue| 03 |lews — (aulbua seb) jueid dHD sebpoop/seb |ypue/seboig

Transport
(fuels)

Heat (incl.
district heat)

Electricity and CHP

Anysalog

aj1semolg

xi3ew — ABojouyday — }203spasg

ioenergy potent

the environmental benefits of Europe's b

imising

Max

74



Annex 6

Annex 6 Scenario parameters: details
of the PRIMES LCEP and baseline

scenarios

Figure 8.13 Development of primary energy

prices
I3r15tgrnat|onal energy prices (EUR/toe) 58 USD/boe
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Source: Based on PRIMES, 2004 and 2005.

Based on the primary energy prices, the applied
carbon pricing and the typical country-specific
conventional supply portfolio sectoral reference
energy prices were derived. These prices reflect the
competitive price floor with regard to bioenergy and
determine the additional generation of bioenergy
representing the difference between total generation
cost and the reference prices. Figure 8.14 depicts the
average dynamic development of derived reference
prices at the European level. Note that, in the case of
grid-connected heat supplies from district heating
and CHP-plant, heat prices do not include the cost of
distribution — i.e. they represent the price directly
at a defined handover point.

Figure 8.14 Development of European
average sectoral reference
energy prices

Sectoral average reference energy prices (EUR/MWh_ )

70
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- -k - Heatgrid-connected (PRIMES baseline (2005))
- -¢ - Heat non-grid (PRIMES baseline (2005))
- @ - Transport fuels (PRIMES baseline (2005))

Source: Based on PRIMES, 2004 and 2005.

Table 8.9 shows the development of the total and

the sectoral energy demands of the two underlying
scenarios — the conventional reference (PRIMES
LCEP) and the alternative scenario (PRIMES baseline
as of 2005). The alternative scenario is characterized
by higher energy demand as compared to the
PRIMES LCEP of 5 % in overall demand and as high
as 10 % in terms of heat consumption.
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Table 8.9 Energy consumption parameters

PRIMES LCEP Unit 2005 2010 2015 2020 2025 2030
Gross inland consumption Mtoe/year 1708 1750 1778 1 800 1792 1811

TWh/year 19868 20350 20681 20930 20844 21060
Gross electricity demand TWh/year 3 155 3426 3670 3900 4 089 4 236
Gross heat demand TWh/year 6 768 6 923 7 008 7 022 6 954 6 964
Gross transport fuel demand TWh/year 4213 4 450 4 585 4 783 4 810 4 836
PRIMES baseline (2005) Unit 2005 2010 2015 2020 2025 2030
Gross inland consumption Mtoe/year 1741 1811 1 856 1 885 1 888 1899

TWh/year 20250 21067 21588 21920 21963 22081
Gross electricity demand TWh/year 3207 3 509 3789 4 030 4 237 4 392
Gross heat demand TWh/year 6 860 7 161 7 420 7 560 7 606 7 630
Gross transport fuel demand TWh/year 4119 4 354 4 462 4 642 4 650 4 608

Source: Based on PRIMES, 2004 and 2005.

The conventional supply portfolio, i.e. the share
of the different conversion technologies in each
energy sector, was based on the PRIMES forecasts
on a country specific basis. These projections on
the portfolio of conventional technologies have

a particular impact on this study’s calculations

of the avoidance of fossil fuels and the resulting
CO2 emissions avoided. It is outside the scope of
this study to analyse in detail which conventional
power plants would actually be replaced by an
alternative technology such as, a biogas plant
installed in the year 2014 in a particular country
(For example a less efficient existing coal-fired
plant being replaced by a new high-efficient
combined cycle gas turbine), so the following
assumptions are made:

e Keeping in mind that besides renewable
energies, fossil energy represents the marginal
generation option that determines prices on
energy markets, it was decided at the country
level to stick to the sector-specific conventional
fossil supply portfolio projections provided
by PRIMES. Sector- as well as country-specific
conversion efficiencies, as derived on a yearly
base, are used to get a sound proxy to calculate
from derived bioenergy generation figures
back to the amount of avoided primary energy

at the sectoral level. Assuming that the fuel mix

is unaffected, avoidance can be expressed in
units of coal or gas replaced.

e The determination of the GHG emissions and
air pollutants avoided builds on the fossil
fuels replaced. However, as LCA emissions are
taken into account GEMIS serves as a database

Figure 8.15 Development of European

average conversion efficiencies
of conventional (fossil-based)
electricity and grid-connected
heat production

Sectoral average reference conversion efficiencies (%)
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Source: Based on PRIMES, 2004 and 2005.
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in this respect. An overview of the data for
LCA emissions from fossil fuels, that form
the conventional reference energy system, is
provided in the following section.

The derived data on aggregate conventional
conversion efficiencies characterizing the
conventional reference energy system is as
follows.

Figure 8.15 shows the dynamic development of
average conversion efficiencies as projected by
PRIMES for conventional fossil-based electricity
generation, as well as for grid-connected heat
production at the European level. Conversion
efficiencies are shown for both the PRIMES
baseline (as of 2005) and the PRIMES LCEP case.
For the transport sector, where efficiencies are not
explicitly expressed in PRIMES results, the average
efficiency of the refinery process to derive fossil
diesel and gasoline was assumed to be 95 %.

Maximising the environmental benefits of Europe's bioenergy potential
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Annex 7 Method of approach — 'how the
model works'

In the following we provide a detailed description
of the methodology and how the model works with
respect to resource allocation relative to the decision
criteria selected.

The core elements of the model are depicted in
Figure 8.16. The general modelling approach for
the supply-side of bioenergy technologies is to
derive dynamic cost-resource curves that include
information on the available biomass feedstocks,
the potential conversion technologies drawn from
the feasible process chains defined by country and
by sector and the corresponding LCA emissions.

Dynamic cost-resource curves are characterized by
the fact that costs, LCA emissions and the generation
potential can change from year to year. The
magnitude of these changes is derived endogenously
within the model, so that the difference in the values
in one year compared to the previous year depend
on the outcome of the current year and the policy
framework conditions set for the simulation year. A
clear distinction between capacities that are already
installed and potential new plants is made in the
underlying database of the model. This information
is continuously adapted by data from resource
exploitation during a simulation run (*).

Figure 8.16 Core elements of the Green-X

ENVIRONMENT

model

Base input information

=)

Country
selection

Economic market and
policy assessment potential,
costs, offer prices
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Policy strategies
seletion
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v

New plants

1]
el
c
i
o
o
c
£
2
X
w

Feedstock
selection

Simulation of
market interactions

Framework conditions
(energy demands,
reference prices)

Results costs and benefits, LCA emissions on a yearly basis (2004-2030)

(?*) The model calculates biomass exploitation and accompanying results on costs and emissions on a yearly basis, starting from 2004

and ending by 2030.
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An economic assessment is based on the dynamic
cost-resource curve considering scenario specific
conditions like selected policy strategies, investor
behaviour, technology diffusion and dynamic
non-economic barriers, as well as energy price
and demand forecasts. Within this step, there is

a transition from generation costs to bids, offers
and switch prices. The results, on a yearly basis,
are derived by determining the equilibrium

level of supply and demand within each market
segment considered, for example the tradable
green certificate market (TGC both national and
international), and the electricity power or (grid
and non-grid) heat market. This means that the
different technologies are collected within each
market and the point of equilibrium varies with the
underlying demand.

Let us focus now on the detailed procedure

in line with the cases investigated: Assuming

a cross-sectoral quota is applied as a (virtual)
policy instrument, a demand for bioenergy will

be stipulated that is defined on a yearly basis by
country in terms of primary energy as a share

of gross domestic consumption. Additionally, a
severe (¥) penalty is introduced, setting the upper
limit for bioenergy deployment in order to exclude
highly inefficient supply options.

The first step within each year investigated

is to build the cost-resource curve, listing all
supply options in order of merit. Thereby, a

clear distinction is made between that which has
already been achieved (i.e. existing plants) and the
additional realizable potential (i.e. potential new
plant).

e In the case of new plants, besides costs,
deployment is limited by non-economic
parameters such as the availability of sufficient
biomass feedstock needed for a certain
technology or plant type and overall technology
diffusion constraints as defined at cluster (*)
level by country.

¢ For existing plants, only the short-term
marginal costs — comprising fuel and O&M
cost as well as revenues arising from the selling

of a possible by-product — are relevant to

the economic decision (¥) as to whether the
plant should be used for generation or not.

For new capacities, the long-term marginal
costs are important, comprising the discounted
investment cost as well as the short-term
marginal costs.

In this context, the cost calculation is done in line
with Formula 1 (see next page) The starting point
is the calculation of the total generation cost (see
Formula 1), where revenues arising from the sale
of selected by-products such as heat, in case of
CHP, and glycerine, in case of biofuels, are also
taken into account. Next, additional generation
cost are derived (Formula 2) which represent the
difference between total generation costs and

the reference market price within each end-use
sector (electricity, heat (subdivided into grid and
non-grid) and transport). Finally, the generation
added has to be transformed independently of the
decision criteria applied; whether a least cost case
in terms of primary energy (see Formula 3a), in
terms of GHG emissions avoided (see Formula 3b)
or air pollutant emissions avoided (see Formula 3c).

The overall cost-resource curve for each year can
be derived by horizontal addition of the potential
already achieved from existing plants) and the
available additional potential from new plants. This
procedure is shown schematically in Figure 8.17.
All least cost scenarios based on cross-sectoral
quotas are investigated at country level, listing
the potential of all supply options in terms of
primary energy. Finally, any potential deployment
of new plant on the market is examined in terms
of when they become operational — as long as the
yearly quota is filled (or the penalty exceeded). At
the end of the simulation process for a particular
year, results including cost, generation and
emission balances are calculated, and the supply-
side database adapted to add new installations

to the basket of existing plants and subtract
decommissioned plants that exceeded their
lifespan.

(?°) The exact severity of the penalty depends on the decision criteria applied. E.g. in case of a least cost approach in terms of primary
this means a maximum value of transformed additional cost in size of 100 EUR/MWhprimary.

(?%) A set of 16 technology clusters are defined for which deployment is limited in line with e.g. sectoral energy demands (taken from
PRIMES) or the projected conventional reference system, i.e. in particular the installed generation capacity of coal-fired power

plants as relevant for co-firing.

(?7) Please note that, in contrast to the economic operational decision, long-term marginal generation cost are considered for the
representation of the overall result regarding (additional) generation cost in case of existing plant ——, aiming to provide a fair

depiction of the resulting cost burden.
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Figure 8.17 Combination of cost-resource curves for existing and potentially new plants in
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Source: Energy Economic Groups (EEG), Vienna University of Technology, www.gree-x.at.

The main formulas:

6= Sosomssn 1000 [LERELOM) S——

main main

with:  GC Total specific (long term) generation costs [€/MWh,_ ]

GG, conversion - The specific generation cost of pre-conversion is commonly called fuel cost. If capital
investment is involved — the calculation is done, in a similar way to the calculation of
the specific generation cost of the final product as illustrated here. [€/MWh, ]

O&M Operation and maintenance costs (yearly, per installed kW) [€/(kW*yr)]

I Investment costs per unit of installed capacity (referring to the main output) [€/kW]

FLH 0 - Full-load hours are a virtual parameter, calculated by dividing the yearly generation
output of a plant by its nominal power — both referring to the main output in case of
combined production. [h/yr]

Nomain Conversion efficiency of the corresponding conversion process [1]

Ry, product = Revenues arising from the sale of the by-product. In case of combined heat and
power production where heat represents the by-product of electricity generation the
calculation of the revenues, — the so-called 'heat bonus', is as follows:

Rh . — P ; " » I']heat * FLHheat

eatCHP) reference.heat(grid) nelectricity* FLHeIectricity

The revenues per unit of heat sold, characterized by the reference market price for grid-connected heat, have to be
transferred to electricity output.
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z+(1 + Z)""

[(x+2)y-1]
The CRF allows investment costs incurred in the construction phase of a plant to be discounted. The amount depends
on the interest rate and the payback time of the plant. For the default calculation of generation costs these factors
are set for all technologies as follows:
e payback time (PT): equal to the technology-specific lifetime of the plant [yr.]
e interest rate (z): as a default, a moderate interest rate of 6.5% was applied [1]

CRF Capital recovery factor: CRF =

with:  GC,giional - Additional specific generation costs [€/MWh_ 1

GC Total specific generation costs [€/MWh ]

f eighting Weighting factor to reflect the importance of a certain energy sector (i.e. electricity,
heat or transport) [1]

P reerence Reference market price (for conventional options by end-use sector) [€/MWh_ 1]

Decision criteria: Least cost in terms of primary energy

Decision criteria: Least cost in terms of net avoided CO,-eq. emissions

Decision criteria: Least cost in terms of net avoided air pollutants (PM-eq. emissions)

with:  GC,ional trans - Transformed additional specific generation cost (according to the applied decision
. criteria)

GC, sitional - Additional specific generation costs [€/MWh_ 1
Nimain Conversion efficiency of the corresponding conversion process chain [1]
EMI 0, cq. reference -+ Output-specific CO,-eq. emissions of the conventional reference system

[kg CO,-eq./MWh_ ]
EMI 0, cq bioenergy * Output-specific CO,-eq. emissions of the bioenergy process chain [kg CO,-eq./MWh]
EML,) cq. reference - Output-specific PM, -eq. emissions of the conventional reference system

[kg PM,;-eq./MWh_ .1
EMI,11 cq. bioenergy ** Output-specific PM, -eq. emissions of the bioenergy process chain [kg PM, -eq./MWh]
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country
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Annex 9

Annex 9 Emissions legislation used to
check whether modelled plant
would meet emissions limits

Table 8.10 Emissions legislation used to check modelled plant would meet stringent

emissions limits

Fuel Pollutant Country Legislation
Wood and other Particulates Germany 1st BImSchV — Ordinance on Small and Medium
biomass Combustion Plants
Germany DIN 18891
Germany DIN 18895
Germany TA Luft 5.4.1.2.1
Europe EN303-5
Nordic area Nordic Swan
France Aretes of 20 June 2002 modified and 30 July 2003
modified
EC Large Combustion Plant Directive
Nitrogen oxides Germany DIN 18891
Germany DIN 18895
Germany TA Luft 5.4.1.2.1
France Aretes of 20 June 2002 modified and 30 July 2003
modified
EC Large Combustion Plant Directive
Liquid fuel Particulates - -
Nitrogen oxides UNECE Gothenberg Protocol
Landfill gas Particulates Switzerland LRV 1985 (2000)
UNECE Gothenberg Protocol
Nitrogen oxides Switzerland LRV 1985 (2000)
UNECE Gothenberg Protocol
Woodgas Particulates UNECE Gothenberg Protocol
EC Large Combustion Plant Directive
Nitrogen oxides UNECE Gothenberg Protocol
EC Large Combustion Plant Directive
Waste Particulates EC Waste Incineration Directive
Nitrogen oxides EC Waste Incineration Directive
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