next
previous
items

Indicator Specification

Mountain permafrost

Indicator Specification
  Indicator codes: CLIM 011
Published 08 Sep 2008 Last modified 03 Feb 2017
5 min read
This is an old version, kept for reference only.

Go to latest version
This page was archived on 03 Feb 2017 with reason: No more updates will be done
Temperature measured in different boreholes in mountain permafrost in Switzerland 1987-2007

Update planned for November 2012

Assessment versions

Published (reviewed and quality assured)
  • No published assessments
 

Rationale

Justification for indicator selection

Permafrost is permanently frozen ground and consists of rock or soil that has remained at or below 0 °C continuously for more than two years. Mountain permafrost is the dominating permafrost in Europe, because Arctic permafrost is found in Europe only in the northernmost parts of Scandinavia. Permafrost is abundant at high elevations in mid-latitude mountains, where the annual mean temperature is below - 3 °C. It contains variable amounts of ice and exists in different forms: in steep bedrock, in rock glaciers, in debris deposited by glaciers and in vegetated soil. Because vegetation and circulating groundwater in mountain permafrost areas are mostly absent, the temperature in the deeper rock material is largely determined by the temperature history at its surface. Mountain permafrost therefore contains valuable information on climate change. Temperature profiles from alpine boreholes are difficult to interpret in terms of past trends due to the effects of the complex topography (Figure 1) and the availability of insulating snow-cover (Gruber et al., 2004a). Nevertheless, monitoring of temperature change at depth provides valuable data on the thermal response of permafrost to climate change.
Permafrost influences the evolution of mountain landscapes and affects human infrastructure and safety. Permafrost warming or thaw affects the potential for natural hazards, such as rock falls (e.g. at the Matterhorn in summer 2003) and debris flows (Noetzli et al., 2003; Gruber and Haeberli, 2007). At least four large events involving rock volumes of more than 1 million m3 have occurred in the Alps during the past decade. Their effects on infrastructure have motivated the development of technical solutions to improve design lifetime and safety (Philips et al., 2007).

Scientific references

  • No rationale references available

Indicator definition

  • Temperature measured in different boreholes in mountain permafrost in Switzerland 1987-2007

Units

http://www.eea.europa.eu/publications/eea_report_2008_4/pp37-75CC2008_ch5-1to4_Athmosphere_and-_cryosphere.pdf

 

Policy context and targets

Context description

In April 2009 the European Commission presented a White Paper on the framework for adaptation policies and measures to reduce the European Union's vulnerability to the impacts of climate change. The aim is to increase the resilience to climate change of health, property and the productive functions of land, inter alia by improving the management of water resources and ecosystems. More knowledge is needed on climate impact and vulnerability but a considerable amount of information and research already exists which can be shared better through a proposed Clearing House Mechanism. The White Paper stresses the need to mainstream adaptation into existing and new EU policies. A number of Member States have already taken action and several have prepared national adaptation plans. The EU is also developing actions to enhance and finance adaptation in developing countries as part of a new post-2012 global climate agreement expected in Copenhagen (Dec. 2009). For more information see: http://ec.europa.eu/environment/climat/adaptation/index_en.htm

Targets

No targets have been specified

Related policy documents

No related policy documents have been specified

 

Methodology

Methodology for indicator calculation

http://www.eea.europa.eu/publications/eea_report_2008_4/pp37-75CC2008_ch5-1to4_Athmosphere_and-_cryosphere.pdf

Methodology for gap filling

http://www.eea.europa.eu/publications/eea_report_2008_4/pp193-207CC2008_ch8_Data_gaps.pdf

Methodology references

No methodology references available.

 

Data specifications

EEA data references

  • No datasets have been specified here.

External data references

Data sources in latest figures

 

Uncertainties

Methodology uncertainty

http://www.eea.europa.eu/publications/eea_report_2008_4/pp193-207CC2008_ch8_Data_gaps.pdf

Data sets uncertainty

http://www.eea.europa.eu/publications/eea_report_2008_4/pp193-207CC2008_ch8_Data_gaps.pdf

Rationale uncertainty

No uncertainty has been specified

Further work

Short term work

Work specified here requires to be completed within 1 year from now.

Long term work

Work specified here will require more than 1 year (from now) to be completed.

General metadata

Responsibility and ownership

EEA Contact Info

Hans-Martin Füssel

Ownership

European Environment Agency (EEA)

Identification

Indicator code
CLIM 011
Specification
Version id: 1

Classification

DPSIR: Impact
Typology: Descriptive indicator (Type A - What is happening to the environment and to humans?)

Permalinks

Topics

Document Actions