next
previous
items

Indicator Specification

Energy-related emissions of ozone precursors

Indicator Specification
  Indicator codes: ENER 005
Published 12 Jan 2011 Last modified 16 Nov 2020
12 min read
This is an old version, kept for reference only.

Go to latest version
Topics:
This page was archived on 12 Nov 2013 with reason: Content not regularly updated
Emissions of TOFP in terms of NMVOC Equivalent. TOFP is the Tropospheric Ozone Forming Potential of each of the air pollutants that contribute to ozone formation in the troposphere i.e. ‘ground-level’ ozone.

Assessment versions

Published (reviewed and quality assured)
  • No published assessments
 

Rationale

Justification for indicator selection

Tropospheric (ground level) ozone has adverse effects on human health and ecosystems. Emissions of total non-methane volatile organic compounds, nitrogen oxides, carbon monoxide and methane contribute to the formation of ground level (i.e. tropospheric) ozone. High concentrations of ground level ozone have been shown to adversely affect the human respiratory system, and there is evidence that long-term exposure to raised ozone concentrations accelerates the decline in lung function with age and may impair the development of lung function. In the environment, high concentrations of ozone are harmful to crops and forests, decreasing yields, causing leaf damage and decreasing disease resistance. Ozone is also capable of causing damage to man made polymeric materials such as plastics and rubbers.

Scientific references

  • No rationale references available

Indicator definition

Emissions of TOFP in terms of NMVOC Equivalent. TOFP is the Tropospheric Ozone Forming Potential of each of the air pollutants that contribute to ozone formation in the troposphere i.e. ‘ground-level’ ozone.

Units

 Emissions of TOFP in ktonnes

 

Policy context and targets

Context description

This indicator monitors the trend in emissions of energy-related ozone precursors. Emissions of NOx and NMVOCs are both covered by the EU National Emission Ceilings Directive (NECD; 2001/81/EC) and the Gothenburg protocol under the United Nations Convention on Long-range Transboundary Air Pollution (LRTAP Convention; UNECE 1999). Both these instruments contain emission ceilings targets that EU Member States and other countries must meet by 2010. Emission reduction targets for the new Member States have been specified in the Treaties of Accession to the European Union (2003 and 2005 -The Treaty of Accession 2003 of the Czech Republic, Estonia, Cyprus, Latvia, Lithuania, Hungary, Malta, Poland, Slovakia and Slovenia. AA2003/ACT/Annex II/en 2072 / 2005 European Union Consolidated Versions of the Treaty on European Union and of the Treaty Establishing the European Community C 321 E/1) in order that they can comply with the National Emission Ceilings Directive. In addition, the Treaty of Accession for Bulgaria and Romania (2005 - http://ec.europa.eu/environment/air/pdf/eu27_nat_emission_ceilings_2010.pdf) also includes a new target for the EU-27 region as a whole. Targets for the new Member States are temporary and are without prejudice to the review of the NECD. A proposal for a revised NEC Directive (which will set 2020 emission ceiling targets for these ozone precursors pollutants), is expected in spring 2008. Targets for Bulgaria and Romania are provisional and not binding. Hence, the existing EU25 NECD Target has been used in the following analysis.

The NECD generally involves slightly stricter emission reduction targets than the Gothenburg Protocol. For example, during the period 1990-2010 the EU-15 has NOx emission reduction targets of 52 % and 51% under the NECD and Gothenburg Protocol respectively. For NMVOC, the EU-15 reduction required under the NECD is 55 %, under the Gothenburg reduction target the reduction required is 54 %.

In September 2005 the European Commission released a thematic strategy on air pollution. This strategy sets interim objectives for reducing air pollution impacts across Europe by 2020. Other directives influencing emissions of ozone precursors include:

  • The Integrated Pollution Prevention and Control (IPPC) Directive (96/61/EC) aims to prevent or minimise pollution of water, air and soil by industrial effluent and other waste from industrial installations, including energy industries, by defining basic obligations for operating licences or permits and by introducing targets, or benchmarks, for energy efficiency. It also requires the application of Best Available Techniques (BAT) in new installations from now on (and for existing plants over the next 10 years according to national legislation).
  • The Large Combustion Plant Directive (2001/80/EC) sets emission limits for licensing of new plants and requires Member States to establish programmes for reducing total emissions.
  • Emissions from transport are controlled by a number of Directives. These include: emissions from passenger cars and light commercial vehicles (70/220/EEC, as last amended by Directive 2001/100/EC targeting CO, NMVOCs and NOx); quality of petrol and diesel fuels (98/70/EC) as last amended by Directive 2003/17/EC specifying lower sulphur contents of fuels, (but also indirectly targeting emissions of the primary pollutants CO, NMVOCs and NOx; emissions from non-road mobile machinery (97/68/EC) as amended by Directive 2002/88/EC specifying limits for CO, NMVOC and NOx emissions; and for heavy duty vehicles Directive 88/77/EEC as last amended by Directives 1999/96/EC (which provides the Euro 3 (from October 2000), Euro 4 (from October 2005) and Euro 5 (from October 2008) emission standards for CO, NMVOCs and NOx) and Directive 2001/27/EC (adapting to technical progress Directive 88/77/EEC).
  • The 1994 VOCs Directive (94/63/EC) applies to the operations, installations, vehicles and vessels used for storage, loading and transport of petrol from one terminal to another or from a terminal to a service station
  • There are no specific EU emission targets set for either carbon monoxide (CO) or methane (CH4). However, there are several Directives and Protocols that affect the emissions of CO and CH4. Carbon monoxide is covered by the second daughter Directive under the Air Quality Directive. This gives a limit of 10 mg m-3 for ambient air quality to be met by 2005. Methane is included in the basket of six greenhouse gases under the Kyoto protocol to the United Nations Framework Convention on Climate Change (UNFCCC), under which limits for greenhouse gas emissions for the period 2008-2012 have been agreed by certain countries.

Targets

Emissions of NOx and NMVOCs are covered by the EU National Emission Ceilings Directive (NECD) and the Gothenburg Protocol to the UNECE LRTAP Convention (UNECE 1999). Both instruments contain emission ceilings (limits) that countries must meet by 2010. See also CSI002

Related policy documents

  • Council Directive 96/61/EC (IPPC)
    Council Directive 96/61/EC of 24 September 1996 concerning Integrated Pollution Prevention and Control (IPPC). Official Journal L 257.
  • Directive 70/220/EEC
    It regards the approximation of the laws of the Member States on measures to be taken against air pollution by emissions from motor vehicles
  • Directive 88/77/EEC
    On the approximation of the laws of the Member States relating to the measures to be taken against the emission of gaseous pollutants from diesel engines for use in vehicles
  • Directive 94/63/EC
    Directive on the control of volatile organic compound (VOC) emissions resulting from the storage of petrol and its distribution from terminals to service stations
  • Directive 97/68/EC of 16 December 1997
    Directive 97/68/EC of the European Parliament and of the Council of 16 December 1997 on the approximation of the laws of the Member States relating to measures against the emission of gaseous and particulate pollutants from internal combustion engines to be installed in non-road mobile machinery
  • Directive 98/70/EC, quality of petrol and diesel fuels
    Directive 98/70/EC of the European Parliament and of the Council of 13 October 1998 relating to the quality of petrol and diesel fuels and amending Directive 93/12/EEC
  • Directive 1999/96/EC
    on the approximation of the laws of the Member States relating to measures to be taken against the emission of gaseous and particulate pollutants from compression ignition engines for use in vehicles, and the emission of gaseous pollutants from positive ignition engines fuelled with natural gas or liquefied petroleum gas for use in vehicles and amending Council Directive 88/77/EEC
  • DIRECTIVE 2001/27/EC
    it adapts to technical progressCouncil Directive 88/77/EEC on the approximation of the laws of the Member States relating to measures to be taken against the emission of gaseous and particulate pollutants from compression-ignition engines for use in vehicles, and the emission of gaseous pollutants from positive-ignition enginesfuelled with natural gasor liquefied petroleum gasfor use in vehicles
  • Directive 2001/81/EC, national emission ceilings
    Directive 2001/81/EC, on nation al emissions ceilings (NECD) for certain atmospheric pollutants. Emission reduction targets for the new EU10 Member States have been specified in the Treaty of Accession to the European Union 2003  [The Treaty of Accession 2003 of the Czech Republic, Estonia, Cyprus, Latvia, Lithuania, Hungary, Malta, Poland, Slovenia and Slovakia. AA2003/ACT/Annex II/en 2072] in order that they can comply with the NECD.
  • DIRECTIVE 2002/88/EC
    It amends the Directive 97/68/EC on the approximation of the laws of the Member States relating to measures against the emission of gaseous and particulate pollutants from internal combustion engines to be installed in non-road mobile machinery.
  • DIRECTIVE 2003/17/EC
    It amends the Directive 98/70/EC relating to the quality of petrol and diesel fuels
  • UNECE Convention on Long-range Transboundary Air Pollution
    UNECE Convention on Long-range Transboundary Air Pollution.
 

Methodology

Methodology for indicator calculation

Officially reported national total and sectoral emissions to UNECE/EMEP (United Nations Economic Commission for Europe/Co-operative programme for monitoring and evaluation of the long-range transmissions of air pollutants in Europe) Convention on Long-range Transboundary Air Pollution (CLRTAP), submission 2007. CO2 emissions are from officially reported national total and sectoral emissions, reported to UNFCCC and EU Monitoring Mechanism, submission 2007 (National Annual Greenhouse Gas Inventories).Recommended methodologies for emission inventory data collection are compiled in the Joint EMEP/CORINAIR Atmospheric Emission Inventory Guidebook 3rd edition EEA Copenhagen EEA (2006) and Revised 2006 IPCC Guidelines for National Greenhouse Gas Inventories IPCC (2006).
The relative impact of the combined contribution of NOx, NMVOC, CO and CH4 to ozone formation can be assessed based on their tropospheric ozone forming potentials (TOFP): nitrogen oxides 1.22, non-methane volatile organic compounds 1.0, carbon monoxide 0.11 and methane 0.014 (de Leeuw 2002).
Thus, total acid equivalent emission = w(SO2)*Em(SO2) + w(NOx)*Em(NOx) + w(NH3)*Em(NH3) where weight factors are given by:
w(SO2) = 2/64 acid eq/g = 31.25 acid eq/kg
w(NOx) = 1/46 acid eq/g = 21.74 acid eq/kg
w(NH3) = 1/17 acid eq/g = 58.82 acid eq/kg
Results are in NMVOC equivalents (kilotonnes - kt), except where specified. These factors are assumed to be representative for Europe as a whole; on the (very) local scale different factors might be estimated; see de Leeuw (2002) for a more extensive discussion on the uncertainties in these factors. Due to the variation in potential TOFP factors that might be determined on a local scale, the use such factors does not always have wide support or recognition in EU Member States. The energy supply sector includes public electricity and heat production, oil refining, production of solid fuels and fugitive emissions from fuels. The transport sector includes emissions from road and off-road sources (e.g. railways and vehicles used for agriculture and forestry). Industry (energy) relates to emissions from combustion processes used in the manufacturing industry including boilers, gas turbines and stationary engines. ‘Other (energy-related)’ covers energy use principally in the services and household sectors.

Base data, reported in SNAP, draft NFR or NFR are converted into EEA sector codes to obtain a common reporting format across all countries and pollutants:
- Energy industry: Emissions from public heat and electricity generation - Fugitive emissions: Emissions from extraction and distribution of solid fossil fuels and geothermal energy

- Industry (Energy): relates to emissions from combustion processes used in the manufacturing industry including boilers, gas turbines and stationary engines
- Industry (Processes): Emissions from production processes
- Road transport: light and heavy duty vehicles, passenger cars and motorcycles;
- Off-road transport: railways, domestic shipping, certain aircraft movements, and non-road mobile machinery used in agriculture, forestry;
- Agriculture: manure management, fertiliser application, field-burning of agricultural wastes
- Waste: incineration, waste-water management.
- Other (energy-related) covers energy use principally in the services and household sectors
- Other (Non Energy): Emissions from solvent and other product use.
The following table shows the conversion of NFR sector codes into EEA sector codes (EEA, 2006):
EEA classification Non-GHGs (NFR) GHGs (CRF)

0 National totals National Total National totals without LUCF (sector
1 Energy industries 1A1 1A1
3 Industry (Energy) 1A2 1A2
2 Fugitive emissions 1B 1B
11 Transport n.a. n.a. n.a.
7 Road transport 1A3b 1A3b
8 transport (non-road mobile machinery) 1A3 (excl 1A3b) + sector mapped to 8 in table below 1A3a, 1A3c, 1A3d, 1A3e
9 Industry (Processes) 2 2
4 Agriculture 4 + 5B 4
5 Waste 6 6
6 Other (Energy) 1A4a, 1A4b, 1A4b(i), 1A4c(i), 1A5a 1A4+1A5
10 Other (non-energy) 3+7 3+7
14 Unallocated difference between NT and sum of sectors (1-12)  
12 Energy Industries (Power Production 1A1a) 1A1a 1A1a
15 residential n.a. 1A4 b
16 services, agriculture and other sectors n.a. 1A4a + 1A4c + 1A5

 

Methodology for gap filling

EEA-ETC/ACC gap-filling methodology. To allow trend analysis, where countries have not reported data for one, or several years, data has been interpolated to derive annual emissions. If the reported data is missing either at the beginning or at the end of the time series period, the emission value has been considered to equal the first (or last) reported emission value. It is recognised that the use of gap-filling can potentially lead to artificial trends, but it is considered unavoidable if a comprehensive and comparable set of emissions data for European countries is required for policy analysis purposes. The gap-filled spreadsheet containing the data used in this indicator is available on the EEA dataservice website. 

Methodology references

No methodology references available.

 

Data specifications

EEA data references

Data sources in latest figures

 

Uncertainties

Methodology uncertainty

The individual uncertainties of the estimates for individual gases are discussed in the respective EEA Air Pollution fact sheets for these gases. The trend is likely to be much more accurate than to individual absolute annual values - the annual values are not independent of each other.NOx emission estimates in Europe are thought to have an uncertainty of about +/-30%, as the NOx emitted comes both from the fuel burnt and the combustion air and so cannot be estimated accurately from fuel nitrogen alone. EMEP has compared modelled and measured concentrations throughout Europe (EMEP 1998). From these studies differences for individual monitoring stations of up to a factor of two have been found. This is consistent with an inventory of national annual emissions having an uncertainty of +/-30% (there are also uncertainties in the measurements and especially the modelling). Uncertainties in emissions of CO are likely to have a similar magnitude of uncertainty as for NOx. NMVOC emissions data have been verified by EMEP and others by means of comparison between modelled and measured concentration throughout Europe. From these studies total uncertainty ranges have been estimated to about +/-50%. Some main source categories are less uncertain.CH4 estimates are reasonably reliable as they are based on a few well-known emission sources. The IPCC believes that the uncertainty in CH4 emission estimates from all sources, in Europe, is likely to be about +/-20 %. CH4 emissions from some sources, such as rice fields, are much larger (possibly an order of magnitude), but are a minor emission source in Europe. In 2004, EU Member States reported uncertainties in their estimates of CH4 emissions from enteric fermentation as ranging between 0.5 % (UK) and 2.8 % (Ireland) of the total national GHG emissions (EEA 2004).

Data sets uncertainty

Available datasets do not include full time series for all years and/or sectors. Reporting to LRTAP Convention/EMEP and UNFCCC can be inconsistent for some countries in terms of precise sector definitions, missing data etc. Incomplete reporting and resulting intra- and extrapolation may obscure some trends.

Rationale uncertainty

No uncertainty has been specified

Further work

Short term work

Work specified here requires to be completed within 1 year from now.

Long term work

Work specified here will require more than 1 year (from now) to be completed.

General metadata

Responsibility and ownership

EEA Contact Info

Cinzia Pastorello

Ownership

European Environment Agency (EEA)

Identification

Indicator code
ENER 005
Specification
Version id: 2
Primary theme: Energy Energy

Classification

DPSIR: Pressure
Typology: Descriptive indicator (Type A - What is happening to the environment and to humans?)

Permalinks

Topics

Topics:

Tags

Filed under:
Filed under: energy
Document Actions