next
previous
items

Indicator Specification

Soil organic carbon

Indicator Specification
  Indicator codes: LSI 005
Published 20 Nov 2012 Last modified 23 Feb 2021
6 min read
Variations in topsoil organic carbon content across Europe

Assessment versions

Published (reviewed and quality assured)
  • No published assessments
 

Rationale

Justification for indicator selection

Biomass is generated by photosynthesis binding CO2 from the atmosphere. If not harvested, this biomass becomes incorporated into the soil after the death of the plant and through root senescence. The dead plant material is decomposed with the help of micro-organisms and CO2 is again released into the atmosphere. Part of the carbon is converted into stable (humic) soil organic matter. However, if soil is water-saturated due to poor drainage, the breakdown of carbon is slowed down and only highly specialised microorganisms are able to decompose carbon, releasing CO2 and CH4. Nevertheless, wet soils and peatlands act overall as important carbon reservoirs.

Low levels of organic carbon in the soil are generally detrimental to soil fertility, water retention capacity and resistance to soil compaction. Increases in surface water run-off can lead to erosion while lack of cohesion in the soil can increase the risk of erosion by wind. Other effects of lower organic carbon levels are a reduction in biodiversity and an increased susceptibility to acid or alkaline conditions.

Scientific references

Indicator definition

  • Variations in topsoil organic carbon content across Europe

Units

  • Carbon content [%]
 

Policy context and targets

Context description

In April 2013 the European Commission presented the EU Adaptation Strategy Package (http://ec.europa.eu/clima/policies/adaptation/what/documentation_en.htm). This package consists of the EU Strategy on adaptation to climate change /* COM/2013/0216 final */ and a number of supporting documents. One of the objectives of the EU Adaptation Strategy isBetter informed decision-making, which should occur throughBridging the knowledge gap andFurther developing Climate-ADAPT as the ‘one-stop shop’ for adaptation information in Europe. Further objectives includePromoting action by Member States andClimate-proofing EU action: promoting adaptation in key vulnerable sectors. Many EU Member States have already taken action, such as by adopting national adaptation strategies, and several have also prepared action plans on climate change adaptation.

The European Commission and the European Environment Agency have developed the European Climate Adaptation Platform (Climate-ADAPT, http://climate-adapt.eea.europa.eu/) to share knowledge on observed and projected climate change and its impacts on environmental and social systems and on human health; on relevant research; on EU, national and subnational adaptation strategies and plans; and on adaptation case studies.

Targets

No targets have been specified.

Related policy documents

  • Climate-ADAPT: Adaptation in EU policy sectors
    Overview of EU sector policies in which mainstreaming of adaptation to climate change is ongoing or explored
  • Climate-ADAPT: Country profiles
    Overview of activities of EEA member countries in preparing, developing and implementing adaptation strategies
  • DG CLIMA: Adaptation to climate change
    Adaptation means anticipating the adverse effects of climate change and taking appropriate action to prevent or minimise the damage they can cause, or taking advantage of opportunities that may arise. It has been shown that well planned, early adaptation action saves money and lives in the future. This web portal provides information on all adaptation activities of the European Commission.
  • EU Adaptation Strategy Package
    In April 2013, the European Commission adopted an EU strategy on adaptation to climate change, which has been welcomed by the EU Member States. The strategy aims to make Europe more climate-resilient. By taking a coherent approach and providing for improved coordination, it enhances the preparedness and capacity of all governance levels to respond to the impacts of climate change.

Key policy question

What is the trend in soil organic carbon in Europe?

 

Methodology

Methodology for indicator calculation

Spatial data from the European Soil Database v2.0 (soil), Global Historical Climatology Network (http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/) (climate), CORINE Land Cover 1990 and USGS Global Land Cover Characterization (http://edc2.usgs.gov/glcc/glcc.php) (land cover) is displayed.

Methodology for gap filling

Not applicable

Methodology references

 

Data specifications

EEA data references

  • No datasets have been specified here.

External data references

Data sources in latest figures

 

Uncertainties

Methodology uncertainty

Not applicable

Data sets uncertainty

Quantitative information, from both observations and modelling, on the past trends and impacts of climate change on soil and the various related feedbacks, is very limited. For example, data have been collected in forest soil surveys (e.g. ICP Forests, BioSoil and FutMon projects), but issues with survey quality in different countries makes comparison between countries (and between surveys) difficult (Hiederer and Durrant, 2010). To date, assessments have relied mainly on local case studies that have analysed how soil reacts under changing climate in combination with evolving agricultural and forest practices. Thus, European-wide soil information to help policymakers identify appropriate adaptation measures is absent. There is an urgent need to establish harmonised monitoring networks to provide a better and more quantitative understanding of this system. Currently, EU-wide soil indicators are (partly) based on estimates and modelling studies, most of which have not yet been validated. Nevertheless, in absence of quantification, other evidences can indicate emerging risks. For example, shifting tree lines in mountainous regions as a consequence of climate change may indicate an extinction risk of local soil biota.

Finally, when documenting and modelling changes in soil indicators, it is not always feasible to track long-term changes (signal) given the significant short-term variations (noise) that may occur (e.g. seasonal variations of soil organic carbon due to land management). Therefore, detected changes cannot always be attributed to climate change effects, as climate is only one of the soil-forming factors. Human activity can be more determining, both in measured/modelled past trends (baseline), and if projections including all possible factors were to be made. The latter points towards the critical role of effective land use and management in mitigating and adapting to climate change.

Further information on uncertainties is provided in Section 1.7 of the EEA report on Climate change, impacts, and vulnerability in Europe 2012(http://www.eea.europa.eu/publications/climate-impacts-and-vulnerability-2012/)

Rationale uncertainty

No uncertainty has been specified

Further work

Short term work

Work specified here requires to be completed within 1 year from now.

Long term work

Work specified here will require more than 1 year (from now) to be completed.

General metadata

Responsibility and ownership

EEA Contact Info

Annemarie Bastrup-Birk

Ownership

European Environment Agency (EEA)

Identification

Indicator code
LSI 005
Specification
Version id: 2

Frequency of updates

Updates are scheduled every 4 years

Classification

DPSIR: Impact
Typology: Descriptive indicator (Type A - What is happening to the environment and to humans?)

Permalinks

Document Actions