SNAP CODE:

SOURCE ACTIVITY TITLE:

SMALL COMBUSTION INSTALLATIONS

NOSE CODE:

NFR CODE: 1A4a; 1A4bi; 1A4ci; 1A5a and small installations in 1A1a

Table 1:Relevant SNAP Codes

Source	SNAP CODE	NFR category
Small installations in district heating	010203	1A1a
Commercial / institutional	020103	1A4a
Residential	020202	1A4bi
	020205	
Agriculture / Forestry / Fishing	020302	1A4ci
	020305	
Other stationary (including military)	020106	1A5a

1 ACTIVITIES INCLUDED

This chapter covers emissions from small combustion installations, excluding industrial sources, with a thermal capacity $\leq 50 \text{ MW}_{\text{th}}$. However, some industrial sources of a lower capacity might have very similar emission characteristics to the ones described here in the category "medium size boilers". As long as there is no guidebook chapter addressing small industrial sources the data presented here might be used also as defaults for these sources.

Activities covered in this chapter are divided into the following categories:

- District heating
- Commercial and institutional
- Residential
- Agriculture / Forestry / Fishing, and
- Other (including military).

These activities can be further sub-divided considering the combustion techniques used:

- fireplaces
- stoves,
- small boilers (single household/domestic heating) indicative capacity <50 kW_{th},
- medium size boilers ($<50 \text{ MW}_{\text{th}}$),
 - \circ manual feeding (indicative capacity <1 MW_{th}),
 - o automatic feeding,
- combined heat and power generation (CHP).

The open-field burning of the agricultural residues and stationary internal combustion engines are not included in this chapter.

2 CONTRIBUTION TO TOTAL EMISSIONS

NFR Sector	Data	PM ₁₀	PM _{2.5}	TSP
1 A 1 a - Public Electricity and Heat	No. of countries reporting	26	26	27
Production ^a	Lowest Value	0.2%	0.2%	0.2%
	Typical Contribution	11.7%	10.1%	12.8%
	Highest Value	48.8%	47.8%	48.4%
1 A 4 a - Commercial / Institutional ^a	No. of countries reporting	23	23	23
	Lowest Value	0.1%	0.1%	0.1%
	Typical Contribution	3.9%	3.4%	4.5%
	Highest Value	19.3%	22.2%	29.5%
1 A 4 c - Agriculture / Forestry / Fishing	No. of countries reporting	23	23	23
	Lowest Value	0.1%	0.1%	0.2%
	Typical Contribution	4.3%	5.6%	3.4%
	Highest Value	17.4%	17.9%	21.9%
1 A 5 a - Other, Stationary (including	No. of countries reporting	7	7	7
Military) ^a	Lowest Value	0.0%	0.0%	0.0%
	Typical Contribution	0.1%	0.1%	0.1%
	Highest Value	0.5%	0.4%	0.6%

^a Includes contribution from Chapter 111

This section covers emissions of CO, SO₂, NH₃, NO_x, NMVOC, TSP, PM10, PM2.5, heavy metals (arsenic, cadmium, chromium, copper, mercury, nickel, lead, selenium, zinc), PCDD/Fs, PAHs: benzo[a]pyrene, benzo[b]fluorantene, benzo[k]fluorantene and indeno[1,2,3-cd]pyrene.

The contribution of emissions from small combustion installations to the total emissions varies and depends on pollutants type and given country. A very important role is played by the emissions from small residential installations which are typically responsible for more than a third of the total particulate matter emissions of stationary combustion (UBA, 1998a; APEG, 1999; Olendrzynski et al., 2002) but in some countries this sector may dominate, e.g., in Austria (in 1995) more than 70% of PM emissions from stationary combustion are thought to have originated from this source (Winiwarter et al., 2001). The non-industrial SCI emission

inventory for PM10 (which shows a similar trend for PM2.5) highlights the decrease in emissions from 2000 to 2020, predominantly due to the decline in the use of solid fuel. This source, however, remains significant due to the continued use of biomass. Emissions from this source are projected to decline overall due in main to the increased use of automatic feed boilers (Pye et al., 2004). In the year 2000, non-industrial combustion sources (i.e., in the residential and commercial sector) made the largest single contribution to total PM2.5 emissions in the 15 old Member States of the European Union (EU15), Norway and Switzerland (32 %), (Cofala et al., 2006). The emission source structure in the New Member States of the European Union is distinctively different to that of the EU-15+2 countries. Nonindustrial combustion sources made by far the largest single contribution to total PM2.5 emissions in the EU-10 countries (45 %). The contribution of fuel combustion in commercial. residential and other small capacity installations to the total heavy metals emission in Europe in 1990 was for As 12.4%, for Cd 15.9% and for Hg 27.8% (Berdowski et al., 1997). Pye at al., (2005) have showed that the contribution Hg emission from SCIs account for 16% of total European emissions. Over half of emissions are from the industrial sector, with just over 20% coming from the residential sector. The major contribution by fuel type is from solid fuels, although biomass appears to be important in certain countries. Also emissions of PAH and PCDD/F from those activities are significant. For instance, residential use of solid fuels and biomass accounts for about half of the emissions of polycyclic aromatic hydrocarbons (COM(2003) 423 final) and one third of dioxin emissions in the EU (Quass U., et al., 2000). Those are characterized by seasonal variations, as it was reported that emission of B[a]P in winter is 10% higher than in summer (Baart et al., 1995). Many countries using coal (but also biomass) as a major part of domestic and commercial heating requirements have serious air pollution problems, one such a example is Poland; the TSP emissions from small combustion sources is 35% of the national total emissions, and up to 90% of the total TSP emissions from combustion activities (Olendrzynski et al., 2002). It was reported that the main source of PCDD/F (68% of national total) and PAH emission (87%) in Poland are non-industrial combustion plants (residential, district heating, agriculture, forestry). The share of heavy metals emissions such as Cd, As, Cr, Cu, Ni, Zn due to high emissions of TSP is also higher (respectively: 55%, 36%, 27%, 25%, 50%, 30%). In Belarus small combustion sources provide abut 40% of total PCDD/F emissions, and about 80% of indicator PAH emission (Kakareka et al., 2003). In general those sources have a more important contribution to the above-mentioned pollutants where a higher share of solid fuels exists in the fuel mix of the residential sector.

The estimated contribution of emissions released from small combustion installations to the total European emissions is presented in Table 2.2. These sources represent one of the strongest sources of particulate matter and even in the future they might remain an important contributor and their share might even increase for some pollutants and for some scenarios. It is also worthwhile to note that there are significant regional differences, e.g., in the EU-15, the share of this sector in particulate emissions has been typically below 20 % and is expected to decline further to about 12 and 17 % for PM10 and PM2.5, respectively; in the accession countries this share was in the 90's above 30 % and is expected to decline to about 22 and 28 % for PM10 and PM2.5, respectively. Projections presented for 2010 are for illustrative purpose only and refer to the European energy scenarios developed by the PRIMES model (CEC, 2003 and CEPMEIP, 2002) and implemented in the RAINS model recently.

The emission contribution of residential sources in the future will depend strongly from the assumptions about fuel switching (coal to gas) that has been happening in the last decade, a trend that is expected to continue and eventually lead to lower emissions of particulate matter but possibly at a cost of increased emissions of other pollutants as for example NO_x. At the same time biomass becomes a more and more popular fuel used in the residential sector; its use is strongly encouraged in some countries and is seen as a part of the strategy to achieve reductions of CO_2 , however installations burning biomass are often characterized by higher emissions of particulates (Williams et al., 2001; Kubica et al., 1997/2 and 2001/1; Houck et al., 1998/1). All this indicates that air emissions from this source will remain an important source and more attention is required to be focused on them.

Tab.2.2.	Contribution to total emissions (RAINS model results)					
Pollutant	Year					
	1990	1995	2010			
Oxides of nitrogen	4.5%	5%	7%			
Sulphur dioxide	11%	8%	7%			
Ammonia		About 0.5% - 1%				
NMVOC ⁽¹⁾	7%	7%	7%			
$PM_{2.5}^{(2)}$	25%	25%	19%			
$PM_{10}^{(2)}$	22%	20%	15%			

Tab.2.2. Contribution to total emissions (RAINS model results)

(Source: IIASA, 2004)

(1) Contributions vary widely from country to country, e.g. 1% - 3% in the Netherlands or Italy, 10%-15% in Austria and 25%-30% in Sweden,

(2) Contributions vary widely from country to country, e.g. 2%-4% in the Netherlands and 40%-50% in Austria and Sweden,).

Furthermore the influence of those sources on the local air quality could be significant due to the low height of the flue gas releases, even where their share in total emissions is not dominant. This is particularly the case in the regions where solid fuels are predominately used in the residential sector. For instance, the occasional exceeding of the SO_2 ambient air target value could still be expected in the UK in some areas after the year 2000 (The Air Quality Strategy for UK; 2000) because of this reason.

3 GENERAL

3.1 Description

The small combustion installations included in this chapter are mainly intended for space heating and preparation of the hot water in residential and commercials/institutional sectors. In the residential sector some of these installations are also used for cooking. In the agricultural sector the heat generated by the installations is used also for crops drying and for heating the greenhouses.

The attention should be turned on small combustion installations due to their huge number, different type of combustion techniques employed, and because of the difficult auditing of their performance. Considerable part of them have none or low efficiency dedusting equipment. In some countries, particularly those with economies in transition, plants and

equipment are outdated, polluting and inefficient. Especially in the residential sector the installations are very diverse, strongly depending on country and region, local fuel supply and in certain cases still reflecting the traditional heating practices.

3.2 Definitions

Automatic feed boiler:	boiler with fully automated fuel supply and adjustment of combustion air
Boiler:	any technical apparatus in which fuels are oxidised in order to generate thermal energy, which is transferred to water or steam
Briquettes :	refers to patent fuels from hard/sub-bituminous coal (NAPFUE 104) and brown coal briquettes (NAPFUE 106)
Brown coal:	refers to brown coal/lignite (NAPFUE 105) of gross caloric value (GHV) less than 17435 kJ/kg and containing more than 31 % volatile matter on a dry mineral matter free basis
Charcoal:	refers to temperature treated wood (NAPFUE 112)
Chimney:	brick, metal or concrete stack used to carry the exhaust gases into the free atmosphere and to generate drought
СНР:	in this chapter refers to a co-generation installation (Combined Heat and Power production) where steam produced in a boiler is used for both, power generation (in a steam turbine) and heat supply
Coke:	refers to the solid residue obtained from hard coal (NAPFUE 107) or from brown coal (NAPFUE 108) by processing at high temperature in the absence of air
Efficiency:	is the ratio of produced of output heat energy to energy introduced with the fuel, with reference to net (low) calorific value of fuel
Fireplace:	usually very simple combustion chamber, with or without front door, in which fuels are oxidized to obtain thermal energy, which is transferred to the dwelling mainly by radiation
Gaseous fuels:	refers to natural gas (NAPFUE 301), natural gas liquids (NAPFUE 302) and liquefied petroleum gases (LPG; NAPFUE 303), biogas (NAPFUE 309)
Hard coal:	refers to coal of a gross caloric value greater than 17435 kJ/kg on ash-free but moisture basis that is: steam coal (NAPFUE 102, GHV>23865 kJ/kg), sub-bituminous coal (NAPFUE 103, 17435 kJ/kg <ghv<23865 and="" anthracite<="" kg)="" kj="" th=""></ghv<23865>

Installation:	refers to any technical apparatus (fireplace, stoves, boiler) designed to generate heat energy					
Liquid fuels:	refers to kerosene (NAPFUE 206), gas oil (gas/diesel oil; (NAPFUE 204), residual oil, residual fuel oil (NAPFUE 203) and other liquid fuels (NAPFUE 225)					
Manual feed boiler:	boiler with manual periodical fuel supply					
Patent fuels:	refers to manufactured smokeless fuels from hard/sub- bituminous coal (NAPPFUE 104)					
Peat:	refers to peat-like fuels (NAPFUE 113)					
Solid biomass fuel:	refers to wood fuels which are wood and similar wood wastes (NAPFUE 111) and wood wastes (NAPFUE 116) and agricultural wastes used as fuels (straw, corncobs, etc; NAPFUE 117)					
Solid fuels:	refers to the subcategory of hard coal, brown coal, patent fuels, brown coal briquettes, coke, charcoal, peat, solid biomass fuels					
Stove:	simple appliance in which fuels are combusted to obtain thermal energy, which is transferred to the interior of the building by radiation and convection					
Wood fuels:	refers to wood and similar wood wastes (NAPFUE 111)					

Some additional information on fuel properties could be found in Chapter Combustion Plants as Point Sources B111 and Combustion Plants as Point Sources B112.

3.3 Techniques

3.3.1 General

In small combustion installations a wide variety of fuels are used and several combustion technologies are applied. Especially older single household's installations are of very simple design, while some modern installations of all capacities are significantly improved. Emissions strongly depend on the fuel, combustion technologies as well as on operational practices and maintenance.

For the combustion of liquid and gaseous fuels, the technologies used are similar to those for production of thermal energy in industrial combustion activities, with the exception of the simple design of smaller appliances like fireplaces and stoves.

On the contrary the technologies for solid fuels and biomass utilization widely vary due to different fuel properties and technical possibilities. Small combustion installations employ mainly fixed bed combustion technology i.e. grate-firing combustion (GF) of solid fuels.

Solid fuels as well as a mixture of coal and biomass solid fuels, with grain size from a few mm to 80 mm, can be used.

The fluidised bed combustion technology can be also applied in small combustion installations. It is sporadically used within small combustion activities especially in district heating utilizing solid biomass.

A more detailed description of techniques is included in the EUR report Kubica, et al., 2004.

3.3.2 Fireplaces

Fireplaces were the first simple combustion devices, which were used by human beings. Fireplaces are used as supplemental heating appliances primarily for aesthetic reasons in residential dwellings. Based on the type of fuel used, the fireplaces can be subdivided into solid and gas fuelled fireplaces. Regarding the combustion conditions the fireplaces can be divided into open, partly closed and closed fireplaces. Based on the type of construction materials used, they can be divided into cut stone, and/or brick (masonry fireplaces), and cast iron or steel ones. Masonry fireplaces are usually built on site integrated into the building structure, while iron or steel are prefabricated.

3.3.2.1 Solid fuelled fireplaces

Regarding combustion techniques the solid fuelled fireplaces can be listed among the fixed bed combustion appliances. The user intermittently adds solid fuels to the fire by hand. They can be distinguished into:

Open fireplaces: this type of fireplaces is of very simple design - basic combustion chamber, which is directly connected to the chimney. Fireplaces have large openings to the fire bed. Some of them have dampers above the combustion area to limit the room air intake and resulting heat looses when fireplace is not being used. The heat energy is transferred to dwelling mainly by radiation. Open fireplaces are usually of masonry type and have very low efficiency while having significant emissions of TSP, CO, NMVOC and PAH resulting from the incomplete combustion of the fuels.

Partly closed fireplaces are equipped with louvers and glass doors to reduce the intake of combustion air. Some masonry fireplaces are designed or retrofitted in that way in order to improve their overall efficiency.

Closed fireplaces are equipped with front doors and may have distribution of combustion air to primary and secondary as well as a system to discharge the exhaust gases. They are prefabricated and installed as stand-alone units or as a fireplace inserts installed in existing masonry fireplaces. Because of the design and the combustion principle, closed fireplaces resemble stoves and their efficiency usually exceeds 50 %. They have similar emissions like stoves, i.e., lower than open, as well as, partly closed fireplaces. For this reason they can be rated among stoves.

Fuels used in solid fuel fireplaces are mainly: log, lump wood, biomass briquettes, and charcoal, coal and coal briquettes.

Traditional solid-fuelled fireplaces have high emissions and for that reason upgrade to a closed fireplace by installing inserts or their conversion to gas could reduce its emissions. Fireplaces might also be equipped with catalytic converters in an effort to limit emissions, but the control options are described in details later in chapter 3.5.

3.3.2.2 Gas fuelled fireplaces

The gas fireplaces are also of simple design; materials and equipment are similar to those of solid fuels fireplaces, yet equipped with a gas burner. Because of the simple valves employed for adjustment of fuel/air ratio and non-premixing burners, NO_x emissions are lower but emissions of CO and NMVOC are higher in comparison to the boilers using the same fuel.

3.3.3 Stoves

Stoves are simple appliances in which hand supplied fuels are combusted; useful heat is transmitted to the surroundings by radiation and convection. Depending on the main mode of heat transfer they are generally classified as radiating stoves or convection stoves (circulating, heat storing – heat accumulating). They can vary widely due to fuels type, application, design and construction materials, and also combustion process organisation. Due to the fuel properties they can be divided into the following subgroups:

- solid fuels
- liquid fuels
- gaseous fuels

The stoves utilizing solid fuels are usually used for heating of the rooms, but also for cooking, and hot water preparation (bath stove/furnace), while liquid and gas stoves are used for heating only.

3.3.3.1 Solid fuel stoves

The solid fuel stoves are classified on the basis of the combustion principle, which primarily depends on the airflow path through the charge of fuel in a combustion chamber. Two main types exist: up-draught (under-fire, down-burning combustion) and downdraught (up-burning combustion). The vast majority of older stoves are of the up-draught type, which is of simpler design, but has higher emissions.

The stoves can be made as prefabricated iron or steel appliances or masonry stoves, which are usually assembled on site with bricks, stone or ceramic materials. Regarding the main mode of heat transfer, solid fuel stoves can be divided into two main subgroups which are: radiating stoves, and heat storing - heat accumulating stoves.

Radiating stove; usually prefabricated iron or steel appliances; some of them used as cooking stoves. Radiating ordinary stoves are characterized by high emissions. The development of

their design resulted in new constructions such as pellet stoves and stoves with advanced combustion process organization having higher efficiency and lower emissions. Considering the combustion process organization they can be differentiated as follows:

- Conventional stoves have poorly organised combustion process resulting in low efficiency (40% to 50%) and significant emissions of pollutants mainly originating from incomplete combustion (TSP, CO, NMVOC and PAH). Their autonomy is low, lasting from 3 to 8 hours. Those, which are equipped with hot plate zones, are used also for cooking kitchen stoves. Some of them could also be used for hot water preparation.
- Classic energy efficient stoves; due to the utilization of secondary air in the combustion chamber their efficiency is between 55% to 75% and emission of pollutants are lower, their autonomy ranges from 6 to 12 hours.
- Advanced combustion stoves: These stoves are characterized by multiple air inlets and pre-heating of secondary combustion air by heat exchange with hot flue gases. This design results in increased efficiency (near 70% at full load) and reduced CO, NMVOC and TSP emissions in comparison with the conventional stoves.
- *Pellet stoves*: They can be fed only with pelletised fuels such as wood pellets, which are distributed to the combustion chamber by a fuel feeder from a small fuel storage. Pellets stoves are equipped with a fan and electronic control system for supply of the combustion air. For this reason they are characterized by high efficiency (above 80% up to 90%) and low emissions of CO, NMVOC, TSP and PAH.

Heat storing, heat accumulating stoves; depending on a country and regional tradition, masonry stoves are made of bricks, stones or combinations of both together with fireproof materials, such as ceramic (chamotte, faience). Sometimes they are made as prefabricated devices. Heat accumulating stoves are characterized with relatively low emissions of pollutants compared with the classical radiating stoves. Efficiency of masonry heating stoves ranges between 60% and 80%. Due to its function they can be diversified into:

- *Room heating stoves*; some more advanced of them employ contraflow system (Kubica et al, 2004) for heat transfer.
- *Heat accumulating cooking stoves* can be divided into two categories: simple residential cooking and boiler cooking stoves. The first ones are equipped with a combustion chamber with hot plate zones for food preparation and room heating; the second ones are simultaneously used as kitchen stove, room heating and hot water preparation (e.g. "*Russian stoves*").

Catalytic combustor stove; Stoves, in particular for wood combustion, can be equipped with a catalytic converter in order to reduce emissions caused by incomplete combustion. Due to more complete oxidation of the fuels also energy efficiency increases. Catalytic combustors are not common for coal stoves.

Different kinds of solid fuels are used such as: coal and its products (usual anthracite, hard coal, brown coal, patent fuels, and brown coal briquettes) and biomass - lump wood and biomass pellets and briquettes. Coals of different grain sizes are used usually 20-40mm, and above 40mm, or mixtures of both. Peat is also occasionally used.

Emission Inventory Guidebook

3.3.3.2 Liquid/gas fuelled stoves

The liquid/gas stoves have simple design; materials are alike for solid fuels stoves. Gas stoves are equipped with simple valves for fuel/air ratio adjustment and non-pre-mixing burners. For that reason emissions NO_x from these are lower in comparison to boilers. Simple liquid fuel stoves use evaporation systems for preparation of fuel/air mixture.

Regarding construction material and design, liquid and gas stoves are generally less diversified than those for solid fuels. They are made of steel and prefabricated.

3.3.4 Small boilers (single household/domestic heating) – indicative capacity \leq 50 kW_{th}

Small boilers of this capacity are used in flats and single houses. All types of fuels could be used. They are mainly intended for generation of heat for the central heating system, but also hot water supply or combination of both.

3.3.4.1 Solid fuel small boilers

Small boilers for central heating for individual households are more widespread in temperate regions and usually have a nominal capacity between $12kW_{th}$ to $50kW_{th}$. They use different types of solid fossil fuels and biomass usually depending on their regional availability. They could be divided into two broad categories regarding the organisation of combustion process: overfeed boiler (overfeed burning - over-fire and under-fire -, down-burning) and underfeed boiler (underfeed burning - upper-fire). They can be differentiated between conventional and advanced combustion boilers.

Conventional, coal/biomass boilers

Over-fire boilers: Over-fire boilers are commonly used in residential heating due to their simple operation and low investment cost. An incomplete combustion process takes place due to the non-optimal combustion air supply, which is usually generated by natural draught. The fuel is periodical fed onto the top of the burning fuel bed. The efficiency of the over-fire boiler is similar to the efficiency of conventional stoves, and is usually between 50% and 65%, depending on construction design and load. The emission of pollutants resulting from incomplete combustion of fuel may be very high particularly if they are operated at low load.

Under-fire boilers: Under-fire boilers have manual fuel feeding systems, and stationary or sloping grates. They have a two-part combustion chamber. The first part is used for storage of fuel and for partial devolatilization and combustion of the fuel layer. In the second part of the combustion chamber the combustible gases are oxidized. In the old design boilers natural draught is used. Combustion in under-fire boilers is more stable than in over-fire boilers, due to continuous gravity feed of fuel onto the fire bed. This results in higher energy efficiency (60-70%) and lower emissions in comparison to overfeed combustion.

Over-fire and under-fire boilers use all types of solid fuels except pellets, wood chips and fine-grained coal.

Advanced combustion boilers

Advance, under-fire coal boilers: In general the design and the combustion technique are similar to the conventional under-fire boiler. The main difference is that a fan controls the flue gases flow. Control system for the primary and secondary air might lead to increase in efficiency above 80% (usually between 70% and 80%).

Downdraught wood boilers: This type of boiler is considered state of the art in the lump wood combustion. It has two chambers, first one where the fuel is fed for partial devolatilisation and combustion of the fuel layer, and a secondary chamber, where burning of the released combustible gases occurs. The advantage of this boiler is that the flue gases are forced to flow down through holes in a ceramic grate and thus are burned at high temperature within the secondary combustion chamber and ceramic tunnel. Owing to the optimised combustion process, emissions due to incomplete combustion are low.

Stoker coal burners: The fuel with low ash contents and the grain size of between 4 mm up to 25 mm is automatically fed into to a retort by a screw conveyor. Stoker boiler is characterized by higher efficiency, usually above 80%. The advantage of stoker boiler is that it can operate with high efficiency within load range from 30% to nominal capacity. In a properly operated stoker, emissions of pollutants resulting from incomplete combustion are significantly lower, however NO_x increases due to the higher combustion temperature.

Wood pellet boiler has a fully automatic system for feeding of pellet fuels and for supply of combustion air, which is distributed into primary and secondary. The boilers are equipped with a smaller pellet storage, which is fuelled manually or by an automatic system from larger chamber storage. The pellets are introduced by screw into burner. These boilers are characterised by a high efficiency (usually above 80%) and their emissions are comparable to those of liquid fuel boilers.

3.3.4.2 Liquid/gas fuelled small boilers

These are usually two-function appliances used for hot water preparation and for heat generation for the central heating system. In the capacity range below 50 kW_{th} they are used mainly in single households. *Water-tube* low temperature boilers (temperature of water below 100°C) (see 3.3.5.2) with open combustion chamber are usually used. These devices can be made of cast iron or steel. The boilers of capacity below 50 kW_{th}, can be divided into two main groups, i.e., standard boiler and condensation boilers.

Standard boilers; with open combustion chamber, having a maximum energy efficiency above 80%, because of the fact that flue gases are discharged at a temperature above 200°C and the inlet/return water temperature is usually above 60°C. Due to very simple design of combustion process automation system they are characterized by higher emission of CO and VOC in comparison to medium size boilers and industrial installations.

Condensation boilers; with closed combustion chamber; can operate with efficiency more than 90%. Recovering part of the latent heat from flue gases contributes to increased energy efficiency. It is achieved by condensation of the water vapour from the flue gases, which, in

Emission Inventory Guidebook

the optimal operation, have a temperature below 60° C at the chimney inlet. Gaseous fuels are mainly used in condensation boilers.

3.3.5 Boilers with indicative capacity between 50 kW_{th} and 50 MW_{th}

Boilers of such a capacity are used in multiresidential houses, block of flats and are the most commonly found small sources in commercial and institutional sector as well as in agriculture.

3.3.5.1 Solid fuels fuelled boilers

Fixed bed combustion technology is mainly used for combustion of solid fuels in this capacity range. This is a well-established technology, and a great variety of fixed bed layer and moving layer boilers (travelling grate combustion, stokers) are in use. Installations are differentiated into two main subgroups:

- manually fuelled
- automatically fuelled

In addition to fixed bed combustion also fluidised bed combustion boilers are in use in this capacity range, mostly for biomass combustion.

3.3.5.1.1 Manual feed boilers

Due to economical and technical reasons manual feeding boilers usually have a nominal capacity lower than $1 M W_{\text{th.}}$

Coal/wood boilers

Manually fed boilers in this capacity range apply two combustion techniques, under-fire and upper-fire, similar as in boilers of lower capacity range (see 3.3.4.1).

Overfeed boilers, under-fire boilers: Coal fuels of different grain size (usually between 5mm and 40 mm) or lump wood are used in this type of installations. Their thermal efficiency ranges from 60% to 80% and depends on the air distribution into primary/secondary system and secondary sub-chamber design. The emissions of pollutants, i.e., CO, NMVOC, TSP and PAH resulting from incomplete combustion are generally high.

Overfeed boilers, upper-fire boilers: Fine coal, or mixture of fine coal with biomass chips, which are periodically moved into combustion chamber are used in this type of boilers. The ignition of fuel charge is started from its top. Their efficiency ranges from 75% to 80%. The emissions of pollutants of TSP, CO, NMVOC, PAH are lower in comparison to overfeed boilers due to different combustion process organization, which is similar to stoker combustion.

Both the under-fire and upper-fire boilers, in this capacity range, have better organisation of the combustion air compared with the ones used in single households.

Biomass/straw boilers

Overfeed boilers, biomass/straw fixed grate boilers: These are developed and applied for straw and cereal bale combustion. The straw bales are fed to the combustion chamber by hand. Because of very fast combustion of this kind of biomass these installations contain hot water accumulation system. For this reason they are used only in small-scale applications up to a nominal boiler capacity of 1,5 MW_{th}. They are very popular in the agricultural regions due to their relatively low costs and simple maintenance.

3.3.5.1.2 Automatic feed boilers

The automatic feed boilers usually have a capacity above $1MW_{th}$, but nowadays also lower capacity boilers are equipped with automatic feeding. In addition these installations have in general better control of the combustion process compared with manually fed ones. They typically require fuels of standardised and stable quality. These installations might also have dedusting equipment.

Moving bed (GF) combustion: They are commonly classified according to the way in which fuel is fed to the grate, as spreader stokers, overfeed stokers, and underfeed stokers.

The coal of smaller granulation or fine wood (e.g., chips or sawdust) is charged on a mechanical moving grate. The combustion temperatures are between 1000°C and 1300°C. The grate-fired installations are used also for co-combustion of coal with biomass. General applications are aimed at production of heat and/or hot water, and/or low-pressure steam for commercial and institutional users, in particular for district heating. Due to highly controlled combustion process of solid fuels in moving bed techniques and usually fully automatic process control systems the emissions of pollutants, resulting from incomplete combustion, is significantly lower in comparison to manual feed boilers.

Advanced techniques:

Underfeed coal/wood boilers; upper-fire burning, stoker boilers, underfeed rotating grate; are used for both coal and wood combustion. The process principle is combustion in underfeeding stoker. The fuel with low ash contents (wood chips, sawdust, pellets; particle sizes up to 50 mm, or coal up to 30 mm) is fed into the combustion chamber through a screw conveyor and is transported to a retort when is oxidised.

Cigar straw boiler is developed and applied for combustion of straw and cereal bales. The fuel bales are automatically transported to the combustion chamber by a hydraulic piston through an inlet tunnel into the combustion chamber.

Indirect combustor, gasification of wood biomass uses a separate gasification system for the chipped wood fuels, and the successive combustion of the product fuel gases in the gas boiler. An advantage of this technology is a possibility to use wet wood fuels of varying quality. This technique has low emissions of pollutants resulting from incomplete combustion of fuels.

Pre-ovens combustion system: Wood chip combustion installations are used in some countries, especially in the countryside, heating larger houses and farms. This system contains automatic chips fuel feeding by a screw and pre-ovens (well-insulated chamber) and could be connected to an existing boiler. Pre-ovens system applies full automatic combustion process and consequently emissions are low.

3.3.5.1.3 Fluidised bed combustion

The fluidised bed combustion (FBC) can be divided into bubbling fluidised bed (BFB) and circulating fluidised bed combustion (CFB), depending on the fluidisation velocity. The solid fuels are injected with combustion air through the bottom of the boiler into a turbulent bed. FBC is in particular adapted to poor quality, rich in ash coal. The FBC is most appropriate installation for co-combustion of coal with biomass and/or with waste fuels, or combustion of biomass. There are only few medium size installations of this type in operation.

3.3.5.2 Liquid/gas fuels

For gas and oil boilers the fuel and air are introduced as a mixture in the combustion chamber. The main distinction between gas/oil and coal pulverized combustion is the design of the individual burners of the boiler.

Boilers fired with gaseous and liquid fuels are produced in a wide range of different designs and are classified considering especially: burner configuration (injection burner or blow burner), material they are made of, the type of medium transferring heat (hot water, steam) and their power, the water temperature in the water boiler which can be: low temperature \leq 100°C; medium-temperature >100°C to \leq 115°C; high-temperature > 115°C), the heat transfer method (water-tube, fire -tube) and the arrangement of the heat transfer surfaces (horizontal or vertical, straight or bent over tube).

Cast iron boilers produce mainly low-pressure steam or hot water. Typically, they are used in residential and commercial/institutional sectors up to a nominal boiler capacity of about 1,5 MW_{th}.

Steel boilers are manufactured, up to a nominal capacity of 50 MW_{th} , from steel plates and pipes by means of welding. Their characteristic feature is the multiplicity of their design considering the orientation of heat transfer surface. The most common are: water-tube boilers, fire-tube boilers, furnace-fire-tube boilers and condensation boilers.

Water-tube boilers; are equipped with external, cubicle, steel water jacket. Water-tubes (water flows inside, exhaust gasses outside) are welded in the opposite walls of the cubicle.

Fire-tube boilers; in these boilers combustion gasses flow inside smoke tube, which are surrounded by the water. They are designed as cylinder or cubicle.

Furnace-fire-tube boilers made of steel; these devices are produced as the horizontal cylinders. The cylinder made of rolled steel plate ends at both sides with bottoms. The front

bottom in its lower part (under the cylinder axis) is equipped with a furnace tube, which plays the role of combustion chamber.

Condensation boilers partly utilize the latent heat of the water vapour in the flue gases due to its condensation in the heat exchanger. For that reason their efficiency is higher than for other boiler systems. Their efficiency is more than 90%. They could efficiently operate at lower inlet water temperatures. Besides high efficiency their advantage is also lower emission of NO_x .

3.3.6 Combined Heat and Power (CHP)

Requirements to increase the efficiency of the energy transformation and the use of renewable energy sources have led to the development of the smaller CHP units using in particular biomass and other by-products as fuels. The steam produced by the boiler is used by backpressure steam turbine (ST) with subsequent heat utilization. Electricity generation efficiency is slightly reduced, however the overall efficiency is improved compared with separate generation of power and heat. CHP using internal combustion engines are not covered in this chapter.

3.4 Emissions

Relevant pollutants are SO₂, NO_x, CO, NMVOC, particulate matter, heavy metals, PAH and PCDD/F. Emission of ammonia (NH₃) is of lower importance.

For solid fuels generally the emissions due to incomplete combustion are many times greater in small appliances than in bigger plants. This is particularly valid for manually fed appliances and poorly controlled automatic installations.

For both, gaseous and liquid fuels, the emissions of pollutants are not significantly higher in comparison to industrial scale boilers due to the quality of fuels and design of burners and boilers, except for gaseous and liquid fuelled fireplaces and stoves because of their simple organization of combustion process. For the above-mentioned installations the same pollutants are generated as for solid fuels but their quantities are in general significantly lower.

Emissions caused by incomplete combustion are mainly a result of insufficient mixing of combustion air and fuel in the combustion chamber (local fuel-rich combustion zone), an overall lack of available oxygen, too low temperature, short residence times and too high radical concentrations (Kubica, 1997/1 and 2003/1). The following components are emitted to the atmosphere as a result of incomplete combustion in small combustion installations: CO, PM and NMVOCs, PAHs as well as PCDD/F. Small amounts of NH₃ may also be released as a result of incomplete conversion of NH₃.

The main influencing parameters, which determine the emissions and species profiles of some pollutants from combustion plants, are given in Section 3.4 and 9 of chapter B111 on

"Combustion Plant as Point Sources". Because pollutants from incomplete combustion, in particular from solid fuels use, have a significant share they are further discussed here together with heavy metals since their emissions from biomass are different.

 NH_3 – Small amounts of ammonia may be emitted as a result of incomplete combustion process of all solid fuels containing nitrogen. This occurs in cases where the combustion temperatures are very low (fireplaces, stoves, old design boilers). NH₃ emissions generally can be reduced by primary measures aiming to reduce products of incomplete combustion and increase of efficiency.

TSP, PM10, PM2.5 –Particulate matter in flue gases from combustion of fuels (in particular of solid fuels and biomass) might be defined as carbon, smoke, soot, stack solid or fly ash. Emitted particulate matter can be classified into three groups of fuel combustion products.

The first group is formed via gaseous phase combustion or pyrolysis as a result of incomplete combustion of fuels (the products of incomplete combustion - PIC): soot and organic carbon particles (OC) are formed during combustion as well as from gaseous precursors through nucleation and condensation processes (secondary organic carbon) as a product of aliphatic, aromatic radical's reactions in a flame reaction zone in the presence of hydrogen and oxygenated species: CO and some mineral compounds as catalytic species, and VOC, tar/heavy aromatic compounds species as a results of incomplete combustion of coal/biomass devolatilization/pyrolysis products (from the first combustion step), and secondary sulphuric and nitric compounds. Condensed heavy hydrocarbons (tar substances) are an important, and in some cases, the main contributor to the total level of particles emission, in small-scale solid fuels combustion appliances such as fireplaces, stoves and old design boilers.

The next groups (second and third) may contain ash particles or cenospheres that are largely produced from fuels mineral matter, they contain oxides and salts (S, Cl) of Ca, Mg, Si, Fe, K, Na, P, and heavy metals, and unburned carbon form from incomplete combustion of carbonaceous material (black carbon or elemental carbon – BC; Kupiainen, et al., 2004); this is called carbon-in-ash (or loss on ignition).

Particulate matter emission from SCIs, mainly from different residential and commercial solid fuel appliances is typically combined with high emission of PICs associated and/or adsorbed. Size distribution depends on combustion conditions. Optimization of solid fuel combustion process by introduction of continuously controlled conditions (automatic fuel feeding, distribution of combustion air) leads to decrease of TSP emission and to change of PM distribution (Kubica, 2002/1 and Kubica et al., 2004/4). Application of co-combustion of coal and biomass leads to decrease of TSP, mainly PIC that are OC, (Kubica et al., 1997/2 and Kubica, 2004/5). Several studies have shown that the use of modern and "low-emitting" residential biomass combustion technologies leads to particle emissions dominated by submicron particles (< 1 μ m) and the mass concentration of particles larger than 10 μ m is normally < 90 % for SCIs Boman et al., 2004 and 2005; Hays et al., 2003.

Heavy metals (HM) – Most of heavy metals considered (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn) are usually released as compounds associated and/or adsorbed with particles (e.g. sulfides, chlorides or organic compounds). Hg, Se, As and Pb are at least partially present in the vapour phase only. Less volatile elements tend to condensate onto the surface of smaller

particles in the exhaust gases. Therefore the emission of heavy metals strongly depends on their contents in the fuels. Coal and its derivatives normally contain amounts several orders of magnitude higher than in oil (exceptionally for Ni and V in heavy oils) and in natural gas (about 2-5 µg/m³; van der Most *et al.*, 1992). All "virgin" biomass also contains heavy metals. Their content depends on the type of biomass. Higher emission of Cd, and Zn were observed in comparison to those from coal. During the combustion of coal and biomass, particles undergo complex changes, which lead to vaporization of volatile elements. The rate of volatilization of heavy metal compounds depends on technology characteristics (type of boilers; combustion temperature) and on fuel characteristics (their contents of metals, fraction of inorganic species, such as chlorine, calcium, etc.). The chemical form of the mercury emitted may depend in particular on the presence of chlorine compounds. The nature of the combustion appliance used and any associated abatement equipment will also have an effect (Pye et al., 2005/1). Mercry emitted form SCIs, similarly to emission from large scale combustion, occurs in elementary form (elemental Mercury vapour Hg⁰), reactive gaseous form (Reactive Gaseous Mercury, RGM) and total particulate form (Total Particulate Mercury, TPM), Pacyna et al, 2004. Whereas it Has been show by Pye et al., 2005, that In case of SCIs distribution of particular species of emitted mercury is different to the one observed under large scale combustion. Contamination of biomass fuels, such as impregnated or painted wood may cause significantly higher amounts of heavy metals emitted (e.g. Cr. As). Heavy metals emissions can be reduced by secondary emission reduction measures, with the exception of Hg, As, Cd and Pb. Pye et al., 2005, have showed that limited technical abatement options (e.g. removal of mercury from flue gases after combustion) were identified specifically for SCIs, and those that were tended to be via abatement equipment that would normally be implemented for other pollutants, and which would have only indirect benefits for mercury emission reduction.

PCDD/F – The emissions of dioxins and furans are highly dependent on the conditions under which cooling of the combustion and exhaust gases is carried on. Carbon, chlorine, a catalyst and oxygen excess are necessary for the formation of PCDD/F. They are found to be consequence of the de-novo synthesis in the temperature interval between 180°C and 500°C (Karasek et al., 1987). Coal fired stoves in particular were reported to release very high levels of PCDD/F when using certain kinds of coal (Quass U., et al., 2000). The emission of PCDD/F is significantly increased when plastic waste is co-combusted in residential appliances or when contaminated/treated wood is used. The emissions of PCDD/F can be reduced by introduction of advanced combustion techniques of solid fuels (Kubica, 2003/3).

PAH – Emissions of polycyclic aromatic hydrocarbons results from incomplete (intermediate) conversion of fuels. As for CO, and NMVOC emissions of PAH depend on the organization of the combustion process, particularly on the temperature (too low temperature favourably increases their emission), the residence time in the reaction zone and the availability of oxygen (Kubica K., 1997/1, 2003/1). It was reported that coal stoves and old type boilers (hand fuelled) emit several times higher amounts of PAH in comparison to new design boilers (capacity below 50kW_{th}), such as boilers with semi-automatic feeding (Kubica K., 2003/1, 2002/1,3). Technology of co-combustion of coal and biomass that can be applied in commercial/institutional and in industrial SCIs leads to reduction of emission PAHs, as well as TSP, NMVOCs and CO, Kubica et al., 1997/2 and 2004/5).

CO – Carbon monoxide is found in gas combustion products of all carbonaceous fuels, as an intermediate product of the combustion process and in particular for under-stoichiometric conditions. CO is the most important intermediate product of fuel conversion to CO₂; it is oxidized to CO₂ under appropriate temperature and oxygen availability. Thus CO can be considered as a good indicator of the combustion quality. The mechanisms of CO formation, thermal-NO, NMVOC and PAH are in general similarly influenced by the combustion conditions. The emissions level is also a function of the excess air ratio as well as of the combustion temperature and residence time of the combustion products in the reaction zone. Hence, small combustion installations of capacity above 1MW_{th}, mainly with automatic feeding, have favourable conditions to achieve lower CO emission. Thus the emissions of CO from solid fuels fuelled small appliances are several thousand ppm in comparison to 50-100 ppm for industrial combustion chambers, used in power plants.

NMVOC – They are all intermediates in the oxidation of fuels. They can adsorb on, condense, and form particles. Similarly as for CO, emission of NMVOC is a result of too low temperature, too short residence time in oxidation zone, and/or insufficient oxygen availability. The emissions of NMVOC tend to decrease as the capacity of the combustion installation increases, due to the use of advanced techniques, which are typically characterized by improved combustion efficiency.

3.5 Controls

Reduction of emissions from combustion process can be achieved by either avoiding formation of such substances (primary measures) or by removal of pollutants from exhaust gases (secondary measures).

Primary measures. These actions, preventing or reducing emission comprise of several possibilities (Kubica, 2002/3, Pye et al., 2004):

- replacing of coal by upgraded solid derived fuel, biomass, oil, gas
- modification of fuels composition and improvement of their quality; preparation and improvement of quality of solid fuels, in particular of coal (in reference to S, Cl, ash contents, and fine sub-fraction contents); modification of the fuels granulation by means of compacting briquetting, pelletizing; pre-cleaning washing; selection of grain size in relation to the requirements of the heating appliances (stove, boilers) and supervision of its distribution; partial replacement of coal with biomass (implementation of co-combustion technologies enabling reduction of SO₂, and NOx), application of combustion modifier; catalytic and S-sorbent additives (limestone, dolomite), reduction and modification of the moisture contents in the fuel, especially in the case of solid biomass fuels
- selection of the combustion appliances type: replacement of low effective heating appliances with newly designed appliances, and supervision of their distribution by obligatory certification system; chimney sweeper supervision over residential and communal system heating
- improved construction of the combustion appliances; implementation of advanced technologies in fire places, stoves and boilers construction (implementation of BAT for combustion techniques and good combustion practice)

- control optimization of combustion process, mainly in small combustion installations capacity above $1 MW_{th}$.

Co-combustion of coal and biomass that can be applied in commercial/institutional and in industrial SCIs leads to reduction of TSP and PIC emission, mainly PAHs, NMVOCs and CO, Kubica et al., 1997/2 and 2004/5).

Secondary emission reduction measures: For small combustion installations a secondary measure can be applied to remove emissions, in particular PM. In this way emissions of pollutants linked with the PM, such as heavy metals, PAHs and PCDD/F can also be significantly reduced due to their removal together with particulate matter. These measures/controls are characterized by various dedusting efficiency (Perry at al., 1997 and Bryczkowski at al., 2002) and may be used mainly in medium size sources in small combustion installations (capacity at least 1 MW_{th}), due to technical reasons. For particulate matter the following options can be considered:

- settling chambers; gravity separation where the low collection efficiency (about 35% of fine dust, which contains 90% PM below 75 μm) is the main disadvantage,
- cyclone separators; disadvantage low collection efficiency their efficiency for fine particles is 78-85% when compared to other filtration options, such as electrostatic precipitators or fabric filters, also tar substances may condense inside the apparatus,
- for higher effectiveness (94-99%) units with multiple cyclones (cyclone batteries) are applied, and multi-cyclones for increased gas flow rates,
- electrostatic precipitators (their efficiency is between 99,5% to 99,9%) or fabric filters (with efficiency about 99,9%) are typically not used in medium combustion plants due to their high costs. Fabric filters, which are relatively cheaper, also have the added constraint of operating temperatures below 200°C and high-pressure drop.

Wood combustion appliances, stoves in particular, can be equipped with a catalytic converter in order to reduce emissions caused by incomplete combustion. The catalytic converter (a cellular or honeycomb, heat ceramic monolith covered with a very small amount of platinum, rhodium, or combination of these) is usually placed inside the flue gas channel beyond the main combustion chamber. When the flue gas passes through catalytic combustor, some pollutants are oxidized. The catalyst efficiency of emission reduction depends on the catalyst material, its construction – active surface, the conditions of flue gases flow inside converter (temperature, flow pattern, residence time, homogeneity, type of pollutants). For wood stoves with forced draught, equipped with catalytic converter (Hustad, *et al.*, 1995) the efficiency of emission reduction of pollutants is as follows: CO 70-93%,, CH₄ 29-77%, other hydrocarbons more than 80%, PAH 43-80% and tar 56-60%. Reduction of CO emissions from stoves equipped with catalytic converter is significant in comparison to an advanced downdraught staged-air wood stove under similar operating conditions, (Skreiberg, 1994). However, the catalysts needs frequent inspection and cleaning. The lifetime of a catalyst in a wood stove with proper maintenance is usually about 10,000 hours.

Secondary measures with reference to, NO_x and SO_2 cannot be applied for small combustion installations from a technical and economical point of view. Because of the significant share of PM and the linked substances, technical methods for their reduction are currently under intense development especially for small sources of capacity below $1MW_{th}$.

Due to the heterogeneity of SCIs across Europe, and the difference in energy markets, it is clear that technical measures for emission reduction will be implemented on a country-by-country basis, taking into consideration such differences. Primary (preventative) technical controls (such as replacement of appliance or change in type of fuel) will be used for smaller SCIs, while secondary abatement measures will be more applicable to larger institutional and industrial plant, Pye et al., 2005/1.

4 SIMPLER METHODOLOGY

4.1 General

This simpler methodology is intended for calculating and reporting emissions when the contribution of sources **1A1a**; **1A4a**; **1A4bi**; **1A4ci**; **1A5a** (and small installations in **1A1a**) in the national totals is small or for the first assessment of emissions from these sources when there are no data available for application of the detailed methodology.

The simpler methodology described in this chapter refers to the calculation of the emissions, based on the split of the small combustion sources in the relevant sectors only with regard to the fuel used and anticipates the application of default emission factors. It covers all relevant emissions that are: SO₂, CO, NMVOC, NO_x, NH₃, TSP, PM10, PM2.5, heavy metals, PCDD/PCDF and PAH.

4.2 Applicability

The simpler methodology does not take into account differences in the emissions due to the wide variety of technologies, which is present among these sources, neither the different level of maintenance nor the influence of locally specific fuels. This is why the simpler approach might lead to a significant uncertainty in the estimated emissions. Moreover this approach does not take into account the penetration of new technologies, and thus might not represent appropriately the trends in emissions. Therefore the simpler methodology should be applied only if the contribution of these sources in the national totals is small or for the first assessment of emissions from these sources when there are no data available for application of the detailed methodology. In most cases when the share of solid fuels in covered sector is significant, the detailed methodology should be applied.

4.3 Methodology

The simpler methodology involves applying an appropriate emission factor to activity data given at the level of sectors (commercial/institutional, residential, agriculture and others). Within each sector only different fuels are distinguished. Default emission factors to facilitate this approach are provided in section 8.1.

Emissions can be estimated at different levels of complexity; it is useful to think in terms of three tiers¹:

- Tier 1: a method using readily available statistical data on the intensity of processes ("activity rates") and default emission factors. These emission factors assume a linear relation between the intensity of the process and the resulting emissions. The Tier 1 default emission factors also assume an average or typical process description.
- Tier 2: is similar to Tier 1 but uses more specific emission factors developed on the basis of knowledge of the types of processes and specific process conditions that apply in the country for which the inventory is being developed.
- Tier 3: is any method that goes beyond the above methods. These might include the use of more detailed activity information, specific abatement strategies or other relevant technical information.

By moving from a lower to a higher Tier it is expected that the resulting emission estimate will be more precise and will have a lower uncertainty. Higher Tier methods will need more input data and therefore will require more effort to implement.

For the Tier 1 simpler methodology, where limited information is available, a default emission factor can be used together with activity information for the country or region of interest with limited or no specification on the type of technology or the type and efficiency of control equipment. For a Tier 2 approach an approximation may be made of the most representative technologies, thereby allowing the use of more appropriate default factors if more detailed activity data are available.

Consequently the simplest methodology (Tier 1) is to combine an activity rate (AR) with a comparable, representative, value of the emissions per unit activity, the emission factors (EF). The basic equation is:

$$Emission = AR \times EF$$

In the energy sector, for example, fuel consumption would be activity data and mass of material emitted per unit of fuel consumed would be a compatible emission factor.

NOTE: The basic equation may be modified, in some circumstances, to include emission reduction efficiency (abatement factors).

The Tier 2 methodology is a modified version of this basic equation:

Emission = $\sum ((AR_1 \times EF_1) + (AR_2 \times EF_2) + \dots (AR_n \times EF_n))$

Default emission factors for this purpose are provided in Sections 8.1 and 8.2.

¹ The term "Tier" is used in the 2006 IPCC Guidelines for National Greenhouse Gas Inventories and adopted here for easy reference and to promote methodological harmonization.

4.4 Emission factors

The simpler methodology envisages the use of default emission factors, which are given for all relevant pollutants. The default emission factors to be used within simple methodology for residential sector are given in Table 8.1a. For commercial/ institutional, agriculture and other sectors, where installations have on average higher capacity, default emission factors are given in Table 8.1b. These default emission factors were derived for conventional technologies.

However the default emission factors for SO_2 for fossil liquid and solid fuels should be used only in exceptional cases even within the simpler methodology. Sulphur content of the coal fuels used may vary significantly from country to country. Similarly there could be pronounced differences in sulphur content of the liquid fuels due to different levels of standards and legislation applied.

In the following a calculation procedure for SO_2 emission factor for coals and heating oils is proposed:

$$EF_{SO_2,k} = 2 \cdot \overline{Cs_k} \cdot \left(1 - \overline{\alpha_{s,k}}\right) \cdot \frac{1}{H_k} \cdot 10^6, \qquad (2)$$

 $EF_{SO_{2,k}}$ emission factor for SO₂ for fuel type k [g/GJ]

 $\overline{Cs_k}$ average sulphur content of fuel type k (mass S/mass fuel [kg/kg])

 H_k average lover heating value for fuel type k [MJ/kg]

 $\overline{\alpha_{s,k}}$ average sulphur retention in ash

Average sulphur retention in ash $\overline{\alpha_{s,k}}$ is not relevant for liquid fuels and for these fuels should be taken as zero. For the coal fuels the default value of 0.1 should be taken in the absence of national data.

4.5 Activity data

In most cases the statistical information include data on annual fuels consumption in households, services and agriculture. Only in some cases data on fuels used by small consumers are available, which might include all sectors except mobile sources, industry and energy transformation. To fill these data gaps the following sources could be used:

- Information from the fuel suppliers and individual companies
- Energy conservation/climate change mitigation studies for relevant sectors
- Residential, commercial/institutional and agriculture sector surveys
- Energy demand modelling

The data from various sources should be compared taking into account their inherent uncertainties in order to obtain the best assessment. To improve reliability of the activity data appropriate efforts should be made in order to ensure that the institution responsible for national energy statistics includes evaluation and reporting of the fuel consumption at the adequate level of sectorial disaggregation in their regular activity.

Also when data on the fuel consumption are provided at an appropriate level of sectorial split, they should be checked for possible anomalies. Wood and other type biomass and in some cases also gas oil consumption in the households requires particular consideration.

The self-supply and direct purchase of the wood from farmers might not be taken into account when energy statistics are based mainly on the data obtained from the fuel suppliers. This could lead to a significant underestimation of the wood consumption especially in the countries with abundant wood supplies and greater share of heating with stoves and small solid fuel boilers. In that case the data on wood consumption should be adjusted. Consultation with the forestry experts and/or energy demand modelling is recommended. Wood consumption should be consistent with the related data reported to the UNFCCC.

Activity data may also be affected by the improper sectorial attribution of gas oil consumption. Due to the tax difference cheaper gas oil sold to households might be in particular circumstances used instead of diesel oil in vehicles and off-road machinery. In that case not only sectorial distribution of emissions is affected, but also emissions of certain pollutants at the national level could be underestimated due to the difference in emission factors. Evidence of such a situation could be obtained by energy demand modelling of the households and complementary bottom-up modelling of the fuel consumption of the mobile sources. Irregular changes in the time series of the gas and diesel oil quantities sold, not correlated with changes in economic situation could also indicate such phenomena. Inventorying agencies are encouraged to make most appropriate adjustments, however they have to be well documented.

5 DETAILED METHODOLOGY

5.1 General

This detailed methodology is intended for calculating emissions when the contribution of sources **1A1a**; **1A4a**; **1A4b**; **1A4ci**; **1A5a** (and small installations in 1A1a) in the national totals is significant or data are available which enable its application.

The detailed methodology described in this chapter refers to the calculation of the emissions, based on the split of the small combustion sources not only to different fuel types, but also to different types of installations, which are found in those sectors. Default emission factor given for the detailed methodology, national emission factors or combination of both could be used.

The detailed methodology applies the same approach like the simpler methodology by using activity data and emission factors to estimate the emissions. The main difference is that the detailed methodology involves more country specific information like the specific emission factors for main installation types, further subdivision of the main installation types including those with control measures and/or use of the locally specific fuels. Development of the detailed methodology has to be focused to the combinations of the main installation

Emission Inventory Guidebook

types/fuels used, which consume most fuels and/or have the greatest share of the emissions from the considered sources.

5.2 Applicability

The detailed methodology envisages a more detailed split of the combustion installations. For that reason the national circumstances are taken more into account, especially if national emission factors are used. The detailed methodology should be used when the considered sources have significant share of the national totals or significant changes of emissions are expected. However the application of the detailed methodology is recommended always when a country has more detailed or more specific, yet reliable enough information than those needed for the simpler methodology.

5.3 Methodology

The annual emission is determined by an activity data and an emission factor:

$$E_i = \sum_{j,k} EF_{i,j,k} \cdot A_{j,k} \quad , \tag{1}$$

where

 E_i annual emission of pollutant *i*

 $EF_{i,j,k}$ default emission factor of pollutant *i* for source type *j* and fuel *k*

 $A_{j,k}$ annual consumption of fuel k in source type j

The main source types are:

- fire places,
- stoves,
- small boilers (single household/domestic heating) indicative capacity $<50 \text{ kW}_{\text{th}}$,
- medium size boilers (<50 MW_{th}),
 - \circ manual feeding (indicative capacity <1 MW_{th}),
 - o automatic feeding,

All those source types are not relevant for all sectors, as for instance fireplaces and stoves are mainly used in the residential sector.

The detailed methodology (equivalent to Tier 3) to estimate emissions of pollutants from combustion plant >50 MW_{th} is based on measurements or estimations using plant specific emission factors - guidance on determining plant specific emission factors is given in the Measurement Protocol Annex.

In many countries, operators of combustion plant >50MWth will report emissions to comply with regulatory requirements and this data can be used to help compile the national inventory.

The recommended detailed methodology to estimate emissions of PM from combustion activities is based on measurements and/or estimations using technology-specific emission factors.

Information on the type of the process and activity data, for example combustion and abatement technologies, is required to assign appropriate emission factors.

5.4 Emission factors

The detailed methodology envisages the use of default emission factors (Tables 8.2 a-g) developed for this purpose or their substitution/complementing with national emission factors.

The development of national emission factors should be focused on a combination of installation types and fuels, where specific national circumstances exist and/or contribution to the emission is the highest. When deriving specific emission factors the emphasis has to be given in taking into account also start–up emissions. These could, especially in the case of stoves and solid fuel small boilers, significantly influence the emissions of the total combustion cycle. For medium size installations data obtained from environmental inspectorates could be used taking into account whether there are representative or not.

5.5 Activity data

The detailed methodology requires further allocation of the fuel consumed according to the installation types. Those data are generally not available in the regular statistics reports. In most cases the inventorying agency would have to use surrogate data to assess the activity data at the required level of desegregation. National approaches have to be developed depending on the availability and quality of surrogate data. Some examples of surrogate data sources are:

- Residential, commercial/institutional and agriculture sector surveys
- Energy conservation/climate change mitigation studies for relevant sectors
- Energy demand modelling
- Information from the fuel suppliers
- Information from producers and sellers of heating appliances
- Chimney sweeping organisations

Particularly in the case of households it should be emphasised, that the surveys have to be based on a representative sample. In some countries the means of heating of the households are regionally very inhomogeneous with significantly greater share of solid fuel stoves and boilers in traditionally coal mining regions and at some rural areas. Additional data could be obtained from the chimneysweeper organisations and from environmental inspectorates particularly for the commercial-institutional sector.

Another important source of data could be dwelling statistics. Within the scope of national census the data on dwellings, occupied by the households are usually collected. Data on individual dwelling might include:

- number of residents,
- area of the dwelling,
- type of building (individual house, attached house, block of flats),
- construction year,
- existence or not of central heating,
- central heating boiler in the flat or common for block of flats
- fuels used for heating.

Dwelling statistics could be used to extrapolate results of the household survey or to perform detailed energy demand/emission modelling. Especially in the case where household emissions represent an important share in national totals or are of a great relevance due to local air pollution it is recommended to perform such an exercise. Detailed energy demand/emission modelling may be usually performed at local or regional level, however the extension to the national level does not pose significant additional requirements. To justify the additional effort required for energy demand/emission modelling of the households, the emission inventorying agency might find it appropriate to initiate a common project with other stakeholders, as for instance agencies competent for energy conservation, climate change mitigation or energy supply.

In the following a **brief outline of the energy demand/emission modelling** based on a dwelling census is given. The demand for useful energy for space heating could be calculated from the area of the flat and specific heat loses which depend on building code implied by the construction year of the building and ratio of outer building surface to dwellings surface. The latter could be characterised by the type of the building.

Required useful energy depends on the climatologically parameters, which are characterised by heating degree-days and the level of the heating, which is higher when the dwelling is equipped with the central heating. The heating energy demand is partly covered by gains of energy due to use of household electrical appliances and heat released directly by the residents. The heat gains could be considered as proportional to the number of residents. The remaining part of the required useful energy is supplied by the heating system. The fuel consumption depends on efficiency of the heating installation, which is characterised by the installation type and fuel used.

Where fossil fuels or biomass are used and no central heating exists it could be considered that stoves are used for space heating. The data on the use of fireplaces (i.e. number and average fuel use) has to be obtained from other sources, where relevant. Preparation of the hot water in households has also to be taken into the account, as it is at least partly supplied by the central heating boilers or special small boilers using natural gas.

Model parameters as for instance specific heat losses have to be determined at the national level due to differences in building code and practices. In some cases where there are significant climatic differences within the country, which are reflected in the different

building codes for certain regions, it might be necessary, to derive and apply regionally specific heat loses. In almost all cases the heating degree-days have to be used at higher spatial resolution than country level.

Energy demand/emission modelling is the most appropriate to be performed at the level of the individual flat. In principle it could be possible to obtain data from the National Statistical office at such a level of details, however with individual dwellings located at the level of statistical district or within a grid large enough to satisfy the criteria of security of personal and individual data.

The census is usually performed once every 10-years. Thus the method has to be developed to periodically up-date the input data, most preferably on the basis of household surveys extrapolation complemented by the data from the fuel suppliers.

6 RELEVANT ACTIVITY STATISTICS

National or international statistics should be used e.g. fuels use and consumption. The following statistical publications could be recommended:

Statistical Office of the European Communities (EUROSTAT): NEWCRONOS database

Statistical Office of the European Communities (EUROSTAT): Energy Consumption in households – European Union and Norway, 1995 survey - Central and eastern European countries, 1996 survey

Statistical Office of the European Communities (EUROSTAT): Energy Consumption in the service sector – Surveys of EU Member states

7 POINT SOURCE CRITERIA

This section is not relevant since this chapter covers area sources only.

8 EMISSION FACTORS, QUALITY CODES AND REFERENCES

Default emissions factors contained in the following tables are estimated representative values derived from collected data that are quoted later in Annex 1 as well as national experts judgments.

For the calculation of default emission factors for a simple methodology for residential sources, NFR: 1A4bi (Table 8.1a) the share of fireplaces, stoves and boilers fuelled by solid coal fuels, biomass and gaseous fuels was assumed as 5%, 65% and 30%, respectively and the emissions factors were taken from the detailed methodology tables. Within solid coal fuels a figure of about 5% was assumed for briquettes. For liquid fuels the share of stoves was assumed as 10% and boilers as 90%. Because the share of biomass and coal advanced stove and boilers was assumed to be currently lower than 5% in most of the countries they haven't been taken into consideration. For the activities NFR: 1A4a, 1A4ci, 1A5a and 1A1a (table 8.1b) the share of coal, gas and oil boilers with capacity between 50kW and 1MW and from 1MW to 50MW was assumed as 50% and 50% respectively. For coal fuels boilers the share of briquettes was assumed to be 5% similar to activity NFR 1A4bi. However the share of wood boilers with capacity between 50kW and 1MW to 50MW was assumed to be 60% and 40% respectively.

Automatic fuelled solid and biomass installations, as stokers and other automatic feed boilers, especially those larger than 1 MW, are usually equipped with some particulate matter control equipment. In this case mainly settling chambers and cyclones to reduce primary coarse particles and related pollutants. They are characterised by low collection efficiency, i.e., about 35% and 85% of dust, respectively. This collection efficiency refers to the 90% of PM below 75 μ m. The default emission factors for the detailed methodology (Tables 8.2d, 8.2e and 8.2f) make allowance for using of this type of dedusting systems. In the modern installations also advanced dedusting equipment are employed.

8.1 Default Emission Factors For Use With Simpler Methodology

A summary of default emission factors for uses the simpler methodology for estimating emissions is provided in the following Tables.

		T T 1 .			
Pollutant	Solid coal fuels 1)	Gaseous fuels ²⁾	Liquid fuels 3)	Wood ⁴⁾	Units
Ammonia	0,3	Neg.	Neg.	3,8	g/GJ
Sulphur dioxide	900 ⁵⁾	0,5	140 ⁶⁾	20,0	g/GJ
Nitrogen dioxide	109,7	57,0	68,0	74,5	g/GJ
Total suspended particulate matter	443,6	0,5	6,0	730,0 ⁸⁾	g/GJ
PM10	404,1	0,5	3,7	695,3 ⁸⁾	g/GJ
PM2.5	397,5	0,5	3,7	694,8 ⁸⁾	g/GJ
Arsenic	2,5	NA. ⁷⁾	0,9	1,0	mg/GJ
Cadmium	1,5	NA	1,5	1,4	mg/GJ
Chromium	11,2	NA	15,5	2,9	mg/GJ
Copper	22,3	NA	7,9	8,6	mg/GJ
Mercury	5,1	0,0	0,0	0,5	mg/GJ
Nickel	12,7	NA	240,0	4,4	mg/GJ
Lead	130,0	NA	15,5	40,0	mg/GJ
Selenium	120,0	NA	0,0	0,5	mg/GJ
Zinc	220,0	NA	8,5	130,0	mg/GJ
Dioxins and furans	800,0	0,5	10,0	700,0	I-Teqng/GJ
PAH Σ 1-4	800,0	NA	75,0	700,0	mg/GJ
Benzo(a)pyrene	230,0	NA	22,0	210,0	mg/GJ
Benzo(b)fluoranthene	330,0	NA	25,7	220,0	mg/GJ
Benzo(k)fluoranthene	130,0	NA	12,5	130,0	mg/GJ
Indeno(1,2,3_cd)pyrene	110,0	NA	14,8	140,0	mg/GJ
Carbon monoxide	4602,5	31,0	46,0	5300,0	g/GJ
Non methane VOC	484,3	10,5	15,5	925,0	g/GJ

N.B: The emission factors in this table reflect the finding that much of the combustion equipment used in a domestic environment is relatively old, manually fuelled, and the penetration of new technologies is slow.

¹⁾ Use this "Solid coal fuels" default for all raw coals as well as for the derived coal fuels such as patent fuels, coke and other manufactured coal fuels

²⁾ Use this "Gaseous fuels" default for natural gas, liquefied petroleum gas (LPG), and other gaseous fuels
 ³⁾ Use this "Liquid fuels" default for gas oil (gas/diesel oil), fuel oil (residual oil, residual fuel oil) and other liquid fuels

⁴⁾ Use this "Wood" default for wood, peat and similar wood fuels (wood wastes) and agricultural wastes use as fuels (straw, corncobs, etc)

⁵⁾ 900 g/GJ of sulphur dioxide corresponds to 1.2 % S of coal fuel of lower heating value on a dry basis 24 GJ/t and average sulphur retention in ash as value of 0.1. If data on the sulphur content exist use equation No (2); see: 4. SIMPLER METHODOLOGY

⁶⁾ 140 g/GJ of sulphur dioxide corresponds to 0.3 % S of liquid fuel of lower heating value 42 GJ/t. If data on the sulphur content exist use equation No (2); see: 4. SIMPLER METHODOLOGY. Because the sulphur content of liquid fuels is defined also by national regulations, compilers of the emission inventory should consider the national standards for sulphur content as well as information on average sulphur content on the market, if available $^{7)}$ NA - not applicable

⁸⁾ Emission factors, from more recent European and North American work, indicate the figures for burning prepared wood fuel are considerably lower, possibly by a factor of 2-3.

Pollutant		T T * /			
	Solid coal fuels 1)	Gaseous fuels ²⁾	Liquid fuels 3)	Wood ⁴⁾	Units
Ammonia	NA ⁵⁾	NA	NA	NA	g/GJ
Sulphur dioxide	839,5 ⁶⁾	0,5	140 ⁷⁾	38,4	g/GJ
Nitrogen dioxide	173,1	70,0	100,0	150,0	g/GJ
Total suspended particulate matter	124,2	NA	27,5	156,4	g/GJ
PM10	117,2	NA	21,5	149,9	g/GJ
PM2.5	107,7	NA	16,5	149,1	g/GJ
Arsenic	4,0	NA	1,0	1,4	mg/GJ
Cadmium	1,8	NA	0,3	1,8	mg/GJ
Chromium	13,5	NA	12,8	6,5	mg/GJ
Copper	17,5	NA	7,2	4,6	mg/GJ
Mercury	7,9	0,0	0,1	0,7	mg/GJ
Nickel	13,0	NA	260,0	2,0	mg/GJ
Lead	134,2	NA	16,0	24,8	mg/GJ
Selenium	1,8	NA	NA	NA	mg/GJ
Zinc	200,0	NA	8,0	113,6	mg/GJ
Dioxins and furans	202,6	2,0	10,0	326,0	I-Teq ng/GJ
PAH Σ 1 - 4	146,7	NA	17,6	155,2	mg/GJ
Benzo(a)pyrene	45,5	NA	5,2	44,6	mg/GJ
Benzo(b)fluoranthene	58,9	NA	6,2	64,9	mg/GJ
Benzo(k)fluoranthene	23,7	NA	4,0	23,4	mg/GJ
Indeno(1,2,3_cd)pyrene	18,5	NA	2,2	22,3	mg/GJ
Carbon monoxide	931,0	25,0	40,0	1596,0	g/GJ
Non methane VOC	88,8	2,5	10,0	146,4	g/GJ

Table 8.1b Default emission factors for the simple methodology of the sources, NFR: 1A4a, 1A4ci, 1A5a and 1A1a

N.B The table assumes a 20% penetration rate for new technologies.

¹⁾ Use this "Solid coal fuels" default for all raw coals as well as for the derived coal fuels such as patent fuels, coke and other manufactured coal fuels ²⁾ Use this "Gaseous fuels" default for natural gas, liquefied petroleum gas (LPG), and other gaseous fuels

³⁾ Use this "Liquid fuels" default for gas oil (gas/diesel oil), fuel oil (residual oil, residual fuel oil) and other liquid fuels

⁴⁾ Use this "Wood" default for wood, peat and similar wood fuels (wood wastes) and agricultural wastes use as fuels (straw, corncobs, etc)

⁵⁾ NA - not applicable

⁶⁾ 900 g/GJ of sulphur dioxide corresponds to 1.2 % S of coal fuel of lower heating value on a dry basis 24 GJ/t and average sulphur retention in ash as value of 0.1. If data on the sulphur content exist use equation No (2); see: 4. SIMPLER METHODOLOGY

⁷ 140 g/GJ of sulphur dioxide corresponds to 0.3 % S of liquid fuel of lower heating value 42 GJ/t. If data on the sulphur content exist use equation No (2); see: 4. SIMPLER METHODOLOGY. Because the sulphur content of liquid fuels is defined also by national regulations, compilers of the emission inventory should consider the national standards for sulphur content as well as information on average sulphur content on the market, if available.

8.2 Default emission factors which could be used with Detailed Methodology

A summary of default emission factors that could be used within the detailed methodology for estimating emissions is provided in the following Tables.

		T I •4			
Pollutant	Coal fuels ¹⁾	Gaseous fuels ²⁾	Wood ³⁾	Units	
Ammonia	5	NA ⁴⁾	10	g/GJ	
Sulphur dioxide	500 ⁵⁾	0,5	10	g/GJ	
Nitrogen dioxide	60	50	50	g/GJ	
Total suspended particulate matter	350	0.5	900	g/GJ	
PM10	330	0.5	860	g/GJ	
PM2.5	330	0.5	850	g/GJ	
Arsenic	1.5	NA	0.5	mg/GJ	
Cadmium	0,5	NA	2	mg/GJ	
Chromium	10	NA	1	mg/GJ	
Copper	20	NA	8	mg/GJ	
Mercury	3	0.01	0.4	mg/GJ	
Nickel	10	NA	2	mg/GJ	
Lead	100	NA	40	mg/GJ	
Selenium	1	NA	0.5	mg/GJ	
Zinc	200	NA	100	mg/GJ	
Dioxins and furans	500	1,5	800	I-Teq ng/GJ	
PAH Σ 1-4	450	NA	600	mg/GJ	
Benzo(a)pyrene	100	NA	180	mg/GJ	
Benzo(b)fluoranthen	170	NA	180	mg/GJ	
Benzo(k)fluoranthen	100	NA	100	mg/GJ	
Indeno(1,2,3- cd)pyrene	80	NA	140	mg/GJ	
Carbon monoxide	5000	50	6000	g/GJ	
Non methane VOC	600	20	1300	g/GJ	

Table 8.2a Default emission factors for fireplaces

¹⁾ Use this "Solid coal fuels" default for all raw coals as well as for the derived coal fuels such as patent fuels, coke and other manufactured coal fuels

²⁾ Use this "Gaseous fuels" default for natural gas, natural gas liquids, and liquefied petroleum gas (LPG), and other gaseous ³⁾ Use this "Wood" default for wood, peat and similar wood fuels (wood wastes) and agricultural wastes use as fuels (straw, corncobs, etc) ⁴⁾ NA - not applicable

⁵⁾ 500 g/GJ of sulphur dioxide is adequate to 0.8 % S of coal fuels of lower heating value of fuel on a dry basis 29 GJ/t and average sulphur retention in ash as value of 0.1. If data on the sulphur content exists use equation No (2), see: 4. SIMPLER METHODOLOGY.

	Emission factors					II. 4
Pollutant	Coal fuels ¹⁾	Briquettes ²	Gaseous fuels ³⁾	Liquid fuels ⁴⁾	Wood ⁵⁾	Units
Ammonia	NA ⁶⁾	NA	NA	NA	5	g/GJ
Sulphur dioxide	900 ⁷⁾	500 ⁸⁾	0.5	140 ⁹⁾	10	g/GJ
Nitrogen dioxide	100	100	50	50	50	g/GJ
Total suspended particulate matter	500	200	0.5	15	850	g/GJ
PM10	450	100	0.5	10	810	g/GJ
PM2.5	450	100	0.5	10	810	g/GJ
Arsenic	1.5	1	NA	0.5	0.5	mg/GJ
Cadmium	1	0.7	NA	0.3	1	mg/GJ
Chromium	10	5	NA	5	2	mg/GJ
Copper	20	10	NA	3	8	mg/GJ
Mercury	5	3	0.01	0.03	0.4	mg/GJ
Nickel	10	7	NA	100	2	mg/GJ
Lead	100	70	NA	5	40	mg/GJ
Selenium	2	0.5	NA	NA	0.5	mg/GJ
Zinc	200	120	NA	5	100	mg/GJ
Dioxins and furans	1000	300	1.5	10	800	I-Teq ng/G.
PAH Σ 1-4	920	220	NA	180	820	mg/GJ
Benzo(a)pyrene	250	50	NA	50	250	mg/GJ
Benzo(b)fluoranthen	400	90	NA	60	240	mg/GJ
Benzo(k)floranthene	150	40	NA	30	150	mg/GJ
Indeno(1,2,3_cd)pyre ne	120	40	NA	40	180	mg/GJ
Carbon monoxide	5000	4000	30	100	6000	g/GJ
Non methane VOC	600	300	10	20	1200	g/GJ

Table 8.2b Default emission factors for domestic stoves

¹⁾ Use this "Coal fuels" default for all raw coals
²⁾ Use this "Briquettes" default for patent fuels, coke and other manufactured coal fuels
³⁾ Use this "Gaseous fuels" default for natural gas, natural gas liquids, and liquefied petroleum gas (LPG), and other gaseous ⁴⁾ Use this "Liquid fuels" default for burning oil (kerosene), gas oil (gas/diesel oil), fuel oil (residual oil, residual fuel oil) and other liquid fuels

⁵⁾ Use this "Wood" default for wood, peat and similar wood fuels (wood wastes) and agricultural wastes use as fuels (straw, corncobs, etc)

⁶⁾ NA - not applicable

⁷⁾ 900 g/GJ of sulphur dioxide is adequate to 1.2 % S of coal fuel of lower heating value on a dry basis 24 GJ/t and average sulphur retention in ash as value of 0.1. If data on the sulphur content exists use equation No (2), see: 4. SIMPLER METHODOLOGY.

⁸⁾ 500 g/GJ of sulphur dioxide is adequate to 0.8 % S of briquettes of lower heating value of fuel on a dry basis 29 GJ/t and average sulphur retention in ash as value of 0.1. If data on the sulphur content exists use equation No (2), see: 4. SIMPLER METHODOLOGY.

⁹⁾ 140 g/GJ of sulphur dioxide corresponds to 0.3 % S of liquid fuel of lower heating value 42 GJ/t. If data on the sulphur content exist use equation No (2); see: 4. SIMPLER METHODOLOGY Because the sulphur content of liquid fuels is defined also by national regulations, compilers of the emission inventory should consider the national standards for sulphur content as well as information on average sulphur content on the market, if available.

	Emission factors					
Pollutant	Coal fuels ¹⁾	Briquettes ²⁾	Gaseous fuels ³	Liquid fuels ⁴⁾	Wood ⁵⁾	Units
Ammonia	NA ⁶⁾	NA	NA	NA	NA	g/GJ
Sulphur dioxide	900 ⁷⁾	500 ⁸⁾	0.5	140 ⁹⁾	30	g/GJ
Nitrogen dioxide	130	200	70	70	120	g/GJ
Total suspended particulate matter	400	120	0.5	5 ¹⁰⁾	500	g/GJ
PM10	380	100	0.5	3 ¹⁰⁾	475	g/GJ
PM2.5	360	100	0.5	3 10)	475	g/GJ
Arsenic	5	3	NA	1	2	mg/GJ
Cadmium	3	0,7	NA	2	2	mg/GJ
Chromium	15	10	NA	20	5	mg/GJ
Copper	30	20	NA	10	10	mg/GJ
Mercury	6	3	0.01	0.03	0.6	mg/GJ
Nickel	20	13	NA	300	10	mg/GJ
Lead	200	120	NA	20	40	mg/GJ
Selenium	2	1.5	NA	NA	0.5	mg/GJ
Zinc	300	200	NA	10	200	mg/GJ
Dioxins and furans	500	200	NA	10	500	I-Teq ng/G
PAH Σ 1-4	710	150	NA	30	510	mg/GJ
Benzo(a)pyrene	270	50	NA	10	130	mg/GJ
Benzo(b)fluoranthen	250	50	NA	11	200	mg/GJ
Benzo(k)fluoranthen	100	30	NA	5	100	mg/GJ
Indeno(1,2,3_cd)pyre ne	90	20	NA	4	80	mg/GJ
Carbon monoxide	4000	3000	30	40	4000	g/GJ
Non methane VOC	300	200	10	15	400	g/GJ

Table 8.2c Default emission factors for small (single household scale, capacity <50 kWth) boilers

¹⁾ Use this "Coal fuels" default for all raw coals

²⁾ Use this "Briquettes" default for patent fuels, coke and other manufactured coal fuels

³⁾ Use this "Gaseous fuels" default for natural gas, natural gas liquids, and liquefied petroleum gas (LPG), and other gaseous ⁴⁾ Use this "Liquid fuels" default for burning oil (kerosene), gas oil (gas/diesel oil), fuel oil (residual oil, residual fuel oil) and other liquid fuels

⁵⁾ Use this "Wood" default for wood, peat and similar wood fuels (wood wastes) and agricultural wastes use as fuels (straw, corncobs, etc)

⁶⁾ NA - not applicable

⁷⁾ 900 g/GJ of sulphur dioxide is adequate to 1.2 % S of coal fuel of lower heating value on a dry basis 24 GJ/t and average sulphur retention in ash as value of 0.1. If data on the sulphur content exists use equation No (2), see: 4. SIMPLER METHODOLOGY

⁸⁾ 500 g/GJ of sulphur dioxide is adequate to 0.8 % S of briquettes of lower heating value on a dry basis 29 GJ/t and average sulphur retention in ash as value of 0.1. If data on the sulphur content exists use equation No (2), see: 4. SIMPLER METHODOLOGY.

⁹⁾ 140 g/GJ of sulphur dioxide corresponds to 0.3 % S of liquid fuel of lower heating value 42 GJ/t. If data on the sulphur content exist use equation No (2); see: 4. SIMPLER METHODOLOGY Because the sulphur content of liquid fuels is defined also by national regulations, compilers of the emission inventory should consider the national standards for sulphur content as well as information on average sulphur content on the market, if available. ¹⁰⁾ Proposed emission factor is representative for light fuel oil; typical emissions from residential boilers burning heavy fuel

oil would be about 10 times higher than this value.

Pollutant	Emission factors					
	Coal fuels ¹⁾	Briquettes ²⁾	Gas fuels ³⁾	Liquid fuels ⁴⁾	Wood ⁵⁾	Units
Ammonia	NA ⁶⁾	NA	NA	NA	NA	g/GJ
Sulphur dioxide	900 ⁷⁾	500 ⁸⁾	0,5	140 ⁹⁾	50	g/GJ
Nitrogen dioxide	160	150	70	100	150	g/GJ
Total suspended particulate matter	200	100	NA	5 ¹⁰⁾	250	g/GJ
PM10	190	80	NA	3 10)	240	g/GJ
PM2.5	170	80	NA	3 10)	240	g/GJ
Arsenic	5	4	NA	1	2	mg/GJ
Cadmium	3	0.7	NA	0.3	2	mg/GJ
Chromium	15	10	NA	20	10	mg/GJ
Copper	30	20	NA	10	5	mg/GJ
Mercury	7	3.5	0.01	0.1	0.6	mg/GJ
Nickel	20	13	NA	300	2	mg/GJ
Lead	200	100	NA	20	30	mg/GJ
Selenium	2	1.5	NA	NA	NA	mg/GJ
Zinc	300	160	NA	10	150	mg/GJ
Dioxins and furans	400	100	2	10	500	I-Teq ng/GJ
PAH; Σ 1-4	320	90	NA	26	280	mg/GJ
Benzo(a)pyrene	100	30	NA	8	80	mg/GJ
Benzo(b)fluoranthen	130	40	NA	9	120	mg/GJ
Benzo(k)fluoranthen	50	10	NA	6	40	mg/GJ
Indeno(1,2,3- cd)pyrene	40	10	NA	3	40	mg/GJ
Carbon monoxide	2000	1500	30	40	3000	g/GJ
Non methane VOC	200	100	3	15	250	g/GJ

Table 8.2d Default emission factors for medium size (>50 kWth to ≤1 MWth) boilers

¹⁾ Use this "Coal fuels" default for all raw coals

 ²⁾ Use this "Briquettes" default for patent fuels, coke and other manufactured coal fuels
 ³⁾ Use this "Gaseous fuels" default for natural gas, natural gas liquids, and liquefied petroleum gas (LPG), and other gaseous ⁴⁾ Use this "Liquid fuels" default for burning oil (kerosene), gas oil (gas/diesel oil), fuel oil (residual oil, residual fuel oil) and other liquid fuels

⁵⁾ Use this "Wood" default for wood, peat and similar wood fuels (wood wastes) and agricultural wastes use as fuels (straw, corncobs, etc)

6) NA - not applicable

⁷⁾ 900 g/GJ of sulphur dioxide is adequate to 1.2 % S of coal fuel of lower heating value on a dry basis 24 GJ/t and average sulphur retention in ash as value of 0.1. If data on the sulphur content exists use equation No (2), see: 4. SIMPLER METHODOLOGY

⁸⁾ 500 g/GJ of sulphur dioxide is adequate to 0.8 % S of briquettes of lower heating value on a dry basis 29 GJ/t and average sulphur retention in ash as value of 0.1. If data on the sulphur content exists use equation No (2), see: 4. SIMPLER METHODOLOGY

⁹⁾ 140 g/GJ of sulphur dioxide corresponds to 0.3 % S of liquid fuel of lower heating value 42 GJ/t. If data on the sulphur content exist use equation No (2); see: 4. SIMPLER METHODOLOGY Because the sulphur content of liquid fuels is defined also by national regulations, compilers of the emission inventory should consider the national standards for sulphur content as well as information on average sulphur content on the market, if available.¹⁰⁾ Proposed emission factor is representative for light fuel oil; typical emissions from residential boilers burning heavy fuel

oil would be about 10 times higher than this value.

Pollutant		T T •4			
		Gaseous fuels ²	Liquid fuels ³⁾	Wood fuels ⁴⁾	Units
Ammonia	NA ⁵⁾	NA	NA	NA	g/GJ
Sulphur dioxide	900 ⁶⁾	0.5	140 ⁷⁾	30	g/GJ
Nitrogen dioxide	180	70	100	150	g/GJ
Total suspended particulate matter	80	NA	50 ⁸⁾	70	g/GJ
PM10	76	NA	40 ⁸⁾	67	g/GJ
PM2.5	72	NA	30 ⁸⁾	65	g/GJ
Arsenic	4	NA	1	1	mg/GJ
Cadmium	1	NA	0,3	2	mg/GJ
Chromium	15	NA	2	3	mg/GJ
Copper	10	NA	3	5	mg/GJ
Mercury	9	0.01	0.1	0.8	mg/GJ
Nickel	10	NA	200	2	mg/GJ
Lead	100	NA	10	20	mg/GJ
Selenium	2	NA	NA	NA	mg/GJ
Zinc	150	NA	5	80	mg/GJ
Dioxins and furans	100	2	10	200	I-Teq ng/GJ
PAH Σ 1-4	45	NA	5	40	mg/GJ
Benzo(a)pyrene	13	NA	1	12	mg/GJ
Benzo(b)fluoranthen	17	NA	2	14	mg/GJ
Benzo(k)fluoranthen	9	NA	1	8	mg/GJ
Indeno(1,2,3- cd)pyrene	6	NA	1	6	mg/GJ
Carbon monoxide	200	20	40	300	g/GJ
Non methane VOC	20	2	5	60	g/GJ

Table 8.2e Default emission factors for medium size (>1 MWth to ≤50 MWth) boilers

¹⁾ Use this "Coal fuels" default for all raw coals

²⁾ Use this "Gaseous fuels" default for natural gas, natural gas liquids, and liquefied petroleum gas (LPG), and other gaseous ³⁾ Use this "Liquid fuels" default for burning oil (kerosene), gas oil (gas/diesel oil), fuel oil (residual oil, residual fuel oil) and other liquid fuels

⁴⁾ Use this "Wood" default for wood, peat and similar wood fuels (wood wastes) and agricultural wastes use as fuels (straw, corncobs, etc)

⁵⁾ NA - not applicable

⁶⁾ 900 g/GJ of sulphur dioxide is adequate to 1.2 % S of coal fuel of lower heating value on dry basis 24 GJ/t and average sulphur retention in ash as value of 0.1. If data on the sulphur content exists use equation No (2), see: 4. SIMPLER METHODOLOGY.

⁷⁾ 140 g/GJ of sulphur dioxide corresponds to 0.3 % S of liquid fuel of lower heating value 42 GJ/t. If data on the sulphur content exist use equation No (2); see: 4. SIMPLER METHODOLOGY Because the sulphur content of liquid fuels is defined also by national regulations, compilers of the emission inventory should consider the national standards for sulphur content as well as information on average sulphur content on the market, if available.

⁸⁾ Proposed emission factor is more representative for heavy fuel oil; typical emissions from boilers burning light fuel oil would be about 10% of this value, see table 8.2c.

Pollutant		Units		
Tonutant	Advanced stove Manual boiler Au		Authomatic boiler	Units
Ammonia	NA ¹⁾	NA	NA	g/GJ
Sulphur dioxide	450 ²⁾	450 ²⁾	450 ²⁾	g/GJ
Nitrogen dioxide	150	200	200	g/GJ
Total suspended particulate matter	250	150	80	g/GJ
PM10	240	140	76	g/GJ
PM2.5	220	130	72	g/GJ
Arsenic	1.5	4	0.5	mg/GJ
Cadmium	1	2	2	mg/GJ
Chromium	10	10	1	mg/GJ
Copper	15	15	8	mg/GJ
Mercury	5	6	8	mg/GJ
Nickel	10	15	2	mg/GJ
Lead	100	150	80	mg/GJ
Selenium	2	2	0.5	mg/GJ
Zinc	200	200	100	mg/GJ
Dioxins and furans	500	200	40	I-Teq ng/GJ
PAH Σ 1-4	510	290	50	mg/GJ
Benzo(a)pyrene	150	90	17	mg/GJ
Benzo(b)fluoranthen	180	110	18	mg/GJ
Benzo(k)fluoranthen	100	50	8	mg/GJ
Indeno(1,2,3- cd)pyrene	80	40	7	mg/GJ
Carbon monoxide	2000	1500	400	g/GJ
Non methane VOC	300	100	20	g/GJ

Table 8.2f Default emission factors for advanced coal combustion techniques <1MWth

¹⁾ NA - not applicable
 ²⁾ 450 g/GJ of sulphur dioxide is adequate to 0.6 % S of coal fuel of lower heating value on a dry basis 24 GJ/t and average sulphur retention in ash as value of 0.1. If data on the sulphur content exists use equation No (2), see: 4. SIMPLER METHODOLOGY.

Pollutant			Emissi	on factors		Units
Ponutant	Advanced fireplaces		Pellet stove	Manual boiler	Authomatic boile	Units
Ammonia	NA ¹⁾	NA ¹⁾	NA	NA	NA	g/GJ
Sulphur dioxide	20	20	20	20	20	g/GJ
Nitrogen dioxide	90	90	90	150	150	g/GJ
Total suspended particulate matter	250	250	80	80	70	g/GJ
PM10	240	240	76	76	66	g/GJ
PM2.5	240	240	76	76	66	g/GJ
Arsenic	0.5	0.5	0.5	1	0.5	mg/GJ
Cadmium	1.0	1.0	0.5	0.3	0.5	mg/GJ
Chromium	8	8	3	2	4	mg/GJ
Copper	2	2	1	3	2	mg/GJ
Mercury	0.4	0.4	0.4	0.5	0.6	mg/GJ
Nickel	2	2	2	200	2	mg/GJ
Lead	30	30	20	10	20	mg/GJ
Selenium	0.5	0.5	NA	NA	NA	mg/GJ
Zinc	80	80	80	5	80	mg/GJ
Dioxins and furans	300	300	50	300	30	I-Teq ng/GJ
PAH Σ 1-4	290	290	50	150	40	mg/GJ
Benzo(a)pyrene	100	100	15	50	12	mg/GJ
Benzo(b)fluoranthen	90	90	16	60	14	mg/GJ
Benzo(k)fluoranthen	40	40	10	20	8	mg/GJ
Indeno(1,2,3- cd)pyrene	60	60	9	20	6	mg/GJ
Carbon monoxide	4500	3000	500	3000	300	g/GJ
Non methane VOC	450	250	20	250	20	g/GJ

Table 8.2g Default emission factors for advanced wood combustion techniques <1MW

¹⁾NA - not applicable

Fuel	Installation	Hg ⁰ (gas)	Hg^{+2}	Hg (partic.); Hg ^{PM}
	Stove / Fireplaces	0.3	0.35	0.35
Hard Coal	Boiler manual fuelled - all SCI sectors	0.4	0.4	0.2
	Boiler autom. (stoker) - all SCI sectors	0.5	0.4	0.1
Biomass	Manual fuelled (stove boiler) - all SCI sectors	0.6	0.3	0.1
DIOIIIdSS	Automatic fuelled- all SCI sectors	0.65	0.3	0.05
Liquid fuels	SCIs (all sectors) Light fuel oil	0.75	0.2	0.05
	SCIs AFF, Com-Inst Heavy fuel oil	0.65	0.35	0.1
Natural gas	SCIs (all sectors)	0.8	0.15	0.05

Table 8.2.h Default mercury emission factor speciation for different fuels

9 SPECIES PROFILES

See section 8.2 for reference emission factors for species profiles.

10 UNCERTAINTY ESTIMATES

Uncertainties of emission data result from the uncertainties related to both the emission factors and the statistical information on the activities covered by small combustion installations.

The uncertainty of emission factors from small combustion installation sources is a function of the combustion technique, calibration and sampling frequency of direct measurements, and how representative the tested installation is for the whole population of sources (often referred as a typical source). In addition some of the measurement standards and sampling systems used currently for small combustion installations were developed for large-scale installations. For that reason the typical range of the uncertainty of an individual measurement for small combustion installations is greater than in larger installations. Emissions caused by combustion of solid fuels in particular, depend on the combustion technique used, the type of installation and its maintenance, capacity and age. In addition also operation condition such as load, the period of combustion cycle - start-up, steady state and shut down conditions, as well as quality of fuels and the stability of its properties play an important role.

Experimental emission data sets (described in various reports referring to specific measurement campaigns, journal articles, modelling work, and compilations) which were used in this chapter to derive typical emission factors are often lacking detailed description/characterization of various parameters, e.g., data on fuel quality used, the operational parameters, and the methodology used to measure concentration of pollutants in the flue gases as well as methodology for emission factor calculation. In accordance with the quality rating of uncertainty estimation (Pulles T. at al., 2001) these uncertainties data could be estimated for each pollutant, fuels and techniques as presented in Table 10.1, where:

- A an estimate based on a large number of measurements made at a large number of facilities that fully represent the sector
- B an estimate based on a large number of measurements made at a large number of facilities that represent a large part of the sector
- C an estimate based on a number of measurements made at a small number of representative facilities, or an engineering judgement based on a number of relevant facts
- D an estimate based on single measurements, or an engineering calculation derived from a number relevant

				Solic	l fuel	
Pollutants	Gas and liquid fuels		Man	ual fuelled	Automa	tic fuelled
	Rating	Typical	Rating	Typical	Rating	Typical
		error range,		error range		error range
		%		%		%
Oxides of nitrogen	В	20 - 60	В	20 - 60	В	20 - 60
Sulphur dioxide	В	20 - 60	В	20 - 60	В	20 - 60
Ammonia	С	50 - 150	С	50 - 150	С	50 - 150
PM	С	50 - 150	С	50 - 150	С	50 - 150
Heavy metals ¹⁾	С	50 - 150	С	50 - 150	С	50 - 150
РАН	С	50 - 150	С	50 - 150	С	50 - 150
Dioxins	D	100-300	D	100 - 300	D	100-300
СО	В	20 - 60	В	20 - 60	В	20 - 60
NMVOC	C	50 - 150	С	50 - 150	С	50 - 150

 Tab.10.1.
 Uncertainties rating of emission factors from small combustion installations

¹⁾ Uncertainty of evaluation of mercury emission factors for small of biomass combustion installations (manual and automatic fuelled appliances) was rated at 100 – 300% (D), Pye et al., (2005)

The table above gives a rough qualitative estimation of the typical uncertainty of default emission factors. The uncertainty estimation represents an application of qualitative data rating schemes for all pollutants in this chapter and main group of techniques. Any such qualitative summary is subjective and individual opinions may differ.

Activity data for fossil fuels for the sources covered in this chapter typically have higher uncertainties than those for other stationary combustion sources. For biomass fuels consumption estimates are less accurate than for fossil fuels, in particularly where self-supply and direct purchase from farmers prevail.

11 WEAKEST ASPECTS/PRIORITY AREAS FOR IMPROVEMENT IN CURRENT METHODOLOGY

The weakest aspects discussed here are mainly related to emission factors, but also to the estimation of activities.

11.1 Emission factors

Improvement of emission factors is necessary in order to obtain more accurate emission estimates for residential activities due to a wide variety of employed combustion techniques and different types of fuels used. Type of installation and fuel used is critical to emissions of air pollutants, especially in the case of coal and biomass combustion where high levels of pollutants such as TSP, CO, NMVOC and PAH come from incomplete combustion.

This improvement should focus on preparing individual emission factors for individual techniques currently used, both old and new. The emission factors of pollutants such as TSP,

CO, NMVOC and PAH, affected by the poor performance of the used combustion technology, can be reduced by introducing measures (or new technologies) to improve combustion efficiency, although some pollutants, e.g., NO_x and heavy metals (Hg, Cd, As) might increase.

For particulate matter (especially fine fraction), PAHs, PCDD/Fs, NMVOCs, and heavy metals small combustion installations contribute a high proportion of total emission and generation of specified data for this source should be the priority. The fuel specific emission factors cited from different sources (Annex 1, table A1 1 - A1 48) are often not representative and refer to the typically observed range. Establishing a measurement program that would allow characterisation of techniques and fuels used as well as development of inventory for small sources should be of high priority. Such a program could also investigate national and regional specific parameters (climatic, cultural, level of control, etc.) relevant for emissions.

Emission factors are related usually to full load conditions. Due to common low load of the small combustion installations and a high number of start-ups per year (e.g up to 1,000 times a year for solid fossil fuels and biomass stoves with manual fuel charging) the emissions are higher in comparison to full load conditions.

In order to assess the relevance of start–ups and low load conditions, a detailed investigation should be performed for small combustion installation, in particular manual fuelled with capacity of below 1 MW_{th} .

Sampling methods developed for industrial and other larger combustion plants are not suitable for small residential sources, especially for particulate matter and particulate related pollutants like PAH, heavy metals and PCDD/F. Further work should be invested to clarify this influence as well as influence of laboratory conditions (mainly regarding to the natural and forced draught) with respect to the emission factors published.

11.2 Activities

Collecting more reliable information on actual consumption of biomass, in particular "virgin" wood, waste wood, and straw, is essential in order to improve the accuracy of emission estimates for this sector. Uncertainties also occur due to the fact, that fuel such as coal or wood can be also used as mixtures. Also methodologies for estimation of the quantity of contaminated/ treated wood combusted, crucial for PAH and dioxin emissions, have to be developed. The same is valid also for the assessment of the residential waste combusted in the residential sector.

Further work should be carried out to differentiate between fuel coal used in manual and automatic boilers with capacity below $1MW_{th}$, as well as to distinguish between various fuel wood types, e.g., log wood, chips and pellets.

Since the current international (and possibly a number of national) statistics do not represent this sector well, the establishment of a "communication line" with the respective agencies to discuss ways of improving collection and reporting of activity data in this sector should be considered.

Emission Inventory Guidebook

12 SPATIAL DISAGGREGATION CRITERIA FOR AREA SOURCES

Spatial disaggregation of annual emissions when using top-down approach could be performed by using surrogate data. For the residential sector the emissions could be taken as proportional to the population density. Because in most countries the means of heating in residential greatly differs among urban and rural settlements and also among the regions (usually coal is much more used in traditionally mining regions), this approach could be taken only as a last resort. In general the following steps could be taken for disaggregation of the emissions from the residential sector (Loibel, 1993):

- Differentiated in spatial areas: administrative units, inhabited areas, settlement areas divided in low and high density populated
- Determination of per capita emission factor depending on population density, type of fuel and main installation types used in for each spatial area

If emissions have been determined by bottom-up energy modelling, the spatial disagreagation is straightforward.

For commercial/institutional sector emissions could be disaggregated according to the number of employees in the considered spatial unit. It has however to be checked that the number of employees are given as actually employed per spatial unit and not according to the headquarters site.

13 TEMPORAL DISAGGREGATION CRITERIA

Most heating related emissions covered in this chapter are released due to heating of buildings and are therefore released predominantly during the heating season. In the residential sector a smaller part of emissions are released year-round due to preparation of hot water. In agriculture crops drying and greenhouse heating is seasonal.

Building heating demand is related to ambient temperature and user behaviour. Influence of ambient temperature is correlated to heating degree-days, which could be found usually in publications of meteorological services for different towns/cities. The user behaviour is reflected in different load and emissions during workdays and weekends. Daily fluctuations of load depend also on combustion techniques, for instance manually feed stoves and boilers, and on working hours distribution, and are for that reason country specific.

14 ADDITIONAL COMMENTS

The default emission factors given in the tables in Section 8 are derived from various measurements, of which some are laboratory measurements and some are in-field measurements. In order to derive representative default emission factors from available data, expert judgement is necessary. This has taken into account the variations in fuels, technologies and firing practices as well as the various conditions due to national conditions, to the best of our current knowledge. The default emission factors are general and derived to

be as representative as possible for real conditions with the current knowledge. More in-field measurement would improve the basis for and the quality of the default emission factors.

15 SUPPLEMENTARY DOCUMENTS

16 VERIFICATION PROCEDURES

Verification of the emissions can be undertaken by calculating the emissions using the default factors given in Section 8.1 of this chapter and comparing the results with a mean profile.

17 REFERENCES

- APEG (The Airborne Particle Expert Group) (1999); "Source apportionment of airborne particulate matter in the United Kingdom"; Prepared on behalf of the Department of the Environment, Transport and the Regions, the Welsh Office, the Scottish Office and the Department of the Environment (Northern Ireland)
- Baumbach G., Zuberbühler U., Struschka M., Straub D., Hein K.R.G. (1999); "Feinstaubuntersuchungen an Holzfeuerunge"; Teil 1: Bereich Hausbrand und Kleingewerbe. Institut für Verfahrenstechnik und Dampfkesselwesen, Report No. – 44-1999, Universtät Stuttgart. Juli 1999
- Baart A., Berdowski J., van Jaarsveld J. and Wulffraat K., (1995); "Calculation of atmospheric deposition of contaminants on the North Sea", TNO-MEP-R 95/138, Delft, The Netherlands
- Bartle K.D., Ściążko M., Kubica K. (1996); "Clean Coal –Derived Solid Fuels for Domestic and power Plant Combustion"; Report 1996, Contract CIPA-CT92-3009, 1996
- Berdowski J.J.M., Bass J., Bloos J.P.J., Visschedijk A.J.H., Zandveld P.Y.J., (1997); *"The European Atmospheric Emission Inventory for Heavy Metals and Persistent Organic Pollutants"*; Umweltforschungsplan des Bundesministers fur Umwelt, Naturchutz und Raktorsicherheit. Luftreinhaltung. Forschunbericht 104 02 672/03. TNO, Apeldorn, The Netherlands, 1997
- BLT (1999); BLT Biomass · Logistics · Technology Francisco Josephinum, Wieselburg, Austria; <u>http://www.blt.bmlfuw.gv.at/pruefber/g1999062.pdf</u>
- BLT (2000/1); BLT Biomass · Logistics · Technology Francisco Josephinum, Wieselburg, Austria; <u>http://www.blt.bmlfuw.gv.at/pruefber/g2000117.pdf</u>
- BLT (2000/2); BLT Biomass · Logistics · Technology Francisco Josephinum, Wieselburg, Austria; <u>http://www.blt.bmlfuw.gv.at/pruefber/g2000074.pdf</u>
- BLT (2001/1); BLT Biomass · Logistics · Technology Francisco Josephinum, Wieselburg, Austria;<u>http://www.blt.bmlfuw.gv.at/pruefber/g2004075.pdf</u>
- BLT (2003); BLT Biomass · Logistics · Technology Francisco Josephinum, Wieselburg, Austria; <u>http://www.blt.bmlfuw.gv.at/pruefber/g2003048.pdf</u>
- BLT (2004/2); BLT Biomass · Logistics · Technology Francisco Josephinum, Wieselburg, Austria; <u>http://www.blt.bmlfuw.gv.at/pruefber/g2004020.pdf</u>
- BLT (2005/1); BLT Biomass · Logistics · Technology Francisco Josephinum, Wieselburg, Austria; <u>http://www.blt.bmlfuw.gv.at/pruefber/g2005093.pdf</u>

- BLT (2005/2); BLT Biomass · Logistics · Technology Francisco Josephinum, Wieselburg, Austria; <u>http://www.blt.bmlf.gv.at/menu/index_e.htm</u>
- Boman C., Nordin A., Öhman M., Boström D. (2005); "Emissions from small-scale combustion of biomass fuels extensive quantification and characterization"; Energy Technology and Thermal Process Chemistry Umeå University, STEM-BHM (P12648-1 and P21906-1), Umeå, February 2005
- Boman Ch., Nordin A., Boström D., and Öhman M. (2004); "Characterization of Inorganic Particulate Matter from Residential Combustion of Pelletized Biomass Fuels"; Energy&Fuels 18, pp. 338-348, 2004
- Bostrom Curt-Ake, (2002); "*Emission Factors for Small Scale Combustors (Bio-Fuels). IVL, Sweden*"; UN-ECE TFEIP Combustion and Industry Expert Panel Workshop on: "Emissions from Small and Medium Combustion Plants", Ispra, April 2002, Proce. No.I.02.87
- Broderick D.R., Houck J.E. (2005); "Development of a Fireplace Baseline Particulate Emission Factor Database"; OMNI Consulting Services, Inc.; http://www.omni-test.com/Publications/baselinepaper1.pdf
- Bryczkowski A., Kubica R. (2002): Inżynieria i Aparatura Chemiczna; 41, nr 4, 14, 2002 (polish)
- BUWAL (Bundesamt für Umwelt, Wald und Landschaft) (1995); "*Emissionsfaktoren für Stationäre Quellen"*; BUWAL, Bern
- BUWAL (Bundesamt für Umwelt, Wald und Landschaft) (2001); "Massnahmen zur Reduktion von PM10-Emissionnen"; Schlussbericht, BUWAL Abteilung Luftreinhaltung und NIS, January, 2001
- Caserini Stefano, (2004); Private Communication; Technical University Milano
- Caserini S., Monguzzi A.M., Fracaroli A., Moretti M., Giudici A. (2003), Distribuzione delle emissioni di diossine in atmosfera in Lombardia: scenario attuale e trend per le principali sorgenti; 1 Convegno: Ingegneria e Chimica per l'Ambiente "POP: diffusione nell'ambiente, loro controllo e tecnologie di abbattimento" Milano, 26-27 Novembre, 2003;

http://www.aidic.it/POP/convegno%20novembre%202003.htm

- CEC (2003): "*European energy and transport. Trends to 2030*"; KO-AC-02-001-EN-C, European Commission, Directorate General for Energy and Transport, Luxembourg
- CEPMEIP (2002): "Co-ordinated European Programme on Particulate Matter Emission Inventories, Projections and Guidance"; 2002,: http://www.air.sk/tno/cepmeip/
- Chapter Combustion Plants as Point Sources -B111, EMEP/CORINAIR Atmospheric Emission Inventory Guidebook
- CITEPA, (2003), "Wood Combustion in Domestic Appliances"; Final Background Document on the sector; 30.06.2003
- Cofala J., Klimont, Z., Amann, M. (2006); "The potential for further control of emissions of fine particulate matter in Europe"; IIASA IR 06-011. http://www.iiasa.ac.at/rains/reports/wp-06-011.pdf
- COM(2003) 423 final; "Proposal for a Directive of the European Parliament and of the Council relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air"; Brussels, 16.07.2003

- Compilation of Air Pollutant Emission Factors (AP-42) (1996), Volume 1: *"Stationery Point and Planning and Standards"*; Research triangle Park. North Carolina, 1996
- Czekalski B., Drodz W.; (2003); "Emission from oil and gas boilers the results of investigation in Poland. Personal communicate"; EN-POL, Katowice, Poland, October 2003
- Davies M., Rantall, T.D., Stokes B.J., Williamson F., (1992); "Characterisation of Trace Hydrocarbon Emissions from Coal Fired Appliances"; Final Report on Ecsc. Project No 7220-ED821, Report No. ENV/27
- Determination of Mean Emission Factors as Representative Figures for Emission of Stuttgart – IVD (1996; Final Report to P&D. Project 29546364/ Emission Factors; 1996
- Dreiseidler, A., Baumbach, G., Pregger, T., and Obermeier, A. (1999): "Studie zur Korngröβenverteilung (< PM₁₀ und PM_{2.5}) von Staubemissionen"; Forschungsbericht 297 44 853, i. A. Des Umweltbundesamtes Berlin, Germany (different UBA sources, partly personal communication, cited in this study)
- Emission Factors Manual PARCOPM-ATMOS (1993); "Emission Factors for Air Pollutants"; Final version TNO Report 92-233/112322-24285, 1992, 1993
- EPA (Environmental Protection Agency) (1998a); *Compilation of Air Pollutant Emission Factors*, 5-th ed: EPA AP-42; United States Environmental Protection Agency. Research Triangle Park, North Carolina
- EPA (Environmental Protection Agency) (1996); "*Report on Revisions to 5th Edition AP-42 Section 1.10 Residential Wood Stoves*", pp.10/92, United States Environmental Protection Agency. Research Triangle Park, North Carolina, U.S.
- EPA (Environmental Protection Agency) (1998b); "Compilation of Air Pollutant Emission Factors, Section 7.1, Residential Wood Combustion", 5-th ed.: EPA AP-42. United States Environmental Protection Agency. Research Triangle Park, North Carolina, U.S.
- Ehrlich Ch., Noll G., Kalkoff W.-D. (2001); "Overview of investigations on aerosols from combustion (including biomass) in Germany", pp.50 in Aerosols from Biomass Combustion, ISBN 3-908705-00-2, International Seminar at 27 June 2001 in Zurich by IEA Bioenergy Task 32 and Swiss Federal Office of Energy, Verenum, Zurich 2001 <u>http://www.ieabcc.nl/publications/aerosols.pdf</u>
- Fine P.M., Cass G.R., Simoneit B.T. (2001); "Chemical Characterization of Fine Particle Emissions from Fireplace Combustion of Woods Grown in the Northeastern United States"; Environ. Sci. Technol., 35, pp. 2665-2675, 2001
- Fine P.M., Cass G.R., Simoneit B.T. (2002); 'Chemical Characterization of Fine Particle Emissions from the Fireplace Combustion of Woods Grown in the Southern United States'; Environ. Sci. Technol., 36, pp.1442-1451, 2002
- Gaegauf U.Ch., Wieser, Y. Macquat W.Y. (2001); "Field investigation of nanoparticle emissions from various biomass combustion systems" pp. 80 in Aerosols from Biomass Combustion, ISBN 3-908705-00-2, International Seminar at 27 June 2001 in Zurich by IEA Bioenergy Task 32 and Swiss Federal Office of Energy, Verenum, Zurich 2001 <u>http://www.ieabcc.nl/publications/aerosols.pdf</u>

- Geueke K.J., Gessner A., Hiester E., Quaß U., Bröker G., (2000); "*Elevated Emissions of Dioxine and Furanes from Domestic Single Stove Coal Combustion*"; Organohalogen Compounds; vol. 46, pp 272 275, 2000
- Glasius, M, Vikelsoe, J, Bossi, R, Vibeke Andersson, H, Holst, J, Johansen, E and Schleicher, O. 2005. Dioxin, PAH og partikler fra braendeovne. Danmarks Miljöundersogelser, Miljöministeriet. DMU nr 212. In Dannish.
- Grochowalski A; (2002), "Ambient air concentration and emission of dioxins in Poland"; and Grochwalski A., "Results of dioxins emission measurements from thermal processes in Poland 1996-2002"; Proc., of JRC Workshop on the Determination of Dioxins in Industrial Emissions; Brno, Czech Republic, 16-19 April, 2002, pp. 87
- Gulland J. (2003); "*Residential Wood Combustion, Overview of Appliance Categories*", June 2003, Updated September 2003; http://www.bcbudget.gov.bc.ca/sp2004/wlap/wlap.pdf)
- Gullett B.K., Touati A., Hays M.D. (2003); "PCDD/F, PCB, HxCBz, PAH, and PM Emission Factors for Fireplace and Woodstove Combustion in the San Francisco Bay Region"; Environ. Sci. Technol. 37, pp. 1758-1765, 2003
- Hays M.D., Smith N.D., Kinsey J., Dongb Y., Kariherb P. (2003); "Polycyclic aromatic hydrocarbon size distributions in aerosols from appliances of residential wood combustion as determined by direct thermal desorption—GC/MS"; Aerosol Science, 34, pp. 1061–1084, 2003
- Hedberg E., Kristensson A., Ohlsson M., Johansson C., Johansson P., Swietlicki E., Vesely V., Wideqvist U., Westerholm R. (2002); "*Chemical and physical characterization of emissions from birch wood combustion in a wood stove*"; Atmospheric Environment 36, pp. 4823–4837, 2002
- Hlawiczka S., Kubica K., Zielonka U., (2003); "*Partitioning factor of mercury during coal combustion in low capacity domestic heating appliances*"; The Science of the Total Environment; Elsevier; 312, 2003, 261-265
- Hlawiczka S., Fudala J. (2003); "Distribution of Cd, Pb and Hg emissions among sectors of economy in Poland and the emission assessment for the years 1990-2000" in: Environmental Engineering Studies, Polish Research on the way to the EU; Kluwer Academic/Plenum Publishers, New York, 2003
- Hesling D., (2002); "Emission from stationary combustion sources smaller that 20kW in the Netherlands: methodology and emission factors"; UN-ECE TFEIP Combustion and Industry Expert Panel Workshop on: "Emissions from Small and Medium Combustion Plants", Ispra, April 2002, Proce. No.I.02.87
- Hobson M., Thistlethwaite G., (2003); "Emission factors programme Task 7 Review of Residential & Small-Scale Commercial Combustion Sources"; AEAT/ENV/R/1407, Issue 1
- Houck J.E., Tiegs P., E., (1998); "Residential Wood Combustion PM_{2.5} Emissions"; WESTAR PM_{2.5} Emission Inventory Workshop; Reno, Nevada, July 22-23, 1998
- Houck J.E., Tiegs P., E., (1998/1); "*Residential Wood Combustion Technology Review*". Volume 1.Technical Report; EPA-600/R-98-174a, December 1998
- Houck, J. and Tiegs, P.E. (1998); "*Residential Wood Combustion Technology Review*" EPA-600/R-98-174 (Volume 1 and 2)

- Houck J.E., Scott A.T., Purvis C.R., Kariher P.H., Crouch J. and Van Buren M.J. (2000); "Low emission and high efficiency residential pellet-fired Heaters"; Proceedings of the Ninth Biennial Bioenergy Conference, Buffalo, NY, October 15-19, 2000; <u>http://www.omni-test.com/Publications.htm</u>
- Houck J.E., Crouch J., Huntley R.H. (2001); *Review of Wood Heater and Fireplace Emission Factors*"; OMNI Consulting Services Inc.; Hearth Products Association; U.S. EPA. <u>http://www.omni-test.com/Publications/ei.pdf</u>
- Houck J.E., Broderick D.R. (2005); "PM2.5 Emission Reduction Benefits of Replacing Conventional Uncertified Cordwood Stoves with Certified Cordwood Stoves or Modern Pellet Stoves"; OMNI Environmental Services, Inc., Prepared for Hearth, Patio and Barbecue Association, May 26, 2005; <u>http://www.omni-test.com/Publications/Emission Reduction.pdf</u>
- Hustad J. E., Skreiberg Ø., and Sønju O. K., (1995); "Biomass Combustion Research and Utilisation in IEA Countries, Biomass and Bioenergy", vol. 9, Nos 1-5, 1995
- Hübner C., Boos R., Prey T. (2005); "In-field measurements of PCDD/F emissions from domestic heating appliances for solid fuels"; Chemosphere 58 (2005) 367–372
- IIASA (International Institute for Applied Systems Analysis), 2004; "*Results of the RAINS model developed at IIASA*"; Laxenburg, Austria (<u>www.iiasa.ac.at/rains</u>)
- Johansson L., TullinC., Leckner B. (2001); "Particulate emissions from small-scale biomass combustion" pp. 87 in Aerosols from Biomass Combustion, ISBN 3-908705-00-2, International Seminar at 27 June 2001 in Zurich by IEA Bioenergy Task 32 and Swiss Federal Office of Energy, Verenum, Zurich 2001 http://www.ieabcc.nl/publications/aerosols.pdf
- Johansson, L et al.. Fältmätningar av metan och andra viktiga komponenter från ved pannor. 2006. (Field measurements of methane and other parameters from wood log boilers). SP Swedish National Testing and Research Institute. Borås, Sweden 2006. STEM-BHM (21826-1, 21826-2, 5030403). In Swedish with English summary.
- Johansson, L, Johansson, M, Tullin, C. Emissionsnivåer av komponenter som omfattas av miljömålet "Frisk luft" vid P-märkning och miljöprovning av eldningsutrustning för villor. 2004 a. (Emission parameters within the Swedish environmental objective clean air to the emission levels obtained during the testing of domestic combustion devices for testing of emission limits and by the P-mark. SP Swedish National Testing and Research Institute. Borås, Sweden 2004. STEM-BHM (20710-1). In Swedish with English summary.
- Johansson, L, Leckner, B, Gustavsson, L, Cooper, D, Tullin, C, Potter, A. 2004 b. Emission characteristics of modern and old-type residential boilers fired with wood logs and wood pellets. Atmospheric Environment 38 (2004) 4183–4195.
- Kakareka S., Kukharchyk T., Khomisch V., (2003); "Belarusian Contribution to *EMEP*"; Annual report 2002, Minsk-Moscow, January 2003"
- Karasek F., Dickson L., (1987); Science, 237, 1987
- Karcz A., Kubica K., Ściążko M.; "Fuel coke an environment friendly alternative to coal. II CUSTNET Conference on Coal Research a Development through Collaboration in Europe"; Ostrawa, Republika Czeska, 2–4.09.1996
- Karvosenoja, N. (2000; "Results of investigation in Finland. Personal communication"

- Klimont Z., Cofala J., Bertok I., Amann M., Heyes Ch., and Gyarfas F. (2002; *"Modelling Particulate Emissions in Europe; A Framework to Estimate Reduction Potential and Control Costs";* Interim Report IR-02-076, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria (can be found on the Internet at: <u>http://www.iiasa.ac.at/rains/reports/ir-02-076.pdf</u>)
- Krucki A., Juńczyk J. (2006); Private communication, Instytut Techniki Cieplnej w Lodzi, June 2006
- Kubica K., (1997/1): "Distribution of PAH generated in domestic fuels boilers"; Proc. of 9th International Conference on Coal Science; Essen, Niemcy, 7–12.09.1997
- Kubica, K., Raińczak, J., Rzepa, S., Ściążko, M., (1997/2); "Influence of "biofuel" addition on emission of pollutants from fine coal combustion", Proc. 4th Polish-Danish Workshop on Biofuels, Starbieniewo, 12-14 czerwca 1997/2
- Kubica K., (1998); "The effect of coal combustion process in stable bed conditions on generation and distribution of PAHs"; Proc. of the II International Scientific Conference "Air Protection in theory & Application, 2-4 June, Szczyrk, 1998, s 339
- Kubica K., Misztal M., (1997/3), "Promotion of Low Emission Coal Fired Boilers"; Report THERMIE B Action DIS-0715-95-UK, IChPW, Zabrze, March, 1997
- Kubica K., Sciążko M. (1994); "Correlation of coal properties to char, briquette, and *utilization characteristics*"; Int. Conf. "Production and Utilization of Ecological Fuels from East Central European Coals", Praga, Republika Czeska, 31.10-1.11.1994
- Kubica K., Ranczak J., Wilkosz K. (1999); Report ICHPW 2696/99 "Determination of non-metanic organic compounds emission factors for solid fuels (coal coke), gas and oil fire appliances", Zabrze, 31.05.99 (Polish)
- Kubica K. (2001/1): "Combustion of biomass in small capacity appliances emission of pollutants"; Międzynarodowa Konferencja nt. "Odnawialne źródła energii u progu XXI wieku"; s. 419, Warszawa 2001, (Polish, abstract in English)
- Kubica K., (2002/1); "Emission of Pollutants during Combustion of Solid Fuels and Biomass in Small Appliances"; UN-ECE TFEIP Combustion and Industry Expert Panel Workshop on: "Emissions from Small and Medium Combustion Plants", Ispra, April 2002, Procc. No.I.02.87
- Kubica K., J. Rańczak J. (2003/3); "*Co-firing of coal and biomass in mechanical great boilers*"; Procc., of Int., Conf., Combustion of alternative fuels in power and cement industry, 20-21 February, 2003, Opole, Poland, pp. 81-97
- Kubica K., et al. (2002/2); "Development of technologies for biomass utilization", Report IChPW 1.03/2002 (Polish)
- Kubica K. (2002/3): "Low emission coal boilers as alternative for oil and gas boilers for residential and communal sectors; Coal hasn't to contaminate" Katalog ochrony środowiska Ekoprofit nr 1 (61)/2002, Katowice, 2002 (Polish)
- Kubica K., (2003/1); "Environment Pollutants from Thermal Processing of Fuels and Biomass", and "Thermochemical Transformation of Coal and Biomass" in Termochemical Processing of Coal and Biomass; pp 145-232, ISBN 83-913434-1-3, Publication, Copyright by IChPW and IGSMiE PAN; Zabrze-Kraków; 2003, (Polish)
- Kubica K., Ranczak J, Matuszek K., Hrycko P., Mosakowski S., Kordas T., "Emission of Pollutants from Combustion of Coal and Biomass and Its Co-firing in Small and Medium Size Combustion Installation " (2003/2); 4th JOINT UNECE Task Force &

EIONET Workshop on Emission Inventories and Projections in Warsaw, Poland, 22-24 September, 2003

- Kubica K. (2003/3), "Zagrożenia trwałymi zanieczyszczeniami, zwłaszcza dioksynami i furanami z indywidualnych palenisk domowych i kierunki działań dla ich ograniczenia" ("Threats caused by persistent pollutants, particularly by dioxine and phuranes from residential heating and the directions of protection actions aiming at their emission reduction"); Project: GF/POL/01/004 - Enabling activities to facilitate early action on the impementation of the Stockholm Convention on Persistent Organic Pollutants (POPs Convention); Warszawa, 2004; <u>http://ks.ios.edu.pl/gef/doc/gf-pol-</u> <u>nip-r1.pdf</u>
- Kubica K. (2004/1); "Toxic Pollutants Emission from either Combustion Process and Co-Combustion of Coal and Biomass"; "Ochrona Powietrza w Teorii i Praktyce", ISBN 83-921514-0-2 pp. 213-229, Zabrze, 2004 (polish, abstract in english)
- Kubica K. (2004/2); "Analiza wskaźników emisji zanieczyszczeń do powietrza pyłów, wielopierścieniowych węglowodorów aromatycznych ze spalania paliw"; Raport 30-011-BK-3086 dla IOS; Warszawa, 30 grudzień, 2004 (polish)
- Kubica K., Paradiz B., Dilara (2004/4); "Toxic emissions from Solid Fuel Combustion in Small Residential Appliances"; Procc. 6th International Conference on Emission Monitoring CEM-2004, June 9-11, 2004, Milano Italy; <u>www.cem2004.it</u>
- Kubica K. (2004/5); "Spalanie i współspalanie paliw stałych w miastach" ("Combustion and co-combustion of solid fuels"); Rozdział w monografii "Zarządzanie energią w miastach" ("Management of energy in the town") ; red. R. Zarzycki; ISBN 83-86492-26-0; Polska Akademia Nauk Oddział w Łodzi, Łódź 2004 s. 102-140
- Kubica K., Zawistowski J., Rańczak J. (2005/1); "*Spalanie paliw stałych w instalacjach małej mocy rozwój technik spalania węgla i biomasy"*; Karbo, 50, pp. 2, 2005 (polish, abstract in english)
- Kubica K., Kubica R., Zawiejska Z., Szyrwińska I. (2005/2); "Ocena efektów ekologicznych i społecznych programu obniżenia niskiej emisji, zrealizowanego w Tychach w latach 2002 2004 w dzielnicach obrzeżnych miasta"; Raport Nr 0433/05 z dnia 01-03-2005 NILU Polska Sp. z o.o., SOZOPROJEKT Sp. z o.o., Katowice, maj, 2005
- Kubica K., Hlawiczka S., Cenowski M., Kubica R. (2005/3); "Analiza zmian wskaźników emisji pyłu z wybranych procesów w okresie 1990 1999", Raport dla IOS, Warszawa, wrzesień, 2005 (polish)
- Kubica K., Kubica R., Pacyna J., Pye S., Woodfield M. (2006/1); "Mercury emission from combustion of coal in SCIs"; MEC3 - Mercury Emissions from Coal 3rd International Experts' Workshop, Katowice, Poland, 5th-7th June 2006; <u>http://www.nilu.pl/mec3/</u>
- Kubica K. (2006/2); "Występowanie metali ciężkich w biomasie drzewnej Gmin Zabrze i Bytom w aspekcie jej wykorzystania w energetyce i produkcji kompostu" ("Appearence of heavy metals in wood biomass of Zabrze and Bytom Communes owing to its use in energy and compost production"); Interim Report; July, 2006, WSEiA, Bytom
- Kubica K., Paradiz B., Dilara P., (2004) "Small combustion installations techniques, emissions and measurements"; Ispra, EUR Report 2004

- Kupiainen, K., Klimont, Z., (2004); "Primary Emissions of Submicron and Carbonaceous Particles in Europe and the Potential for their Control"; IIASA IR 04-079, http://www.iiasa.ac.at/rains/reports.html
- Lammi K., Lehtonen E. and Timonen T. (1993); "Energiantuotannon hiukkaspäästöjen teknis-taloudelliset vähentämismahdollisuudet (Technical and economical alternatives to reduce particulate emissions from energy production)"; Helsinki, Finland, Ministry of the Environment, Report 120. 64 pp. (In Finnish with English summary)
- Loibel W., Orthofer O., Winiwarter W. (1993); "Spatially disaggregated emission inventory for antrophogenic NMVOC emissions in Austia"; Atmospheric Environment, 27A, 16, pp. 2575-2590, 1993
- Lee R.M., Coleman P., Jones J.L., Jones K.C., Lohmann R. (2005); "Emission Factors and Importance of PCDD/Fs, PCBs, PCNs, PAHs and PM10 from the Domestic Burning of Coal and Wood in the UK"; Environ. Sci. Technol. 39, pp.1436-1447, 2005
- McDonald J.D., Zielinska B., Fujita E., Sagebie J.C., Chow J.C., and Watson J.G. (2000); "Fine Particle and Gaseous Emission Rates from Residential Wood Combustion"; Environ. Sci. Technol. 2000, 34, pp. 2080-2091, 2000
- Meier, E. and Bischoff, U. (1996); "*Alkalische Emisisonsfaktoren beim Einsatz ballastreicher Braunkohlen in Vebrennunganlagen";* IfE Leipzig i.A des BMBF, Beitrag C2.2 des Verbundvorhabens SANA, in: Wissenschaftliches Begleitprogramm zur Sanierung der Atmmosphäre über den neuen Bundesländern, Abschlussbericht Band II
- Moritomi H., Fujiwara N. (2005); "*Mercury emission from coal combustion in Japan*"; Mercury Experts Conference 2; MEC2 May 25, 2005 Ottava, Canada
- Nielsen M., Illerup J.B., Kristensen P.G., Jensen J., Jacobsen H.H., Johansen L., P., (2002); "Emission factors for CHP plants < 25MWe"; (2003); 4th JOINT UNECE Task Force & EIONET Workshop on Emission Inventories and Projections in Warsaw, Poland, 22-24 September, 2003
- Nussbaumer T. (2001); "*Relevance of aerosols for the air quality in Switzerland*" pp.1 in *Aerosols from Biomass Combustion*, ISBN 3-908705-00-2, International Seminar at 27 June 2001; <u>http://www.ieabcc.nl/publications/aerosols.pdf</u>
- NUTEK (1997); *"Environmentally Adapted Local Energy Systems"*; Report 4733, Swedish Environmental Agency, Stockholm
- Oanh N.T.K., Reutergårdh L.B., Dung N.T. (1999); "Emission of Polycyclic Aromatic Hydrocarbons and Particulate Matter from Domestic Combustion of Selected Fuels"; Environ. Sci. Technol., 33, pp. 2703-2709, 1999
- Ohlström, M. (1998); "Energiantuotannon pienhiukkaspäästöt Suomessa (The fine particle emissions of energy production in Finland)"; Espoo, Finland, Technical Research Center of Finland, VTT Research Notes 1934. 114 pp. (In Finnish with English summary)
- Ohlström, Mikael, Tsupari, Eemeli, Lehtilä, Antti & Raunemaa, Taisto. Pienhiukkaspäästöt. (2005). Fine particle emissions and their reduction potentials in Finland. The effects of greenhouse gas emission reduction. Espoo 2005. VTT Tiedotteita Research Notes 2300. 91 s. + liitt. 1 s. Finland. (In Finnish with English summary)

- Olendrzynski K., Fudala J., Hlawiczka S., Cenowski S., Kachniarz M., Kargulewicz I., Debski B. Skoskiewicz J.(2002); "Emission Inventory of SO₂, NO₂, NH₃, CO, PM, HMs, NMVOCs and POPs in Poland 2000"; UN-ECE EMEP/Poland Report/2002; IOS, Warszawa
- Pacyna J.M., Pacyna E.G., (2001); "An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide"; Environ.Rev.2001, No 9 pp 269 298
- Pacyna J.M., Munthe J. (2004), "Summary of research of projects on mercury funded by EC DG Research"; Workshop on Mercury Needs for further International Environmental Agreements, Brussels, March 29-30, 2004
- Paulrud, S et al. 2006. Användningsmönster och emissioner från vedeldade lokaleldstäder. (The use of domestic wood burning and emissions from wood stoves). IVL-report, Swedish Environmental Research Institute, Gothenburg, Sweden 2006. (In Swedish with English summary)
- Purvis, C. & Mccrills, R. 2000. Fine particulate matter (PM) and organic speciation of fireplace emissions. Environ. Sci. Technol. 2000, 34, 1653-1658.
- Pye S., Thistlethwaite G., Adams M., Woodfield M., Goodwin J., Forster D., Holland M. (2004); *Study Contract on the Cost and Environmental Effectiveness of Reducing Air Pollution from Small-scale Combustion Installations*" (EC reference ENV.C.1/SER/2003/0099r); <u>http://europa.eu.int/comm/environment/air/cafe/</u>
- Pye S., Jones G., Stewart R., Woodfield M., Kubica K., Kubica R., Pacyna J. (2005/1); "Costs and environmental effectiveness of options for reducing mercury emissions to air from small-scale combustion installations"; AEAT/ED48706/Final report v2, December 2005
- Pye S. (2005/2); *UK National atmospheric Emission Inventory* (supplied by Pye S, UK, July 2005)
- Perry R.H., Green D.W., (1997); Chemical Engineers Handbook, Ed.7, Mc Grow-Hill, London, 1997
- Pfeiffer F., Struschka, M., Baumbach, G. (2000); "Ermittlung der mittleren Emissionsfaktoren zur Darstellung der Emissiionsentwicklung aus Feuerungsanlagen im Bereich der Haushalte und Kleinverbraucher"; UBA-FB 295 46 36414/00, Umwelbundesamt, Berlin Mai 2000 (Germany, English abstract)
- Struschka, M., Zuberbühler U., Dreiseidler A., Dreizler D., Baumbach, G. (2003); "Ermittlung und Evaluierung der Feinstaubemissionen aus Kleinfeurungsanlagen im Bereich der Haushalte und Kleinverbraucher sovie Ableitung von geeingenten Maßnahmen zur Emissionminderung"; UBA-FB 299 44 140, Umwelbundesamt, Berlin Juli 2003 (Germany, English abstract)
- Pulles T., van Aardenne J., Tooly L., Rypdal K., (2001); "Good Practice Guidance for CLRTAP Emission Inventories"; European Topic Centre on Air and Climate Change (ETC/ACC), 7 November, 2001, <u>www.emep.int</u> or on the Internet site of the European Environment Agency <u>http://reports.eea.eu.int/EMEPCORINAR/en</u>
- Purvis, C. & Mccrills, R. 2000. Fine particulate matter (PM) and organic speciation of fireplace emissions. Environ. Sci. Technol. 2000, 34, 1653-1658.
- Quass U., Fermann M., Bröker G.; (2000); *"The European Dioxin Emission Inventory* - *Stage II" Desktop studies and case studies"*; Final Report 31.21. 2000; Volume 2, pp. 115-120, North Rhine Westphalia State Environment Agency

- Ross A.B., Jones J.M., Chaiklangmuang S., Pourkahanian M., Williams A., Kubica K., Andersson J.T., Kerst M., Danihelka P. i Bartle K.D. (2002); "Measurement and prdiction of the emission of pollutants from the combustion of coal and biomass in a fixed bed furnace"; Fuel, 81, 5, pp 571, 2002
- Skreiberg, Ø., 1994; "Advanced techniques for Wood Log Combustion"; Proce. From COMETT Expert Workshop on Biomass Combustion May 1994
- Saanum et al, (1995); "Emissions from Biomass Combustion", Norway Institute of Technology, 1995
- Schauer, J., Kleeman, M, Cass, G, Simoneit, B. 2001. Measurement of emissions from air pollution sources 3. C1-C29 organic compounds from fireplace combustion of wood. Environ. Sci. Technol, 2001, 35, 1716-1728.
- Senior C. (2004); "Mercury Tutorial Mercury Transformations"; Connie Senior (private presentation) Reaction Engineering International; The 29th International Technical Conference on Coal Utilization & Fuel Systems Clearwater, Florida April 18-22, 2004 (behalf of EPA)
- Smith, K.R. (1987); "Biofuels, Air Pollution, and Health, A Global Review"; Plenum Press, New York, p. 452
- Spitzer, J., Enzinger, P., Fankhauser, G., Fritz, W., Golja, F., Stiglbrunner, R. (1998; *"Emissionsfaktoren für Feste Brennstoffe";* Endbericht Nr.: IEF-B-07/98, Joanneum Research, Graz, December 1998, p. 50
- Strand, M. 2004. Particle Formation and Emission in Moving Grate Boilers Operating on Woody Biofuels. Doctorial thesis. Department of Chemistry, TD, Växjö University, Sweden.
- Tan Y., Mortazavi R., Bob Dureau B., Mark A. Douglas M.A. (2004); "An investigation of mercury distribution and speciation during coal combustion"; Fuel 83 (2004), pp. 2229–2236
- Thanner G., Moche W., (2002); *"Emission von Dioxine, PCBs und PAHs aus Kleinfeuerungen";* Umweltbundesamt, Federal Environment Agency Austria, Monographien Band 153, Wien, 2002
- The Air Quality Strategy for UK; 2000; "The Air Quality Strategy for England, Scotland, Wales and Northern Ireland", Working Together for Clean Air, Cm 4548 January, 2000
- Tullin C., Johansson L., Leckner B. (2000); "Particulate emissions from small-scale biomass combustion"; Nordic Seminar on Small Scale Wood Combustion, Nadendal, Finland, 2000
- UBA (Umweltbundesamt) (1989); "Luftreinhaltung'88, Tendenzzen Probleme Lösungen", Federal Environmental Agency (Umweltbundesamt), Berlin, in Dreiseidler et al. 1999
- UBA (Umweltbundesamt) (1998); "*Schriftliche Mitteilung von Hr. Nöcker vom 01.09.1998, UBA II 4.6";* Federal Environmental Agency (Umweltbundesamt), Berlin, in Dreiseidler *et al.* 1999
- UBA (Umweltbundesamt) (1998a); "*Schatzung der Staubemissionen in Deutschland (Industrieprozesse, Kraftwerke und Fernheizwerke, industriefeuereungen)*"; Schriftliche Mitteilung von Hr.Remus vom 09.2000. Federal Environmental Agency (Umweltbundesamt), Berlin

- UBA (Umweltbundesamt) (1999a), "Various estimates of particulate emission factors and particle size distributions" by Federal Environmental Agency (Umweltbundesamt), Berlin, in Dreiseidler et al., 1999
- UMEG (Gesellschaft für Umweltmessungen und Umwelterhebungen mbH) (1999); "Feinstaubuntersuchungen an Holzfeuerungen, Teil 2: Bereich Industriefeuerungen > 1 MW", Institut für Verfahrenstechnik und Dampfkesselwesen, Report No – 44-1999, Universtät Stuttgart, July, 1999
- UNEP Chemicals (2003); "Standardized Toolkit for Identification and Quantification of Dioxin and Furan Releases"; Geneva, Switzerland, 1st Edition May 2003
- Van Loo S., and Koppejan J. (2002); *Handbook of Biomass Combustion and Cofiring.*, Twente University Press, Enschede, 2002
- Van der Most, P.F.J., Veldt, C. (1992); "Emission Factors Manual PARCOM-ATMOS, Emission factors for air pollutants 1992, Final version"; TNO and Ministry of Housing, Physical Planning and the Environment, Air and Energy Directorate Ministry of Transport and Water Management: The Netherlands; Reference number 92-235; 1992
- Williams A., Kubica K., Anderson J., Bartle K.D., Danihelka P., (2001), INCO-Copernicus Contr. No. ERB IC15-CT98-053: "Influence of co-combustion of coal and biomass on the emission of pollutants in domestic appliances"; Final Report 1999-2001
- Winiwarter, W., Trenker, Ch., Höflinger, W. (2001); "Österreichische *Emissionsinventur für Stau";* A study for Austrian Environmental Agency (Umwelbundesamt), Final Report, ARC Seibersdorf Research Report, ARC—S-0151, 121 p., September 2001
- Wierzbicka, A., Lillieblad, L., Pagels, J., Strand, M., Gudmundsson, A., Ghaibi, A., Swietlicli, M. Sanati, M., Bohgard, M. Particle emissions from district heating units operating on three commonly used biofuels. Atmospheric Environment 39 (2005), 139-150.
- Zhang J., Smith K., Ma Y., Ye S., Jiang S., Qi W., Liu P., Khalil M., Rasmussen R., Thorneloe S., (2000); *Greenhouse gases and other airborne pollutants from household stoves in China: a database for emission factors.* Atmospheric Environment 34 (2000) 4537-4549

18 BIBLOGRAPHY

Additional literature, which is related to combustion and emissions:

- Ahuja, M.S., Paskind, J.J., Houck, J.E., and Chow, J.C. (1989); "Design of a study for the chemical and size characterization of particulate matter emissions from selected sources in California", In: Watson, J.G. (ed.) Transaction, and receptor models in air resources management. Air & Waste Management Association, Pittsburgh, PA, pp. 145-158
- Ambient Air Pollution by Mercury (Hg) Position Paper, Prepared by the Working Group On Mercury 17 October 2001; http://europa.eu.int

- Amann M, Bertok I, Cofala J, Gyarfas F, Heyes Ch, Klimont Z, Makowski M, Schöpp W, Shibayev S (1998); "*Cost-effective control of acidification and ground-level ozone*"; Brussels: European Communities, 131 p, ISBN 92-828-4346-7
- Berdowski, J.J.M., Mulder, W., Veldt, C., Visschedijk, A.J.H., and Zandveld, P.Y.J. (1997): "*Particulate matter emissions (PM*₁₀ *PM*_{2.5} *PM*_{0.1}) in Europe in 1990 and 1993"; TNO-report, TNO_MEP R 96/472
- Artjushenko N.M., "Heating of Private Houses" (1985); Kiev, 178 p. 1985 (in Rusia)
- Bryczkowski A., Kubica R. (2002); Inżynieria i Aparatura Chemiczna, 41, nr 3, 13, 2002
- Crowther M., (1997) CRE Group LTD., "Scoping study for the transfer of clean coal technology in the domestic and small industrial markets"; ETSU for DTI, Crown Copyright 1997
- CAFE Working Group on Particulate Matter; "Second Position Paper on Particulate Matter"; December 20th, 2004; http://europa.eu.int
- Capros, et al., (1999); *"European Energy and CO2 emission Trends to 2020";* PRIMES model v.2. Bulletin of Science, Technology and Society 19(6): 474-492
- DIN 51603 (1992): "*Flüssige Brennstofe"*; Teil 1: Heizöl EL, Mindestanforderungen (1995); Teil: Heizöl L, T und M, Anforderungen an die Prüng (1992)
- Draft Guidlines for Estimating and Reporting Emissions Data; GE02-31778; EB.AIR/GE.1/2002/7; <u>www.emep.int</u> or on the Internet site of the European Environment Agency <u>http://reports.eea.eu.int/EMEPCORINAR/en</u>
- EA-4/02, (1999); *Expression of the Uncertainty of Measurement in Calibration*, EA-4/02, European co-operation for Accreditation, December 1999, <u>www.european-accreditation.or</u>
- Flagan, R.C. and Seinfeld, J.H. (1988); "Fundamentals of air pollution engineering"; New Jersey, USA, Prentice-Hall Inc., pp. 542
- Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; UNFCCC for the Intergovernmental Panel on Climate Change (IPCC); 2000; <u>http://www.ipcc-nggip.iges.or.jp</u>
- Hein K.R.G., Bemtgen J.M., EU (1998); "Clean technology co-combustion of coal and biomass"; Fuel Processing Technology; 54, 1998, pp. 159-169
- Houck, J.E., Goulet, J.M., Chow, J.C., Watson, J.G., and Pritchett, L.C. (1989) "Chemical characterization of emission sources contributing to light extinction"; In: Mathai, C.V. (ed.) Transaction, visibility and fine particles. Air & Waste Management Association, Pittsburgh, PA, pp. 145-158
- Houck, J.E., Crouch, J., Huntley, R.H. (2001); "Review of Wood Heater and Fireplace Emission Factors"; Paper presented at the 10th Annual Emission Inventory Meeting, 30th April – 3rd May, 2001, Denver, CO
- Kolar J., "*Stickstoffoxide und Luftreinhaltung";* Springer Verlag Berlin, Heilderberg, New York, 1990
- Kubica K. (2001/2): "Predicting coal quality influence on generation and emission of TOC, VOCs and PAHs during their combustion fixed bed furnaces"; Proc. of 17th International Symposium on Combustion Processes, s. 122, Poznań 24–27.09.2001
- K.Kubica, M.Ściążko, et al., "Proposal of certification system of fuels for communal economy"; No 981/94/W-50/OA-PO-Ex/D Founded by Ministry of Environment; Report IChPW 2440/95 (Polish)

- Klimont Z., Cofala J., Bertok I., Amann M., Heyes Ch. and Gyarfas F.: (2002) "Modelling Particulate Emissions in EuropeA Framework to Estimate Reduction Potential and Control Costs"; http://www.iiasa.ac.at/rains/reports/ir-02-076.pdf
- McElroy, M.W., Carr, R.C., Ensor, D.S., Markowski, G.R. (1982); "Size Distribution of Fine Particles from Coal Combustion"; Science, Vol. 215, No. 4528, 1 January 1982, pp. 13-19 (Polish)
- Marutzky, R. and Seeger, K., 1999: *"Energie aus Holz und anderer Biomasse";* ISBN 3-87181-347-8, DRW-Verlag Weinbrenner (ed.), Leinfelden-Echtlingen, Germany
- VDI (1982) Richtlinie 2297:Emissionsminderung; Ölbefeurte Dampf- und Heisßwassererzeurger; 1982
- Nielsen M., Illerup J. B.; National Environmental Research Institute, Denmark; (2003) *"Emission factors for CHP plants < 25MWe"*; 4th JOINT UNECE Task Force & EIONET Workshop on Emission Inventories and Projections in Warsaw, Poland, 22-24 September, 2003
- Pacyna E., Pacyna J.M., J. Pirrone N. (2001); "European emissions of atmospheric mercury from anthropogenic sources in 1995"; Atmospheric Environment, vol. 35, no. 17, pp. 2987-2996 (10), June 2001
- Tullin C. and Johansson L. (2000). *Particulate emissions from small-scale biomass combustion*. Background paper for Nordic Seminar on Small Scale Wood Combustion, 17-18.2.2000, Naantali, Finland
- Williams A., Pourkashanian M., Jones J.M., Skorupska N., (2000); "Combustion and Gasification of Coal", Taylor and Francis, New York, 2000
- Winiwarter, W. and Klimont, Z., (2005); "*Co-ordinated international activities to abate European PM emissions*" In: I. Obernberger and T. Brunner (ed.) *Aerosols in Biomass Combustion.* 6: 13-22. ISBN 3-9501980-2-4. University of Graz, Institute for Resource Efficient and Sustainable Systems., Graz, Austria
- <u>www.fireplaceast.com;</u> Fireplaces East; Russo Products. Inc.
- <u>www.hef.com.pl</u>
- <u>www.mikrofill.com;</u> Mikrofill Systems Limited
- <u>www.metalerg.pl;</u> METALERG s.c.
- <u>www.romotop.cz</u>
- <u>www.zamer.com.pl</u>

19 RELEASE VERSION, DATE AND SOURCE

Version: 3.0 (Final)

Date: July 2004

Original authors: K.Kubica, B. Paradiz, P.Dilara, Z. Klimont, S. Kakareka, B. Debski

Emission Inventory Guidebook

Substantially updated: K. Kubica 2006, with supplementary particulate matter details added by:

Mike Woodfield AEA Technology UK December 2006

20 POINT OF ENQUIRY

Panagiota Dilara: panagiota.dilara@jrc.it

ANNEX 1: COMPILATION OF EMISSION DATA

In this annex compilation of various emission data is given to enable users comparison with their own data.

				Pollutants			
Installation			g/GJ			mg/	∕GJ
	SO ₂	NOx	СО	NMVOC ¹⁾	VOC ¹⁾	РАН	BaP
Domestic open fire	n.d	n.d	n.d.	14 ¹⁾	n.d.	n.d.	n.d.
Domestic closed	2) 420	75	1500	n.d.	60	n.d.	n.d.
stoves	3) 104 ¹⁾	8 ¹⁾	709 ¹⁾	n.d.	n.d.	n.d.	n.d.
Domestic boiler	4) 17.2 ¹⁾	6.2 ¹⁾	1.8 ¹⁾	n.d.	0.02 ¹⁾	n.d.	n.d.
Small commercial or institutional boiler	n.d.	n.d.	416 ²⁾	n.d.	n.d.	n.d.	0.1 ²⁾

 Table A1 1
 Emission factors for coal small combustion installations

Source: Hobson M., et al., 2003; ¹⁾ none information about NMVOC and VOC standard reference usual CH₄ or C_3H_8 are used; ²⁾ Original data in g/kg; ³⁾ Original data in g/kg for recalculation H_u of 24 GJ/t (d.b.) was assumed; 4) coal stove; 5)-roomheater 12.5 kW, anthracite; 6)-boiler, bituminous coal; n.d.- no data;

				Pollutants			
Installation			g/GJ			Mg/	/GJ
	SO ₂	NO _x	СО	NMVOC ¹⁾	VOC ¹⁾	РАН	BaP
Domestic open fire	2) n.d	n.d	n.d.	n.d.	5.0 - 20	n.d.	n.d.
Domestic closed	3) n.d.	n.d.	121 - 275 ²⁾	$10.5^{2};$ 16.1 ²)	n.d.	n.d.	n.d.
stoves	4) $75^{2)}$ and $127^{2)}$	$4^{2)}$ and $7^{2)}$	$1125^{2};$ 1193 ²)	n.d.	n.d.	n.d.	n.d.
	5) 371	382	12,400	n.d.	91	n.d.	n.d.
Domestic boiler	6) n.d.	64-73	140- 7,400	n.d.	0-500 ⁷⁾	n.d.	n.d.
Small commercial or institutional boiler	8) n.d.	35	270	n.d.	2 ⁷⁾	n.d.	n.d.

Table A1 2 Emission factors for combustion of manufactured solid fuels

Source: Hobson M., et al., (2003; ¹⁾ none information about NMVOC and VOC standard reference usual CH₄ or C_3H_8 are used; ²⁾ Original data in g/kg; 3) 10kW open fire, smokeless coal brands; 4)-stoves, charcoal and char briquettes; 4) 12.5kW roomheater, coke and manuf. briq.; 5)-UNECE TFEIP: Dutch fig. for coke use; 6)-UNECE TFEIP: Sweden, pellet boilers, 1.8-2MW; ⁷⁾ as THC: 8) UNECE TEFIP: Sweden, briquette boilers 1.8-2MW; n.d.- no data

Table A1 3Range of emissions value from coal small appliances, which employ fixed
bed combustion with counter-current techniques (manually fuelled)

Types of Efficie Assort Emissions factor of pollutants
--

Emission Inventory Guidebook

appliances	ncy %	ment of fuel	CO G/GJ	$SO_2^{a)}$ g/GJ	NO _x G/GJ	TSP g/GJ	16 PAH g/GJ	B(a)P mg/GJ	VOC (C3) g/GJ
Standard	45 – 75	Un-	3,500 -	200 -	100 -	700 -	20 - 40	200 -	500 -
stove		assortm	12,500	800	150	900		600	700
Masonry	60 - 75	ent	2500 -	200 -	100 -	600 -	15 - 25	150 -	400 -
stove		coal	11,000	800	200	1,200		350	800
Kitchen	40 - 60		3,600 -	200 -	50 -	300 -	50 - 90	400 -	500 -
stove			11,000	800	150	1000		650	1100
Standard	50 - 67		1,800 -	200 -	50 -	150 -	30 - 90	600 -	400 -
boiler			7,000	800	150	500		900	1200
Advanced	76 - 82	Assort	200 -	200 -	150 -	50 -	0.2 –	2-30	60 -
boiler		ment coal,	1,500	800	200	100	0.6		120

Source: Kubica, 2003/1; ^{a)} Emission factor of sulphur dioxide strongly depends on sulphur content of fuel; this emission factors are for of sulphur content between 0.5% and 1.0% with oxidation efficiency of sulphur about 90%.

Table A14	Range of emissions from coal small appliances, which employ fixed bed
	combustion with co-current techniques (in principle automatic fuelled)

		Assort			Emission	s factor of	pollutants	5	
Types of appliances	Efficie ncy %	Assort ment of fuel	CO g/GJ	SO ₂ ^{a)} g/GJ	NO _x G/GJ	TSP g/GJ	16 PAH g/GJ	B(a)P mg/GJ	VOC (C3) g/GJ
Advanced boiler ^{b)}	76 - 80	Fine coal	2,800 – 1,100	250 – 750	150 – 200	50 - 200	0.2 – 0.8	3 - 50	100 – 250
Burners boiler	77 – 84	Fine coal	1,500 – 400	250 – 750	150 – 250	30 – 120	0.2 – 2.0	5 - 50	2 - 50
Stoker, retort boiler	77 – 89	$5-25^{\rm c)}$ mm	120 – 800	130 – 350	150 – 300	30-60	0.1 – 0.7	1 – 20	1 – 50

Source: Kubica, 2003/1; ^{a)} Emission factor of sulphur dioxide strongly depends on sulphur content of fuel; this emission factors are for of sulphur content between 0.5% and 1.0% with oxidation efficiency of sulphur about 90%; ^{b)} – manually fuelled; ^{c)} – for capacity above 50kW grain size 5 – 30 mm.

Table A1 5Emission value of coal combustion in stove and small boilers derived from
measurement campaign in Poland

Parameter	Unit	Advance un boiler 30 kV		Advance up retort boiler	Stove > / kW		V
1 urumeter	Onu	Coal J	Coal W	50 kW	150 kW	Coal J	Coal W
Thermal efficiency	%	67,8	70,9	82,9	82,0	54,7	51,2
СО	g/GJ	3939	2994	48	793	3271	2360
SO ₂	g/GJ	361,6	282,8	347,8	131,5	253,0	211,0

NO _x as NO ₂	g/GJ	190,3	162,3	172,9	160,0	81,2	104,0
VOCs (C ₃)	g/GJ	514,2	483,1	6,1	4,8	486,0	700,0
Dust; TSP	g/GJ	227,0	294,0	267	30,0	523,0	720,0
16 PAHs	Mg/GJ	26688	29676	87,2	0,2	39500	32800
PCDD/F	Ng I-Teq/GJ	285.0	804.1	n.d.	n.d.	n.d.	n.d.

Source: Kubica, UN-ECE TFEIP, 2002/1; n.a. = no data

Table A1 6Emission factors for advanced coal fire small boilers (< 1MW) in Poland.
Voluntary standard requirements

Pollutants	Advanced under-fire boilers; manual fuelled	Advanced upper-fire boilers, automatic fuelled
	Emission fac	ctors (g/GJ)
Carbon monoxide, CO	≤2000	≤1000
Nitrogen dioxide; NOx as NO ₂	≤150	≤200
Sulphur dioxide; SO ₂ ¹⁾	≤400	≤400
Dust; TSP	≤120	≤100
TOC ²⁾	≤80	≤50
16 PAHs acc. EPA	≤1.2	≤0.8
Benzo(a)pyrene; B(a)P	≤0.08	≤0.05

Source: Kubica, 2003/1; Kubica, UN-ECE TFEIP, (2002/1); ¹⁾ Emission factor of sulphur dioxide strongly depends on sulphur content of fuel; this emission factors was established for sulphur content of content <0.6%; ²⁾ TOC is a sum of organic pollutants both in the gaseous phase, as well as on particles organic solvent soluble except $C_1 - C_5$ (Kubica 2003/1)

	Unit		Automatic fuelled burner boiler 25 kW		Fluidized bed boiler 63 MW		ig grate ion;		
Parameter		Coal	80%m/m coal 20% wood	Coal	91% w/w coal 9% wood	Coal	92% w/w coal; 8% wood	Coal	97% w/w coal 3% dry sewage sludge
Thermal efficiency	%	79.1	81.6	87.4	86.2	81.1	81.4	84.4	85.7
СО	g/GJ	254	333	35.2	41.5	120	63	23.8	24.7
SO_2	g/GJ	464	353	379	311	290	251	490	557
NO _x as NO ₂	g/GJ	269	232	109	96	150	155	137	141
VOCs (C ₃)	g/GJ	14.0	9.5	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.

Table A1 7Emission values of co-combustion of coal and wood in small and medium
boilers in Poland

Dust; TSP	g/GJ	50.3	37.6	6.6	7.7	735	948	133	111
16 PAHs	Mg/GJ	401	207	346	121	126	117	269	63

Source: Kubica, et al., 2003/2; n.d. = no data

Table A1 8Emission factors for combustion of biomass; comparison between poor
and high standard furnace design

Emissions	Poor standard	High standard
Excess air ratio, λ	2-4	1.5 – 2
CO; g/GJ	625 - 3125	13 – 156
CxHy ²); g/GJ	63 - 312	< 6
PAH; mg/GJ	62 - 6250	< 6.2
Particles, after cyclone; g/GJ	94 - 312	31 - 94

Source: van Loo, 2002; ¹⁾ Original data in mg/m³_o at 11% O₂, for recalculation H_u of 16 GJ/t and 10m³/kg of flue gases were assumed; ²⁾ none information about CxHy standard reference usual CH₄ or C₃H₈ are used

Type of the burners	TSP (g/GJ)	CO ₂ (%)	02 (%)	<i>THC¹⁾</i> (g/GJ)	NOx (g/GJ)	Effect (kW)
Pellet burner (continuous op	peration)					
Nominal effect	22	9.5	11.1	3	73	10.7
6kW capacity	4	6.0	14.6	78	70	6.2
6kW generated power*	28	4.8	15.8	31	68	6.2
3kW generated power	65	3.7	16.9	252	66	3.2
Pellet burner (electric igniti	on)					•
Nominal effect	16	13.0	7.4	1	70	22.2
6kW generated power	64	9.1	11.3	60	64	6.1
6kW generated power+	-	10.6	9.7	41	174	6.3
3kW generated power	15	8.6	11.9	10	67	3.1

Source: Bostrom, 2002; ¹⁾ none information about THC standard reference usual CH_4 or C_3H_8 are used *High ventilation, ⁺ Wood with high ash content

Table A1 10 Emission factors for wood boiler in Sweden

Type of the burners	TSP (g/GJ)	CO ₂ (%)	02 (%)	<i>THC</i> ¹⁾ (g/GJ)	CO (g/GJ)	NOx (g/GJ)			
Water cooled boiler									
Intermittent log burning	89	6.8	13.4	1111	4774	71			
Water cooled boiler									
Operation using accumulator	103	8.3	11.8	1500	5879	67			
Intermittent log burning	n.d.	5.6	13.4	4729	16267	28			
Cold-start	2243	6.9	14.6	2958	8193	64			

Source: Bostrom; (2002); ¹⁾ none information about THC standard reference usual CH_4 or C_3H_8 are used; n.d.= no data

Table A1 11Arithmetic average emission values for wood combustion. The data were
collected from investigations in various IEA countries (Norway,
Switzerland, Finland, UK and Denmark)

Techniques	NO _X (g/GJ)	CO (g/GJ)	VOC ^{a)} (g/GJ)	THC as CH ₄ (g/GJ)	Particles, TSP (g/GJ)	PAH (mg/GJ)
Cyclone furnaces	333	38	2.1	n.d.	59	n.d.
Fluidized bed boilers	170	0	n.d.	1	2	4
Pulverised fuel burners	69	164	n.d.	8	86	22
Grate plants	111	1846	n.d.	67	122	4040
Stoker burners	98	457	n.d.	4	59	9
Wood boilers	101	4975	n.d.	1330	n.d.	30
Modern wood-stoves	58	1730	n.d.	200	98	26
Traditional wood-stoves	29	6956	671	1750	1921	3445
Fireplaces	n.d.	6716	520	n.d.	6053	105

Source: van Loo, (2002); ^{a)} none information about VOC standard reference usual CH_4 or C_3H_8 are used; n.d. – no data

Table A112	Arithmetic averages of emission value from biomass combustion in small-
	scale applications

Techniques	Load [kW]	Excess air ratio	CO [g/GJ]	$C_x H_y^{a}$ [g/GJ]	Part. TSP [g/GJ]	NO _X [g/GJ]	Temp. [°C]	Effici ency [%]
Wood – stoves	9.33	2.43	3116	363	81	74	307	70
Fire place inserts	14.07	2.87	2702	303	41	96	283	74
Heat storing stoves	13.31	2.53	1723	165	34	92	224	78
Pellet stoves	8.97	3.00	275	7	28	92	132	83
Catalytic wood-stoves	6.00	n.d.	586	n.d.	n.d.	n.d.	n.d.	n.d.

Source: van Loo, 2002; Original date in mg/m³_o at 13% O₂, for recalculation H_u of 16 GJ/t and 10m³/kg of flue gases were assumed; ^{a)} none information about CxHy standard reference usual CH₄ or C₃H₈ are used; n.d. – no data

Table A1 13 Emissions from small industrial wood chips combustion applications in
the Netherlands (g/GJ)

Type of operation	Combustion principle	Draught control	Capacity kW	СО	CxHy ^{a)}	NO _x	TSP	Efficie ncy %
Manual	Horizontal grate	Natural uncontrolled	36	1494	78	97	13	85
		Forced	34.6	2156	81	108	18	83.5
		uncontrolled	30	410	13	114	21	90
Automatic	Stoker	Forced	~40	41	2	74	50	85.4
	boiler	controlled	320	19	2	116	32	89.1

Source: van Loo, 2002; Original date in mg/m³_o at 11% O₂, for recalculation H_u of 16 GJ/t and 10m³/kg of flue gases were assumed; ^{a)} none information about CxHy standard reference usual CH₄ or C₃H₈ are used; n.d. – no data

Techniques	Capacity [kW]	SO ₂ [g/GJ]	CO [g/GJ]	VOC as C ₃ [g/GJ]	TSP [g/GJ]	NO _X [g/GJ]	16 PAH g/GJ	Efficie ncy [%]
Wood – log, stoves	5.7	9.8	6290	1,660	1,610	69	33,550	64.4
Upper fire stocker, pellet combustion	25	29	200	21	9.9	179	71	80.4
Pellet burners	20.5	6.0	58.5	7.2	29.7	295	122	85.7
Gasifire, pre-oven	20.0	21.0	1226	6.8	15.6	78.9	480	83.9

Table A114Emission value from biomass combustion in small-scale applications
derived from measurement campaign in Poland

Source: Kubica, et al., 2002/2

Table A115Emission value of biomass combustion in small and medium boilers
derived from measurement campaign in Poland

		Straw fix	ed grate	Advance un	der-fire boiler	Automatic boilers		
Parameter	Unit	boiler 65	kW	30 kW		3,5 MW	1,5 MW	
		Rape straw	Wheat straw	Briquettes of sawdust	Lump pine wood	Mixture of	cereal straws	
Thermal efficiency	%	81.	84.2	81.3	76	90.1	84.3	
СО	g/GJ	2230	4172	1757	2403	427	1484	
SO ₂	g/GJ	127,1	66,5	15,9	4,8	74,6	151,0	
NO _x (as NO ₂)	g/GJ	105,3	76,1	41,6	31,7	110,1	405,0	
VOC (as C ₃)	g/GJ	n.a.	n.a.	176,1	336,4	n.a.	n.a.	
TSP	g/GJ	654,0	901,0	39,0	116,0	31,5	109,0	
TOC ¹⁾	g/GJ	59,4	39,4	98,6	176,0	18,1	39,0	
16 PAHs acc EPA	Mg/GJ	9489	3381	9100	9716	197	0,4	
PCDD/F	ng I- TEQ/GJ	840.9	746.2	107.5	1,603	n.a.	n.a.	

Source: Kubica, 2003/1; Kubica, UN-ECE TFEIP, (2002/1

Table A1 16 Emission factors for 1.75 MW and 2 MW boilers in Sweden

Fuel	Effect (%)	0 ₂ (%)	CO (g/GJ)	THC (g/GJ) ^{a)}	CH ₄ (g/GJ)	TSP (g/GJ)	NO _X (g/GJ)	NH3 (g/GJ)
Pellets	20	4	7400	500	400	43	17	6
Pellets	50	7	1600	17	<1	43	27	1
Pellets	100	4	140	<1	<1	32	37	<1
Briquettes	100	6.3	270	2	<1	36	35	<1
Logging residue	100	6.5	42	<1	<1	71	74	<1

Wood chip	s 100	7.2	3900	48	31	51	25	2	
Caumaa, Da	atmann C A LINE	CE TEEID ($(002) \cdot a)$ momo	informati	an about Cu	II. atom dom	d mafamamaa .	anal CII	

Source: Bostrom C-A, UN-ECE TFEIP (2002); ^{a)} none information about CxHy standard reference usual CH_4 or C_3H_8 are used

				Pollutants			
Installation			g/GJ			mg/	′GJ
	SO ₂	NOx	СО	NMVOC	VOC	PAH	BaP
Domestic open fire	n.d	n.d	4,000	n.d	90-800	13,937; 10,062; 7,937 ^{1,2)}	n.d
Domestic closed	3) n.d.	29	7,000	1750 ⁵⁾	670	3,500	n.d
stoves	4) n.d.	58	1,700	200 ⁵⁾	n.d	26	n.d
Domestic boiler	6) n.d.	101	5,000	1,330 ⁵⁾	n.d	n.d	n.d
Small commercial	7) n.d.	25	3,900	n.d	n.d.	n.d.	n.d.
or institutional	8) n.d	n.d.	n.d.	480	n.d	n.d.	n.d.
boiler	9) n.d.	n.d.	n.d.	96	n.d.	n.d.	n.d.

Table A1 17 Emission factors for biomass small combustion installations

Source: Hobson M., et al., 2003; ¹⁾ none information about NMVOC and VOC standard reference usual CH₄ or C₃H₈ are used ²⁾ Original data in g/kg for recalculation H_u of 16 GJ/t was assumed and PAH that is $\sum 16$ PAH; 3) traditional wood stove; 4) modern wood stove; ⁵⁾ THC as CH₄; 6)-wood boilers; 7) wood chips boilers 1.8-2MW; 8) wood, charcoal, 120 kW boiler, benchmark; 9) wood, charcoal, 120kW, improved boiler; n.d.- no data

 Table A1
 18
 Emission factors for domestic combustion processes (g/GJ) in the Netherlands

	Fuel								
Pollutant	Natural gas	Oil	LPG	Petroleum	Coal				
VOC ¹⁾	6.3	15	2	10	60				
SO ₂	0.22	87	0.22	4.6	420				
N ₂ O	0.1	0.6	0.1	0.6	1.5				
NOx (as NO ₂)	57.5	50	40	50	75				
СО	15.8	60	10	10	1500				
CO ₂	55920	73000	66000	73000	103000				
TSP	0.3	5	10	2	200				
PM10	0.3	4.5	2	1.8	120				
Particles >PM10	-	0.5	-	0.2	80				

Source: Hesling D., 2002; ¹⁾ none information about VOC standard reference - usual CH₄ or C₃H₈ are used

Table A1 19 Emission factors for small combustion installations of gas and oil fuels(g/GJ) derived from measurement campaign in Poland

	Fuel									
Pollutant	Natural gas				Oil					
	35 kW	218 Kw	210 kW	650 kW	35 kW	195 kW	400 kW	650 kW		
NMVOC as C ₃ ¹⁾	8.9	7.8	6.2	0.6	5	4.2	10	2.1		
SO ₂ ¹⁾	-	-	-	-	110	112	140	120.3		
NOx (as NO ₂) $^{1)}$	142	59,1	24.6	38.4	43	56.4	60	56.7		

CO ¹⁾	10.3	30.9	21.2	15.3	46	44	45	33.6
TOC ¹⁾	5.5	6.4	4.2	4.5	25	20.8	15	7.5
SO ₂ ²⁾	n.d.	-	-	-	115-145 aver.130	-	-	-
NOx (as NO ₂) $^{2)}$	17 – 22 aver. 20	-	-	-	35 – 55 aver. 40	-	-	-
CO ²⁾	7 - 12 aver. 9	-	-	-	10-12 aver.11	-	-	-

Source: ¹⁾ Kubica et al., 1999; ²⁾ Kubica et al., 2005/2 The measurements were done in the field; n.d. – no data

Table A1 20 Emission factors for small combustion installations of gas and oil fuels(g/GJ) derived from measurement campaign in Poland

	Fuel									
Pollutant		Oil								
	2.1 MW	11.0 MW	5.8 MW	4.6 MW	2.3 MW	1.7 MW	2.2 MW			
NOx (as NO ₂)	64	30	29	38	23	66	63			
CO	3.1	0.0	0.0	3.6	0.4	0.0	1.4			
SO ₂	n.m.	n.m.	n.m.	n.m.	n.m.	105	69			
TSP	n.m.	0.2	0.2	n.m.	0.1	n.m.	0.2			

Source: Czekalski B et al., 2003

Table A1 21	Emission factors	for gas fired small	combustion installations
-------------	-------------------------	---------------------	--------------------------

				Pollutants			
Installation			mg/GJ				
	SO ₂	NOx	<i>CO</i>	NMVOC ¹⁾	VOC ¹⁾	PAH	BaP
Open fire	0.5	50	20	6	n.d.	n.d	n.d.
Close stoves	0.5	50	10	3	n.d.	n.d.	n.d.
Domestic boiler	0.2; 0.5	40.2; 57.5	8.5; 15.8	3.0; 15.0	5 - 30	n.d	1.5^{2}
Small commercial or institutional boiler	n.d.	n.d.	n.d.	1.0; 5.0	5.0	n.d.	$0.1^{1)}$ $38^{3)}$
Agricultural heater	0.22	65	10	n.d.	30	n.d.	n.d.
CHP Steam, gas turbine;	n.d.	179	43	2.1	n.d.	n.d.	n.d.

Source: Hobson M., et al., 2003; ¹⁾ none information about VOC standard reference usual CH₄ or C₃H₈ are used ¹⁾ Original data in mg/t for recalculation H_u of 35 GJ/t was assumed; ²⁾ mg/1000xm³; n.d. - no data

Table A1 22 Emission factors for LPG small combustion installations

		Pollutants						
Installation		g/GJ n						
	SO ₂	NOx	С0	NMVOC ¹⁾	VOC ¹⁾	PAH	BaP	
Open fire				None		•		
Close stoves	n.d.	n.d.	454 ¹⁾	447 ¹⁾	n.d	n.d	n.d	
Domestic boiler	0.22	40	10	n.d.	2	n.d.	n.d.	

Small commercial or institutional boiler	n.d.	n.d.	n.d.	n.d.	2	n.d.	n.d.
Agricultural heater	0.22	40	10	n.d.	2	n.d.	n.d.
CHP Steam, gas turbine;				None			

Source: Hobson M., et al., 2003; ¹⁾ none information about VOC standard reference usual CH_4 or C_3H_8 are used ¹⁾ Original data in g/kg for recalculation H_u of 42 GJ/t was assumed; n.d.- no data

A1 23 Emission factors for burning oil (kerosene) small combustion installations

		Pollutants								
Installation		g/GJ								
	SO ₂	NOx	СО	NMVOC ¹⁾	<i>VOC</i> ¹⁾	РАН	BaP			
Domestic open fire			·	None	•					
Domestic closed stoves	n.d.	n.d.	$ \begin{array}{c} 421^{2)};\\ 1,478^{2)} \end{array} $	354 ²⁾ ; 1,457 ²⁾	n.d	n.d	n.d			
Domestic boiler	87	50	60	1.5; 7.5	15	n.d.	0.1			
Small commercial or institutional boiler	n.d.	n.d.	n.d.	1.0; 5.0	n.d.	n.d.	n.d.			
Agricultural heater	0.22	50	10	n.d.	10	n.d.	n.d.			
CHP Steam, gas turbine;				None		ł	•			

Source: Hobson M., et al., 2003; ¹⁾ none information about VOC standard reference usual CH_4 or C_3H_8 are used ²⁾ Original data in g/kg t for recalculation Hu of 42 GJ/t was assumed; n.d.- no data

		Pollutants						
Installation		g/GJ						g∕GJ
	SO_2	NOx	<i>CO</i>	<i>PM10</i>	NMVOC ¹⁾	VOC ¹⁾	PAH	BaP
Domestic open fire					None			
Domestic closed stoves					None			
Domestic boiler	n.d.	n.d.	n.d.	8.0-50	n.d.	10	n.d.	0.08 ²⁾
	³⁾ 449	62.4	15.6	3.1	n.d.	0.6	n.d.	n.d.
Small commercial	⁴⁾ 467	61.4	15.4	18.5	n.d.	0.6	n.d	n.d.
or institutional boiler	⁵⁾ 488	169	15.4	26.4	n.d.	0.9	n.d.	n.d.
	n.d	n.d	n.d.	3-23	n.d.	8	n.d.	$\begin{array}{c} 0.1^{2)};\\ 0.5^{2)};\\ 0.5^{2)}\end{array}$
Agricultural heater	n.d.	n.d.	n.d.		n.d.	n.d.	n.d.	0.08 ²⁾
CHP ⁶⁾	n.d	186	14		2.1	6.8	n.d.	0.1 ²⁾

Table A1 24 Emission factors for fuel oil small combustion installations

Emission Inventory Guidebook

Source: Hobson M., et al., 2003); ¹⁾ none information about VOC standard reference, usual CH₄ or C₃H₈ are used; ²⁾ Original data in g/Mt for recalculation H_u of 42 GJ/t was assumed; ³⁾ 1.5 % of S; ⁴⁾ 4.5 % of S; ⁵⁾ 5.5 % of S; ⁶⁾ power station; n.d.- no data

					Pollutants			
Installation					g/GJ			
		SO ₂	NOx	СО	VOC ¹⁾	TSP	PM10	PM2.5
Natural gas	Range	0.22-0.5	7.8-350	20-50	0.5-10	0.03-3	0.03-3	0.03-0.5
Natural gas	Aver.	0.5	50	25	5	0.2	0.2	0.2
LPG	Range	9.7-150	30-269	20-40	0.1-15	0.2-50	0.2-50	0.2-50
LPG	Aver.	100	50	20	3	5	5	5
Durning oil	Range	69-150	24-370	5-40	1.1-48	1.5-60	1.5-60	1.5-50
Burning oil	Aver.	150	150	16	10	40	40	30
Range	60 -	45-545	100-	3-600	70-350	10-400	30-200	
Coal	Aver.	2,252 650	150	5,000 2,000	200	150	140	70

Table A125	Emission of pollutants for gaseous, liquid and coal fuels for small
	combustion installations in Italy

Source: Caserini S. 2004; ¹⁾ none information about VOC standard reference usual CH₄ or C₃H₈ are used

Table A126	Sectoral emission factors for firing appliances in Germany in the
	household and small consumer sectors, in 1995 (Pfeiffer et al. 2000)

		Pollutants						
Sector	Fuel	g/GJ						
Sector	1 111	SO ₂	NOx as NO ₂	СО	<i>CO</i> ₂	TSP		
	High rank coal and products	456	51	4,846	95,732	254		
	High rank coals	380	49	5,279	95,930	278		
	Briquettes	561	54	4,246	95,457	221		
Household	Coke from high rank coals	511	60	6,463	106,167	15		
	Brown coal briquettes	261	71	3,732	96,021	86		
	Natural wood	7	50	3,823	103,093	42		
	Distillate oil	77	46	25	73,344	1.6		
	Natural gas	0.5	38	14	55,796	0.03		
Small consumers	High rank coal and products	419	108	564	95,930	278		
	High rank coals	419	108	564	95,930	278		
	Coke from high rank coals	370	61	1.498	106,167	12		
	Brown coal briquettes	234	87	4.900	95,663	59		
	Natural wood and wood wastes	9.1	78	2.752	101,099	45		
	Distillate oil	77	47	14	73,344	1.7		

Residual oil	384	162	9.9	75,740	38
Natural gas	0.5	31	11	55,796	0.03

Table A1 27 Emission factors of CO, NOx and SO2 for advanced combustiontechniques of coal and biomass

G		Pollutants [g/GJ]			
Source	Installation/Fuel	SO ₂	NOx as NO ₂	со	
BLT, 2000/1	Wood boilers with two combustion chambers and sonar Lambda	n.d.	100	141	
	Wood pellets and chip boiler 25 kW 100%; 33% of capacity	n.d.	127; n.d.	186; 589	
	Pellets and wood chips boiler 43 kW - 100% and 33% of capacity	n.d.	110; 71	60; 37	
BLT, 2005/1	Wood boiler 60 kW, air dry oak 100% and 33% of capacity	n.d.	79; n.d.	127; 720	
	Boiler, wood chips 25kW 100% and 33% of capacity	n.d.	115; n.d.	23; 358	
	Pellets boiler 46.7 kW 100% and 33% of capacity	n.d.	110; 118	118; 172	
BLT, 2003	Pellets and briq., boiler 7.7 – 26 kW 100% and 33% of capacity	n.d.	67; n.d.	7; 44	
BLT, 1999	Wood chips, boiler 500kW 100% and 33% of capacity	n.d.	123; n.d.	16; 126	
BLT, 2004/1	Wood chips, boiler 20kW 100% and 33% of capacity	n.d.	44; n.d.	17; 108	
BLT, 2004/2	Wood log and briq., boiler 50kW 100% and 33% of capacity	n.d.	109; n.d.	44; n.d.	
BLT, 2000/2	Wood briq., chamber boiler 60 kW 100% and 33% of capacity	n.d.	88; n.d.	30; 120	
BLT, 2005/2	Wood log, chamber boiler 27 kW	n.d.	78	131	
Houck et al., 2001 ¹⁾	Fireplaces; dry wood	n.d.	n.d.	4010	
Hübner et al.,2005 ^{1,2)}	Boiler < 50kW; Pelleted wood	n.d.	n.d.	120	
	Boiler; Chopped wood log	n.d.	n.d.	790 - 1,400	
	Boiler; Coke	n.d.	n.d.	2,400	
	Boiler; Wood and coke	n.d.	n.d.	3,500	
	Boiler; Wood, brown coal briquettes	n.d.	n.d.	4,200	
	Boiler; Wood logs (beech, spruce)	n.d.	n.d.	3,800	
	Boiler; Wood (beech, spruce), coke	n.d.	n.d.	2,100	
	Stove; Wood, brown coal briquettes wood	n.d.	n.d.	2100	
	Stove; Beach wood logs	n.d.	n.d.	2100 - 4,700	
	Stove; Wood	n.d.	n.d.	1500	
	Stove; Spruce wood (small logs)	n.d.	n.d.	2,400	
	Stove; Wood (small logs)	n.d.	n.d.	1,600	

	Stove: Wood briggettes	nd	nd	4 600
	Stove; Wood briquettes	n.d.	n.d.	4,600
Johansson at al., 2001 ¹⁾	Pellet boilers with fixed grates with moving scrapes $1,75 - 2,5$ MW	n.d.	30 - 50	20 - 100
	Conventional stove, cordwood	n.d.	n.d.	7,200
	Pellet stoves, softwood	n.d.	n.d.	1,400 - 1,630
Houck et al., 2000 ¹⁾	Pellets stove, hardwood	n.d.	n.d.	125; 188; 219
1100CK Ct al., 2000	Pellets boiler, top-feed, softwood	n.d.	n.d.	146; 449; 510
	Pellets boiler, bottom-feed softwood	n.d.	n.d.	112; 169
	Pellet stove 4.8 kW (high load)		31 – 36;	52 - 100;
		n.d.	aver. 33	aver. 88
	Pellet stove 4.8 kW (low load 2.3	n.d.	29 – 33;	243 – 383;
	kW)	11. u .	aver. 31	aver. 299
Boman et al., 2005	Natural-draft wood stove, 9 kW;	n.d.	37 – 71;	1,200–7,700;
Domail et al., 2003	Birch Pine Spruce	11. u .	aver. 50	aver. 3,800
	Pellet stove, 4- 9,5 kW; Pine and	n.d.	57 – 65;	110 – 170;
	Spruce (high load)	11. u .	aver. 61	aver. 140
	Pellet stove, 4- 9,5 kW; Pine and	n.d.	52 – 57;	320 - 810;
	Spruce (low load 30%)	11. u .	aver. 54	aver. 580
Kubica, 2004/2	Pellet boilers			
	Automatic fuelled coal boilers -	120-450;	96 – 260;	90 - 850
Kubica at al., 2005/4	stocker; Pea coal (qualified size)	aver. 260	aver. 190	aver. 280
	Automatic fuelled coal boilers;	355-600	70 - 200	60 - 800
	Fine coal (qualified coal size)	aver. 420	aver. 145	aver. 450
Kubica K.; 2004/1	Conventional stove 5kW	253	81	2272
	Boiler, stocker; wood pellets	n.d.	n.d.	300 - 500
	Chamber boiler, top feed; fine coal	250 - 700	100 - 150	1,100-2,800
Kubica, 2004/2	Automatic boiler, stocker; pea coal	130 - 350	100 - 250	120 - 800
	Automatic coal boiler; fine coal	250 - 700	100 - 250	400 - 1500
	Chamber boiler, advanced techniq.; qualified size coal	150 - 550	150 - 250	50 - 100
	Boilers with moving grate 5-32 MW	n.d.	116 - 137	10 - 24
Kubica et al., 2005/1	Boilers with moving grate 0.3 – 0.6MW	n.d.	146 - 248	36 - 363 ⁴⁾
	Automatic fuelled coal boiler, fine coal	n.d.	140	130
	Automatic fuelled coal boiler – stocker	n.d.	70 - 220	120 - 800
	Boiler, bottom feed, nut coals	n.d.	150 - 200	200 - 1500
	Boiler, top feed, nut coals	n.d.	50 - 150	1,800 - 3,500
	Boiler, bottom feed, log wood	n.d.	32	2403
	Boiler, bottom feed, wood briquettes	n.d.	42	1757
	Automatic fuelled boiler – stocker 30 kW, pellets	n.d.	200	200
	Automatic fuelled boiler, wood chips	n.d.	150	880

Kubica at al., 2005/2 ³⁾	Automatic fuelled coal boiler – stocker, ≤25 kW (120 pieces); Pea coal	n.d.	67 – 207; aver. 161	104 – 320; aver. 150
	Automatic fuelled coal boiler,	155-496	64 – 208;	119 – 435;
	\leq 35 kW (68 pieces); Fine coal,	aver. 252	aver. 122	aver. 232

¹⁾ Original factors in g/kg of fuels, for recalculation H_u of 24 GJ/t (d.b.) for hard coal was, of 17 GJ/t (d.b.) for lignite and brown coal, of 30 GJ/t (d.b.) for anthracite, of 30 GJ/t (d.b.) for coke; of 16 GJ/t for wood, of 42 GJ/t for oil and of 35 GJ/t for natural gas were assumed; ⁽²⁾ Capacity of all boilers < 50kW and all stove <10kW; ³⁾ A measurements was done in the field; n.d. – no data

	Pollutants ¹⁾								
Installation	g/GJ								
	SO ₂	NOx	СО	VOC ¹⁾	TSP	<i>PM10</i>	PM2.5		
		·	Fireplace				•		
Conventional With Glass Doors	12.5	87.5	6,162.5	1,312.5	843.75	812.5	806.25		
Convent. Without Glass Doors	12.5	87.5	4,856.3	406.3	1,206.3	1,156.3	1,156.3		
Advanced Technology	12.5	87.5	4,400	437.5	318.75	300	300		
Insert; Conventional	12.5	87.5	7,212.5	1,331.3	900	850	850		
Insert; Catalytic	12.5	87.5	4,400	437.5	318.8	300	300		
Insert; Advanced Technology	12.5	87.5	4,400	437.5	318.8	300	300		
		1	Woodstove				•		
Conventional	12.5	87.5	6,250	2,218.8	1,537.5	1,450	1,450		
Conventional, Not Air-Tight	12.5	87.5	6,250	2,218.8	1,537.5	1,450	1,450		
Conventional, Air- Tight	12.5	87.5	7,212.5	1,331.3	900	850	850		
Advanced Technology	12.5	87.5	4,400	437.5	318.8	300	300		
Catalytic	12.5	87.5	4,400	437.5	318.8	300	300		
Pellet Stove	12.5	87.5	550	94	75	69.7	64		
			Boilers	· ·					
Central Furnace/ Boiler (inside)	12.5	87.5	4,281.3	1,331.3	881.3	831.3	831.3		
Central Furnace/ Boiler (outside)	12.5	87.5	4,281.3	1,331.3	881.3	831.3	831.3		
Other Equipment	12.5	87.5	7,212.5	1,331.3	900	850	850		

Table A126Wood Burning Appliance Emission Factors in British Columbia
(Gulland, 2003)

¹⁾Original factors in kg/tonne of fuels, for recalculation H_u of 16 GJ/t for wood was assumed

Source	Installation type	<i>PM2.5</i>	<i>PM10</i>	TSP		
BUWAL, 2001 ¹⁾	Small furnaces	n.d.	110	270		
BO WAL, 2001	Domestic boiler	n.d.	90	150		
	Residential, brown coal	70	140	350		
CEPMEIP, 2002 ¹⁾	Residential, hard coal ('high')	60	120	300		
CERMEIP, 2002	Residential, hard coal ('low')	25	50	100		
	Residential, low grade hard coal	100	200	800		
	Residential, hard coal	n.d.	n.d.	260 - 280		
Pfeiffer et al., 2000 ¹⁾	Residential, brown coal briquettes	n.d.	n.d.	120 - 130		
	Residential, coke	n.d.	n.d.	14		
	Residential heating	n.d.	n.d.	153±50%		
Spitzer et al., 1998 ¹⁾	Single family house boiler, stoves	n.d.	n.d.	94±54%		
	Residential plants	75	85	94		
Winiwarter et al, 2001 ¹⁾	Domestic stoves, fireplaces	122	138	153		
1)	Domestic furnaces, hard coal	n.d.	n.d.	250		
UBA, 1999a ¹⁾	Domestic furnaces, brown coal	n.d.	n.d.	350		
	Small boilers, top loading	n.d.	n.d.	291		
	Small boilers, bottom loading	n.d.	n.d.	273		
EPA, 1998a ¹⁾	Hard coal, stoker firing	n.d.	n.d.	1,200		
	Pulverized lignite boilers	n.d.	n.d.	1,105		
Meier & Bischoff, 1996 ¹⁾	Grate firing, lignite	n.d.	n.d.	2,237		
Hobson M. et al, 2003	Domestic open fire; <10 kW, coal	n.d.	375 ²⁾ - 459 ²⁾	n.d.		
	Domestic open fire; <10 kW, smokeless coal brands	n.d.	38-67 ²)	n.d.		
	Domestic open fire; <10 kW, pet coke blends	n.d.	96-117 ²⁾	n.d.		
	Domestic open fire; <5 kW coal	n.d.	1,683 ²⁾	n.d.		
	Domestic closed stove; US EPA, developing stoves charcoal	n.d.	n.d.	100 ²⁾		
	Domestic closed stove; US EPA, developing stoves char briquette	n.d.	n.d.	121 ²⁾		
	Domestic closed stove; CRE; <10 kW, smokeless coal brands	n.d.	42 - 50 ²⁾	n.d.		
	Domestic closed stove; CRE; <10 kW, pet coke blends	n.d.	108- 133 ²⁾	n.d.		
	Domestic boilers; ERA research, Boiler Efis, bituminous coal	n.d	250 ²⁾	n.d.		
	Domestic boilers; UNECE TFEIP, Dutch figures for coke use	n.d.	6	n.d.		
	UNECE TFEIP; Sweden, briquette boilers 1.8-2 MW	n.d.	n.d.	36		
Kubica, 2004/1	Conventional stove 5kW	n.d.	n.d.	523		
	Chamber boiler, top feed; fine coal	n.d.	n.d.	50 - 200		

 Table A1
 29 Emission factors for particulate matter reported in the literature for coal and manufactured solid fuels combustion [g/GJ]

Source	Installation type	PM2.5	PM10	TSP
	Automatic fuelled coal boiler, stocker	n.d.	n.d.	30 - 60
	Automatic fuelled boiler, fine coal	n.d.	n.d.	30 - 120
Kubica, 2004/2	Chamber boiler, qualified size coal; distribution of combustion air	n.d.	n.d.	50 - 150
	Boilers with moving grate 5-32 MW	n.d.	n.d.	58 - 133
	Boilers with moving grate 0.3 – 0.6MW	n.d.	n.d.	51 - 64
Kubica et al., 2005/1	Automatic fuelled coal boiler, fine coal	n.d.	n.d.	50
	Automatic fuelled coal boiler – stocker	n.d.	n.d.	30 - 60
	Boiler, bottom feed, nut coals	n.d.	n.d.	50 - 100
	Boiler, top feed, nut coals	n.d.	n.d.	300 - 1100
	Automatic fuelled coal boiler – stocker, 25 kW (120 pieces)	n.d.	n.d.	54- 133 aver. 78
Kubica at al., 2005/2 ³⁾	Automatic fuelled coal boiler, fine coal, 25 and 35 kW (68 pieces)	n.d.	n.d.	70 – 380 aver. 187
	Hard coal; stoves and boilers < 1MW	25-100 aver.65	25-1050 aver.270	30-1,200 aver.360
V. 1 1. 2005/2	Hard coal; boilers > 1MW <50MW	70-122 aver.70	90-250 aver.110	25-735 aver.140
Kubica et al., 2005/3	Brown coal Residential/Commercial/Institutional/	140	260	350
	Coke Residential/Commercial/Institutional/	30 -80 aver.80	96-108 aver.90	14-133 aver.110
	Automatic fuelled coal boiler – stocker, 100 kW	n.d.	n.d.	98
Krucki A. et al., 2006 ²⁾	Automatic fuelled coal boiler, fine coal, 25 kW	n.d.	n.d.	13
	Automatic fuelled coal boiler, fine coal, 90 kW	n.d.	n.d.	16
Lee et al., 2005 ²⁾	Open fire place	n.d.	1,200	n.d.

¹⁾ as quoted in Klimont et al., 2002; 2) Original data in g/kg for recalculation Hu of 24 GJ/t (d.b.) was assumed. ³⁾ The measurements were done in the field; n.d. - no data

Table A1 30 Particulate matter size fractions reported in the literature for coal combustion [percent of TSP emissions]

Source	Installation type	PM _{2.5}	PM ₁₀	TSP
UBA, 1999a ¹⁾	Domestic furnaces, hard coal	n.d.	90 %	100 %
EPA, 1998a ¹⁾	Small boilers, top loading	14 %	37 %	100 %
	Small boilers, bottom loading	25 %	41 %	100 %
Hlawiczka et al., 2002	Domestic furnaces, hard coal	n.m.	$76 \%^{2)}$	100 %

¹⁾ as quoted in Klimont et al., 2002 ²⁾ Original data 76 % of PM was emitted as the size fractions up to 12 μ m.

Source	Installation type	PM _{2.5}	PM ₁₀	TSP
BUWAL, 2001 ¹⁾	Domestic open fire places	n.d.	150	150
	Domestic furnaces	n.d.	150	150
	Domestic small boilers, manual	n.d.	50	50
	Small boilers, automatic loading	n.d.	80	80
Karvosenoja, 2000 ¹⁾	Domestic furnaces	n.d.	n.d.	200 - 500
Dreiseidler, 1999 ¹⁾	Domestic furnaces	n.d.	n.d.	200
Baumbach, 1999 ¹⁾	Domestic furnaces	n.d.	n.d.	50 - 100
Pfeiffer et al., 2000 ¹⁾	Residential and domestic	n.d.	n.d.	41-65
CEPMEIP, 2002 ¹⁾	'High emissions'	270	285	300
	'Low emissions'	135	143	150
Winiwarter et al, 2001 ¹⁾	Residential plants	72	81	90
	Domestic stoves, fireplaces	118	133	148
NUTEK, 1997 ¹⁾	Single family house boiler, conventional	n.d.	n.d.	1,500
	Single family house boiler, modern with accumulator tank	n.d.	n.d.	17
Smith, 1987 ¹⁾	Residential heating stoves <5 kW	n.d.	n.d.	1,350
	Residential cooking stoves <5 kW	n.d.	n.d.	570
BUWAL, 1995 (1992 Swiss imit value) ¹⁾	up to 1 MW	n.d.	n.d.	106
Spitzer et al., 1998 ¹⁾	Residential heating	n.d.	n.d.	148±46%
	Single family house boiler, stoves	n.d.	n.d.	90±26%
Zhang et al., 2000^{1}	Firewood in China	n.d.	n.d.	760-1,080
Houck and Tiegs, 1998/1 ³⁾	Conventional stove	n.d.	n.d.	1,680
	Conventional stove with Densified Fuel	n.d.	n.d.	1,200
	Non-catalytic stove	n.d.	n.d.	490
	Catalytic stove	n.d.	n.d.	440
	Masonry Heater	n.d.	n.d.	250
	Pellet stove	n.d.	n.d.	130
	Fireplace, conventional	n.d.	n.d.	8,600
	Double-Shell Convection, Nat. Draft	n.d.	n.d.	4,600
	ConvectionTubes, "C" Shaped, Glass Door	n.d.	n.d.	4,000
	Double-Shell Convection, Blower, Glass Doors	n.d.	n.d.	1,900
	Masonry Fireplace with Shaped Fire Chambers and Gladd Doors	n.d.	n.d.	1,200
	Fireplace, non-catalytic insert	n.d.	n.d.	500
	Fireplace, catalytic insert	n.d.	n.d.	450
	Fireplace, pellet insert	n.d.	n.d.	130
EPA, 1998b ^(1,2)	Open fireplaces	n.d.	805	875
	Wood stove	n.d.	724	787

 Table A1
 31 Particulate matter emission factors reported in the literature for wood burning [g/GJ]

Source	Installation type	PM _{2.5}	PM ₁₀	TSP
	UNECE TFEIP,Sweden, wood chips boilers 1.8-2 MW	n.d.	n.d.	51
Hobson M. et al, 2003	Open fire <5kW, seas. Hardwood ²⁾	n.d.	494	n.d.
	Domestic open fire: hundreds of sources studies ²⁾	n.d	n.d.	738
	Open fire places	698	713	750
CITEPA, Paris, 2003	Conventional closed fireplaces and inserts	288	295	310
	Conventional closed stoves and cooking	288	295	310
	Hand stoked log wood boiler	233	238	250
	Automatically stoked wood boiler	9	10	10
EPA, 1998a ⁴⁾	Boilers, bark	n.d.	n.d.	2,266
	Fluidized bed in large boilers	n.d.	n.d.	1,000-3,000
Lammi et al., 1993 4)	Grate firing in large boilers	n.d.	n.d.	250-1,500
T 11:	Wood/pellet boilers and stoves	n.d.	n.d.	50
Tullin et al.; 2000	Old wood boiler	n.d.	n.d.	1,000
Hays et al. (2003) ²⁾	Wood stove	143.8 – 637.5	n.d.	n.d.
	Fireplaces	537.5	n.d.	n.d.
BLT, 2000/1	Wood boilers with two combustion chambers and sonar Lambda	n.d.	n.d.	20
	Wood pellets and chip boiler 25 kW	n.d.	n.d.	14
	Pellets and wood chips boiler 43 kW - 100% and 33% of capacity	n.d.	n.d.	23; 9
BLT, 2005/1	Wood boiler 60 kW	n.d.	n.d.	28
	Boiler, wood chips 25kW	n.d.	n.d.	18
	Pellets boiler 46.7 kW- 100% and 33% of capacity	n.d.	n.d.	5; 12
BLT, 2003	Pellets and briq., boiler 7.7 – 26 kW	n.d.	n.d.	4
BLT, 1999	Wood chips, boiler 500kW	n.d.	n.d.	28
BLT, 2004/1	Wood chips, boiler 20kW	n.d.	n.d.	8
BLT, 2004/2	Wood log and briq., boiler 50kW	n.d.	n.d.	16
BLT, 2000/2	Wood brig., chamber boiler 60 kW	n.d.	n.d.	10
BLT, 2005/2	Wood log, chamber boiler 27 kW	n.d.	n.d.	12
,	Fireplaces	As PM2.5.	n.d.	180 – 560; aver. 380
McDonald et. al., 2000 ²⁾	Woodstove	n.d.	n.d.	140 – 450; aver. 270
Lee et al., 2005 ²⁾	Open fire place	n.d.	425	n.d.
,	Fireplace, Pine	n.d.	n.d.	147
Gullet et al., 2003	Fireplace, Artificial logs (wax and sawdust)	n.d.	n.d.	483
	Stove, Oak	n.d.	n.d.	504
Fine et al.; 2002 ²⁾	Fireplaces; Hardwood - Yellow Poplar	n.d.	n.d.	425 ± 50
	Fireplaces; Hardwood - White Ash	n.d.	n.d.	206 ± 19

Source	Installation type	PM _{2.5}	PM ₁₀	TSP
	Fireplaces; Hardwood - Sweetgum	n.d.	n.d.	218 ± 25
	Fireplaces; Hardwood - Mockernut Hickory	n.d.	n.d.	425 ± 56
	Fireplaces; Softwood - Loblolly Pine	n.d.	n.d.	231 ± 25
	Fireplaces; Softwood - Slash Pine	n.d.	n.d.	100 ± 19
	Conventional masonry fireplaces; Hardwood - Red Maple Northern	n.d.	n.d.	206 ± 19
	Conventional masonry fireplaces; Hardwood - Red Oak	n.d.	n.d.	356 ± 19
Fine et al.; 2001 ²⁾	Conventional masonry fireplaces; Hardwood – Paper Birch	n.d.	n.d.	169 ± 19
	Conventional masonry fireplaces Softwoods - Eastern White Pine	n.d.	n.d.	713 ± 125
	Conventional masonry fireplaces Softwoods - Eastern Hemlock	n.d.	n.d.	231 ± 25
	Conventional masonry fireplaces Softwoods - Balsam Fir	n.d.	n.d.	300 ± 31
	Fireplaces; wood	170 -710	n.d.	n.d.
Boman et al., 2004	Pellet burner boilers 10-15 kW, overfeeding of the fuel; Sawdust, Logging Residues and Bark	n.d.	n.d.	114-377 aver. 240
	Pellet burner boilers 10-15 kW, horizontal feeding of the fuel; Sawdust, Logging Residues and Bark	n.d.	n.d.	57-157 aver. 95;
	Pellet burner boilers 10-15 kW, underfeeding of the fuel; Sawdust, Logging Residues and Bark	n.d.	n.d.	64-192 aver. 140
	All masonry and factory-built (zero clearance)	n.d.	n.d.	590
	Fireplaces, all cordwood	n.d.	n.d.	810
	Fireplaces, all dimensional lumber	n.d.	n.d.	410
	Fireplaces, all with closed doors	n.d.	n.d.	350
	Fireplaces, all with open doors	n.d.	n.d.	690
Broderick et al. 2005 ²⁾	Fireplaces, all masonry fireplaces	n.d.	n.d.	660
	Fireplaces, all factory-built fireplaces	n.d.	n.d.	580
	Fireplaces, cordwood, factory-built, open doors	n.d.	n.d.	870
	Fireplaces, dimensional lumber, factory built, open doors	n.d.	n.d.	510
	All fireplaces, all wood types	n.d.	n.d.	Aver. 590
	All factory-built fireplaces with open door, cordwood		n.d.	Ave. 840
Gaegauf et al., 2001	Wood roomheaters	n.d.	n.d.	70 ± 25
. ,	Wood accumulating stoves	n.d.	n.d.	167 ±44
	Wood log boilers	n.d.	n.d.	28 ±11
	Pellet boilers	n.d.	n.d.	20 ± 0.4
	Pellet roomheaters	n.d.	n.d.	54 ± 3

Source	Installation type	PM _{2.5}	PM ₁₀	TSP
	Wood chip boilers - dry fuel	n.d.	n.d.	94 ± 13
	Wood chip boilers - wet fuel	n.d.	n.d.	48 ± 6
	Wood chip boilers - residuals	n.d.	n.d.	64 ± 7
Johansson at al., 2001 ⁷⁾	Pellet boilers with fixed grates with moving scrapes 1,75 – 2,5 MW	n.d.	n.d.	35 - 40
	All automatic wood furnaces	n.d.	n.d.	< 110
	Understoker furnaces	n.d.	n.d.	< 55
Nussbaumer, 2001 ²⁾	Log wood boilers	n.d.	n.d.	34
	Wood chips boiler ⁵⁾	n.d.	n.d.	68
	Wood residues, boiler ⁵⁾	n.d.	n.d.	70
	Urban waste wood, boiler ⁶⁾	n.d.	n.d.	1.5
	Conventional stove, cordwood	n.d.	n.d.	750
	Pellet stoves, softwood	n.d.	n.d.	80-170
	Pellets stove, hardwood	n.d.	n.d.	125; 190;220
Houck et al., 2000 ²⁾	Pellets boiler, top-feed, softwood	n.d.	n.d.	27.5; 37.5; 62.5
	Pellets boiler, bottom-feed softwood	n.d.	n.d.	16.3; 25.0
	Conventional Stove Woodstove	890	n.d.	n.d.
Houck et al., 2005 ²⁾	Catalytic Certified Woodstove	430	n.d.	n.d.
	Noncatalytic Certified Woodstove	330	n.d.	n.d.
	Pellet Stove Exempt	160	n.d.	n.d.
	Certified Pellet stove	160	n.d.	n.d.
	Pellet stove 4.8 kW (high load)	n.d.	n.d.	11 - 20 aver. 15
	Pellet stove 4.8 kW (low load 2.3 kW)	n.d.	n.d.	32 - 81 aver. 51
Boman et al., 2005	Natural-draft wood stove, 9 kW; Birch Pine Spruce	n.d.	n.d.	37 – 350 aver. 160
	Pellet stove, 4- 9,5 kW; Pine and Spruce (high load)	n.d.	n.d.	15 – 17; aver. 16
	Pellet stove, 4- 9,5 kW; Pine and Spruce (low load 30%)	n.d.	n.d.	21 – 43 aver. 34
Krucki et al., 2006 ⁽²⁾	Biomass boiler, two stage combustor 95 kW, log wood	n.d.	n.d.	34
	Biomass boiler, two stage combustor 22 kW, log wood	n.d.	n.d.	13
Kubica, 2004/1	Conventional stove 5kW	n.d.	n.d.	1,610
	Pellet burner/boilers	n.d.	n.d.	20 - 60
Kubica, 2004/2	Chamber boiler (hand fuelled), log wood	n.d.	n.d.	70 – 175
	Boiler, bottom feed, log wood	n.d.	n.d.	116
	Boiler, bottom feed, wood briquettes	n.d.	n.d.	39
Kubica et al., 2005/1	Automatic fuelled boiler – stocker 30 kW, pellets	n.d.	n.d.	6
	Automatic fuelled coal boiler, wood chips	n.d.	n.d.	60

Source	Installation type	PM _{2.5}	PM ₁₀	TSP
	Residential/Commercial/Institutional/	9-698	10-713	17-4000
Kubias at al. $2005/2$		aver.450	aver.490	aver.520
Kubica et al., 2005/3	Boilers > 1MW <50MW	9-170	60-214	20-500
		aver.80	aver.80	aver.100
Hedberg et al., 2002 ²⁾	Commercial soapstone stove, birch	6 - 163	n.d.	n.d.
Hedderg et al., 2002	logs	aver. 81	n.a.	n.a.
Johansson et al. 2006	Single family house boiler, modern	n.d.	n.d.	26-450
Johansson et al, 2006	with accumulator tank	n. a .	n.a.	20-430
Johansson et al, 2006	Single family house boiler,	n.d.	n.d.	73-260
Johansson et al, 2000	conventional	II. u .	II.u.	73-200
Johansson et al, 2004 a	Single family house boiler, modern	n.d.	n.d.	23-89
Johansson et al, 2004 a	with accumulator tank	II. u .	II.u.	23-89
Johansson et al, 2004 a	Single family house boiler,	n.d.	n.d.	87-2200
Johansson et al, 2004 a	conventional	11. u .	II.u.	87-2200
Johansson et al, 2006	Single family house boiler,	n.d.	n.d.	73-260
Johansson et al, 2000	conventional	n. a .	n.a.	73-200
Johansson et al, 2004 a	Pellets burners/boiler	n.d.	n.d.	12-65
	Wood log stove	90 ⁸⁾	n.d.	100
	Sauna	190 ⁸⁾	n.d.	200
	Pellets burner	70 ⁸⁾	n.d.	n.d.
	Pellets burner	25 ⁸⁾	n.d.	35
	Wood chips/pellets boiler 30-50 kW	15 ⁸⁾	n.d.	20
	Wood chips boiler 30-50 kW	10 8)	n.d.	20
	Pellets boiler 30-50 kW	10 ⁸⁾	n.d.	15
Oblataära 2005	Wood chips/pellets stoker ⁶ 50-500	20 ⁸⁾	1	40
Ohlström, 2005	kW	20 %	n.d.	40
	Wood chips stoker 30-500 kW ⁶	30 ⁸⁾	n.d.	50
	Pellets stoker 50-500 kW ⁶	10 ⁸⁾	n.d.	20
	Wood chips grate boiler 5-20 MW	20-55 ⁶⁾		
	Wood chips Fluidized bed 20-100			
	MW	2-20 7)		
	Wood chips grate boiler 20-100 MW ⁷	3-10		
	Wood chips grate boiler 10 MW ⁶	3 8)	n.d.	10
Paulrud et al. 2006.	Wood log stove	n.d	n.d	22-181
	Pellets stove	30-55	30-58	n.d.
Johansson et al, 2004b	Pellets burner/boiler	10-60	10-75	n.d.
Glasius et al, 2005	Wood stove	n.d.	n.d.	200-5500
Schauer et. al., 2001	Open fire place	330-630	n.d.	n.d.
Purvis et. al., 2000	Open fire place	n.d.	n.d.	170-780
	Moving grate 1.5 MW Saw dust, low			
Wierzbicka, 2005	load	36 6,8)	n.d.	
	Moving grate 1.5 MW Saw dust,	6 %		
	Medium load	28 6,8)	n.d.	
	Moving grate 1.5 MW Saw dust, high	(0)		
	load	25 6,8)	n.d.	n.d.
	Moving grate 1.5 MW pellets, low	(0)		
	load	$20^{6,8)}$	n.d.	n.d.

Source	Installation type	PM _{2.5}	PM ₁₀	TSP
	Moving grate 1.5 MW pellets, medium load	19 6, 8)	n.d.	n.d.
	Moving grate 1 MW forest residue, medium load	676 ^{6,8)}	n.d.	n.d.
	Moving grate 1 MW forest residue, high load	57 ^{6,8)}	n.d.	n.d.
	Moving grate 6 MW forest residue, high load	43 6,8)	n.d.	n.d.
Strand. et al, 2004	Moving grate 12 MW forest residue, high load	77 6,8)	n.d.	n.d.
	Moving grate 0.9 MW pellets, low load	10 6, 8)	n.d.	n.d.

¹⁾ as quoted in Klimont et al., 2002; ⁽²⁾ Original factors in lb/ton or in g/kg for recalculation H_u of 16 GJ/t were assumed; ³⁾ Original factors are estimated per Unit of Heat Delivered no conversion was made; ⁴⁾ The data for large scale combustion for illustration only; ⁵⁾ Cyclone separator-dust control; ⁶⁾ Filter separator-dust control; ⁷⁾ PM mainly 0.1-0.3 μ m; ⁷⁾ Typically more than 80 % of all particles are smaller than 1 μ m. The mean particle size is typically around 0.1 μ m (between 50 nm to 200 nm); ⁸⁾ Measured as PM1 n.d. – no data

!!! Yellow color indicates the data obtained from Karin and Susanne. Because I didn't receive complete description of references (Name, year, title and source) I could not to add them to point 7 References. May be some of them are the same as I introduced. **References are added (SP)!!!**

Table A1 32Particulate matter size fraction distribution reported in the literature for
wood burning [percent of TSP emissions] (as quoted in Klimont et al.,
2002)

Source	Sector	PM _{2.5}	PM ₁₀	TSP
Dreiseidler, 1999	Domestic furnaces	n.d.	90 %	100 %
Dielseidler, 1999	Wood pellets	84.4 %	94.6 %	100 %
EPA, 1998b ¹⁾	Residential wood except for pellet stove	93 %	97 %	100 %
Baumbach, 1999	Domestic furnaces	96 %	99.7 %	100 %
UMEG, 1999	Small boilers	79 %	92 %	100 %

¹⁾ Houck et al., 1998

Table A1 33 Particulate matter emission factors used in RAINS for wood burning in
Europe [g/GJ] (as quoted in Klimont et al., 2002)

Sector	PM _{2.5}	P M ₁₀	TSP
Eastern Europe			
Fireplaces, stoves	279	288	300
Small domestic boilers	93 - 230	96 - 240	100-250
Large residential boilers	77 – 150	89-0.180	100-200
Industry ¹⁾	185	214	240
Western Europe			
Fireplaces, stoves	67 - 186	70 - 192	72 - 200
Small domestic boilers	60 - 167	62 - 170	65 - 180
Large residential boilers ¹⁾	50-120	60 - 134	65 - 150

Industry ¹⁾		185	214	240
	1 1.6 111 /			

¹⁾ The data are enclosed for illustration

Table A1 34 Particulate matter emission factors reported in the literature for stationary combustion of heavy fuel oil [g/GJ]

Source	Sector	PM _{2.5}	PM ₁₀	TSP
UBA, 1989 ¹⁾	Residential	n.d.	45	50
UBA, 1998 ⁽²⁾	Residential	n.d.	8-27	9-30
CEPMEIP, 2002 ¹⁾	Residential	40	50	60
Pfeiffer et al, 2000 ¹⁾	Residential	n.d.	n.d.	38
Lammi et al, 1993 ¹⁾	5-50 MW	n.d.	n.d.	25-150
Ohlström, 1998 ¹⁾	5-50 MW	n.d.	n.d.	1-390 ⁽⁴⁾
Berdowski et al., 1997 ¹⁾	Residential	30	50	n.d.
Hobson M. et al, 2003	Small com. or institutional boilers;	n.d.	3.1	n.d.
	ERA research; boiler 1.5% S			
	Small com. or institutional boilers;	n.d.	18.5	n.d.
	ERA research; boiler 4.5% S			
	Small com. or institutional boilers;	n.d.	26.4	n.d.
	ERA research; boiler 5.5% S			

¹⁾ as quoted in Klimont et al., 2002;
²⁾ as quoted in Dreiseidler et al., 1999;
³⁾ as quoted in Berdowski et al., 1997;
⁴⁾ Average value 32 g/GJ.

Table A1 35 Particulate matter size fraction distributions reported in the literature for stationary combustion of heavy fuel oil [percent of TSP] (as quoted in Klimont et al., 2002)

Source	Sector	PM _{2.5}	PM ₁₀	TSP
EPA, 1998a	Residential boilers	23 %	62 %	100 %
CEPMEIP, 2002	Residential	67 %	83 %	100 %

Table A1 36 Particulate matter emission factors reported in the literature for stationary combustion of light fuel oil [g/GJ] (as quoted in Klimont et al., 2002)

Source	Sector	PM _{2.5}	PM ₁₀	TSP
BUWAL, 2001	Domestic furnaces	n.d.	1	1
DU WAL, 2001	Domestic boilers	n.d.	0.2	0.2
CEPMEIP, 2002	Residential and domestic	5	5	5
UBA, 1989	Industry, residential	n.d.	n.d.	1.5
UBA, 1998	All	n.d.	n.d.	1.5
Pfeiffer et al., 2000	Residential	n.d.	n.d.	1.7
Pleinei et al., 2000	Domestic	n.d.	n.d.	1.6
Ohlström, 1998	0-50 MW plants	n.d.	n.d.	3 - 100 ⁽¹⁾

Berdowski et al., 1997	Residential sector	30	30	n.d.
1) Average velue 70 g/GI				

¹⁾ Average value 70 g/GJ

Table A1 37Particulate matter size fraction distributions reported in the literature for
stationary combustion of light fuel oil [%](as quoted in Klimont et al.,
2002)

Source	Sector	PM _{2.5}	PM ₁₀	TSP
EPA, 1998a	Domestic boilers	42%	55%	100%
APEG, 1999 ⁽¹⁾	Residential sector	76- 94%	100 %	n.d.
Berdowski et al., 1997 ⁽¹⁾	Domestic	60 %	100 %	n.d.

¹⁾ The values refer to PM10 and not to TSP

Table A138 Percentage of particle fraction PM10 referring to the sectoral emissionfactors for particles [%]

Source	Fuel	Households	Small consumers	Households and Small consumers
Struschka et al., 2003	High rank coals and products	100	97	99
	Brown coal briquettes	96	n.d.	96
	Wood	97	94	96
	Distillate oil	100	100	100
Ehrlich et al., 2001	Biomass	n.d.	n.d.	> 90
Gaegauf et al., 2001	Biomass	n.d.	n.d.	95 ¹⁾
Houck et al., 2005	Biomass	n.d.	n.d.	84 ²⁾
Boman et al., 2005	Biomass (pellet burners)	n.d.	n.d.	100 ³⁾

¹⁾ 95% PM below 0.4 μ m; ²⁾ Approximately 81% of PM is PM2.5; ³⁾ It was found, in principle, that all PM can be considered as PM₁ with an average PM1 of 89.5% ± 7.4% of total PM.

Table A1 39 Particulate matter emission factors reported in the literature for stationary combustion of natural gas [g/GJ]

Source	Sector	PM _{2.5}	PM ₁₀	TSP
BUWAL, 2001 ¹⁾	Domestic furnaces	n.d.	0.5	0.5
	Domestic boilers	n.d.	0.2	0.2
CEPMEIP, 2002 ¹⁾	Residential and domestic	0.2	0.2	0.2
Pfeiffer et al., 2000 ¹⁾	Residential and domestic	n.d.	n.d.	0.03
UBA, 1989; UBA, 1998 ¹⁾	All	n.d.	0.095	0.1
Hobson M. et al, 2003	UNECE TFEIP; Dutch date for	n.d.	0.3	n.d.
	domestic gas use			
	ERA; research boiler Efs.	n.d.	4.8	n.d.
	UNECE TFEIP; Dutch date for	n.d.	0.15	n.d.
	agricultural gas use			

EPA, 1998a ¹⁾	All, no control	n.d.	n.d.	0.9
1)				

¹⁾ as quoted in Klimont et al., 2002; n.d. – no data

Table A1 40 Particulate matter emission factors used in the RAINS model for
residential stationary combustion of liquid and gaseous fuels [g/GJ] (as
quoted in Klimont et al., 2002)

Fuel	PM2.5	PM10	TSP
Heavy fuel oil	9.5	24.7	38
Light fuel oil	0.7	0.9	1.7
Natural gas	0.03-0.2	0.03-0.2	0.03-0.2

Table A1 41Emission factors of heavy metals from coal and wood combustion in
advanced underfeed burning boiler 30kW (a), and from straw
combustion in fixed grate boiler 65kW (b), [mg/GJ]

Heavy metals	Coal/J 20- 40mm (a)	Coal/W 20- 40mm (a)	Coal/W 5- 30mm (a)	-	Lump wood (a)	Rape straw (b)	Wheat straw (b)
As	7.4	1.7	4.5	9.5	5.3	3.7	14.3
Cd	5.5	2.0	3.3	25.6	22.0	21.1	13.5
Cr	16.5	3.0	15.8	13.4	6.6	3.6	13.5
Cu	37.6	476	52.6	92.8	34.8	3154	60.8
Hg	1.9	11.7	1.4	0.1	1.2	0.7	1.0
Ni	41.8	20.4	16.0	22.8	14.8	138.4	21.2
Pb	787	375	252	218	191	54.1	68.0
Se	3.0	2.4	3.2	1.0	1.2	0.8	5.1
Zn	275	n.m.	155	178	261	195	282
TSP; g/GJ	227	294	126.2	39	116	654	901

Source: Wiliams et al., 2001

Source	As	Cd	Cr	Си	Hg	Ni	Pb	Zn
All combustion (Pacyna J., and Pacyna, 2001)	0.5	1.2	23.8	11.9	1.4	476	47.6	23.8
Small combustion (Berdowski et al., 1997)	23.8	7.1	59.5	13.1	n.d.	833	23.8	23.8
Distillate fuel oil (Compilation of Air, 1996)	1.7	4.5	23.8	n.d.	1.2	7.4	3.8	n.d

No6 fuel oil (Compilation of Air, 1996)	3.6	0.9	0.2	4.8	0.2	229	4.0	79.0
Emission Factors Manual, 1993	14.3	11.9	33.3	11.9	3.6	714	26.2	14.3
Small and medium boilers- non controlled (authors estimates)	0.5	1.2	11.4	8.6	1.2	1,047	30.0	38.6

Source: Kakareka et al., 2003; Original factors in g/ton, for recalculation H_u of 42 GJ/t was assumed; n.d. = no data

Source	As	Cd	Cr	Cu	Hg	Ni	Pb	Zn
All combustion (Pacyna J., and Pacyna, 2001)	8.3	4.2	70.8	58.3	20.8	83.3	41.7	62.5
Small combustion (Berdowski et al., 1997)	10.4	4.2	29.2	41.7	9.2	52.1	208	417
High level of abatement (Compilation of Air,1996)	8.3	1.2	5.4	n.d	1.7	5.8	8.8	n.d.
Domestic furnaces (Determination of Mean 1996)	6.7	6.7	n.d.	n.d.	n.d.	n.d.	27.5	n.d
Small consumers (Determination of Mean 1996)	7.9	4.2	2.5	3.3	n.d.	n.d.	238	12.5
Small and medium boilers- non controlled (authors estimates)	125	1.7	51.8	58.3	8.3	21.7	54.2	225
Small and medium boilers - limited controlled (authors estimates)	37.5	0.4	15.4	17.5	8.3	6.3	16.7	67.5

Table A1 43 Heavy metals emission factors from coal combustion, [mg/GJ]

Source: Kakareka et al., 2003; Original factors in g/ton, for recalculation H_u of 24 GJ/t (d.b.) was assumed; n.d. = no data

Table A1 44 Heavy metals emission factors from wood combustion, mg/GJ.

Source	As	Cd	Cr	Cu	Hg	Ni	Pb	Zn
Industrial combustion (Berdowski et al., 1997)	n.d	6.3	1.9	12.5	6.3	1.9	12.5	125
Small combustion (Berdowski et al., 1997)	n.d.	2.5	10.6	15.0	6.3	1.9	15.0	125
Traditional domestic wood furnace (Compilation of Air, 1996)	n.d.	0.7	<0.1	n.d.	n.d.	0.4	n.d.	n.d.
Domestic furnace (Determination of Mean, 1996)	0.2	1.9	5.6	10.0	n.d	1.1	11.9	263

Small consumers (Determination of Mean, 1996)	1.9	2.5	13.1	17.5	n.d	0.9	83.8	428.1
Wood combustion (Emission Factors Manual, 1993)	n.d.	<6.3	n.d.	<6.3	0 - 12.5	<3.1	<3.1	125
Small and medium boilers - non controlled (authors estimates) ¹⁾	0	1.3	3.8	13.8	0	2.5	15.6	269
Small and medium boilers - limited controlled (authors estimates) ¹⁾	0	1.3	1.3	4.4	0	0.6	5.0	81.3
Household furnaces – non controlled (auth. estimates) ¹⁾	0	0.6	1.9	7.5	0	1.9	9.4	156.3
Commercial soapstone stove, birch logs ²⁾	2.5 – 29 aver. 16					0.6 – 19 aver. 4		93 - 769 aver.469
Chips diff. type of wood ³⁾	nd			0.6 - 1.3 aver. 1.1		0.2 - 0.5 aver. 0.4		44-4.2 aver.18

Source: ¹⁾ Kakareka et al., 2003, ²⁾ Hedberg et al., 2002, Kubica, 2006 ³⁾; Original factors in g/ton, for recalculation H_u of 16 GJ/t was assumed; n.d. – no data

Source	As	Cd	Cr	Cu	Hg	Ni	Pb	Zn
Industrial combustion (Berdowski et al., 1997)	4.2	10.5	3.2	21.1	6.3	3.2	21.1	5.3
Small combustion (Berdowski et al., 1997)	4.2	4.2	17.9	25.3	6.3	17.9	25.3	5.3
Small and medium boilers - non controlled (authors estimates)	13.7	7.4	40	47.4	n.d.	37.9	54.7	210
Small and medium boilers - limited controlled (authors estimates)	4.2	2.1	11.6	14.7	n.d	10.5	15.8	63.2
Household furnaces – non controlled (authors estimates)	6.3	3.2	17.9	22.1	n.d.	15.8	25.3	94.7

Table A1 45 Heavy metals emission factors from peat combustion, g/GJ.

Source: Kakareka et al., 2003; Original factors in g/ton, for recalculation H_u of 9.5 GJ/t was assumed; n.d. = no data

Table A1 46 Review of range and estimated average mercury emission factor for
different type of fuels (without abatement) Pye S. et al; 2005

Fuel	Ran	ge (kg/TJ)	Average (kg/TJ)	Uncertainty ¹⁾	
Tuei	Low	High	Average (kg/15)	Oncertainty	
Natural gas	0.0000006	0.00015	0.00001	С	
Gasoline	0.0000050	0.00047	0.00003		
Diesel oil	0.0000095	0.000071	0.000025	C	
Light fuel oil	0.0000024	0.00012	0.000025	С	
Heavy fuel oil	0.000006	0.015	0.0001		

Bituminous coal	0.00039	0.070	0.009	С
Smokeless fuel	0.00064	0.00099	0.00075	С
Coke	0.00060	0.015	0.0035	C
Brown coal (Lignite)	0.005	0.13	0.007	С
Wood	0.00010	0.00188	0.0005	
Waste wood	0.00025	0.0034	0.0008	D
Straw	0.00007	0.0022	0.001	

¹⁾Pulles et al., 2001

Table A1 47 Mercury emission factors b	y sector-fuel-technology; Pye et al., (2005) and
Kubica et al., (2006/1)	

Sector	Fuel	Technology	Emission factors in kg/TJ
		Medium boilers (automatic) <50 MW using wood, waste,	
		biomass	0.0008
		Medium boilers (manual) <1 MW using wood, waste, biomass	0.0006
	Biomass	Single house boilers (automatic) <50 kW using wood, waste, biomass	0.00055
		Single house boilers (manual) <50 kW using wood, waste,	
		biomass	0.0008
	Gaseous	LPG	0
	fuel	Natural Gas	0.00001
	.	Diesel / Light fuel oil	0.000025
AFF	Liquid	Gasoline	0.00003
A	fuel	Heavy fuel oil	0.0001
		Medium boilers (automatic) <50 MW using brown coal	0.007
		Medium boilers (automatic) <50 MW using coke / briquettes	0.0035
		Medium boilers (automatic) <50 MW using hard coal	0.009
		Medium boilers (manual) <1 MW using brown coal	0.0055
	Solid fuel	Medium boilers (manual) <1 MW using coke / briquettes	0.003
		Medium boilers (manual) <1 MW using hard coal	0.007
		Single house boilers (manual) <50 kW using brown coal	0.006
		Single house boilers (manual) <50 kW using coke / briquettes	0.0035
		Single house boilers (manual) <50 kW using hard coal	0.009
	Biomass	Medium boilers (automatic) <50 MW using wood, waste, biomass	0.0008
ıal	Diolituss	Medium boilers (manual) <1 MW using wood, waste, biomass	0.00055
tior	Gaseous	LPG	0
itu	fuel	Natural Gas	0.00001
Inst		Diesel / Light fuel oil	0.000025
Commercial-Institutional	Liquid	Gasoline	0.00003
erci	fuel	Heavy fuel oil	0.0001
JIII	Solid fuel	Medium boilers (automatic) <50 MW using brown coal	0.007
Jon		Medium boilers (automatic) <50 MW using coke / briquettes	0.0035
0		Medium boilers (automatic) <50 MW using hard coal	0.009
		Medium boilers (manual) <1 MW using brown coal	0.006

		Medium boilers (manual) <1 MW using coke / briquettes	0.003
		Medium boilers (manual) <1 MW using hard coal	0.007
		Fireplaces using wood, waste, biomass	0.0004
	Biomass	Single house boilers (automatic) <50 kW using wood, waste, biomass	0.00055
	Biomass	Single house boilers (manual) <50 kW using wood, waste, biomass	0.0005
		Stoves using wood, waste, biomass	0.0004
	Gaseous	LPG	0
ial	fuel	Natural Gas	0.00001
Residential	Liquid	Diesel / Light fuel oil	0.000025
sid	fuel	Gasoline	0.00003
Re	Tuer	Heavy fuel oil	NA
		Fireplaces	0.003
		Single house boilers (manual) <50 kW using brown coal	0.007
		Single house boilers (manual) <50 kW using coke / briquettes	0.003
	Solid fuel	Single house boilers (manual) <50 kW using hard coal	0.006
		Single house boilers (automatic) <50 kW using hard coal	0.009
		Stoves using brown coal	0.004
		Stoves using hard coal	0.006

Table 208 Mercury emission factor speciation for different fuels (as quoted in Pye et al.,2005)

Fuel	Installation	Hg⁰ (gas)	Hg^{+2}	Hg (partic.); Hg ^{PM}	Uncertainty ¹⁾	Source
	Power plant	0.5	0.4	0.1	-	Pacyna et.al.,
	Residential	0.5	0.4	0.1	С	2004
	General	0.5	0.4	0.1	-	Senior, 2004
	Power plant	0.5	0.4	0.1	-	
	Power station stack monit.	0.269	0.695	0.036	-	Pye, 2005/2
	Domestic coal burning	0.4	0.4	0.2	С	
	FBC ^{a)}	0.55-0.6	0.4	< 0.05	-	Moritomi,
	FBC ^{b)}	0.05 - 0.10	0.8	0.15 - 0.10	-	2005
Hard Coal	Research facility design to replicate typical power plant	0.2	0.8	-	-	Tan et a., 2004
	Stove	0.6		0.4	-	Bartle et al., 1996
	Power plant	0.42	0.58	-	-	Hlawiczka, et al., 2003
	Stove / Fireplaces	0.3	0.35	0.35	С	
	Boiler manual fuelled - all SCI sectors	0.4	0.4	0.2	С	Pye et al., 2005/1
	Boiler autom. (stoker) - all SCI sectors	0.5	0.4	0.1	С	2003/1

Brown coal	Power plant	0.61	0.39	~ 0.01	-	Hlawiczka, et al., 2003
Biomass Manual fuelled (stove boiler) - all SCI sectors Automatic fuelled- all sectors	hoiler) - all SCI sectors	0.6	0.3	0.1	D	Pye et al., 2005/1
	Automatic fuelled- all SCI sectors	0.65	0.3	0.05	D	Pye et al., 2005/1
	General for oil SCIs (all sectors) Light fuel oil SCIs AFF, Com-Inst	0.5	0.4	0.1	-	Pacyna et.al., 2004
		0.5	0.4	0.1	-	Senior, 2004
Liquid fuels		0.51	0.39	0.1	-	Pye, 2005/2
1		0.75	0.2	0.05	С	Pye et al., 2005/1
		0.65	0.35	0.1	С	Pye et al., 2005/1
Natural gas	SCIs (all sectors)	0.8	0.15	0.05	C	Pye et al., 2005/1

^{a)} high content of volatile matter in coal (about 40%) of Cl; ^{b)} coal rich Cl (2304 ppm) content; ¹⁾Pulles et al., 2001; An uncertainty rating has not been given to non-SCI categories (as indicated by the dashes in the uncertainty column).

Table A149	Average emission values of PAHs [mg/GJ] and PCDD/F [ng I-Teq/GJ]
	from solid fuels combustion in stove

Fuel	ΡΑΗ Σ 1-4	$B(a)P^{(x)}$	$B(b)F^{x}$	$B(k)F^{x}$	I_P^{x}	PCDD/F
Cokes	13.4	4.3	3.8	3.2	2.0	1,470
Coal	145.4	41.8	45.3	19.2	39.1	7,740
Wood	35.2	10.4	10.8	5.0	9.0	320

Source: Thanner G., et al., 2002; ^{x)} the factors were assessed by recalculation original data in ng/Nm³.

Table A1 50 Emission factors of PCDD/F reported in the literature for small	
combustion installations [ng I-Teq/GJ]	

Source	Sector	Fuel	PCDD/Fs
Hobson M., et al., 2003	Domestic open fire	Yorkshire housecoal; CPL Research, open fire <5 kW	120.8 ¹⁾
		Hardwood seasoned; CPL Research, open fire <5 kW	14.4 ¹⁾
	Small commercial or institutional	Bituminous coal; AEAT Research; coal boiler, rated 500 kW	2,125 ¹⁾
	boiler	Wood; AEAT Research; 1,5MW boiler with cyclone abatement	787.5
Davies M., et al., (1992)	Domestic open fire	Smokeless fuel, bituminous coal, anthracite	87.5 - 2381)
	Small commercial institutional inst.	Traveling grate 5.8 MW Traveling grate 63 MW	$\frac{66.7^{1)}}{29.2^{1)}}$

UNEP Chemicals	Stoves	Coal	70
(2003)		Contaminated wood/biomass	1,500
		Virgin wood/biomass	100
		Oil	10
		Natural gas	1.5
	Boilers, motors – turbines. Flaring	Landfill/biogas combustion ²⁾	8
Geueke KJ. et al	Stoves	Lignite Germany	70; 58 ¹⁾
2000 ¹⁾		Lignite Czech Rep	20; 21 ¹⁾
		Anthracite	95; 175 ¹⁾
		Hard coal Poland	633; 1,430 ¹⁾
Pfeiffer F. et al.,	Stoves	Wood; masonry heater, 32.5kW	39
2000 ³)	~	Wood; Tiled with insert, 5.5-14.3kW	9; 27; 49
		Gas heater old convection,4.3kW	1.5
		Gas heater new convection6.2kW	1.7
		Gas old water heater 23.3kW	4.1
		Gas new water heater 19.2kW	2.0
		Oil heater, tiled stove-old burner,8.3kW	3.2
		Oil heater, tiled stove old burner, 9 kW	1.6
	Domestic boilers	Gas boilers -old, 36.6kW	1.0
	Domestie ooners	Gas boilers, new, 15.8kW	2.3
		Gas boilers, new, 19.0kW	1.8
		Gas boilers, new, 17.5kW	1.6
		Gas boilers, new, 17.5kW Gas boilers, new, 19.9kW	2.0
		Oil boilers - old, 25.6kW	2.9
		Oil boiler, old, solid and gas also, 19.4kW	2.9
		Oil boiler, old, solid and gas also, 20.8kW	0.6
		Oil boiler new, cast iron, 20.2 kW	1.0
		Oil boiler new, steel-20.1-0.9	0.9
Grochowalski A.	Stoves	Coal stoves	6,000; 11,500 ¹⁾
(2002)	Small commercial institutional and	Moving grate firing boiler; new construction – 1985	11.8; 49.0 ¹⁾
	district heating	Moving grate firing boiler; old	90.0; 151.0 ¹⁾
	e e	construction – 1950	
		Fluidized bed combustion	$104.6; 274.2^{1}$
Kubica (2002/1, 2003/1)	Household boilers	Coal automatic fuelled, stoker boiler, upper fire, 30 kW	57.2
Williams, et al.	Household,	Coal J	285.0
(2001)	advanced manual	Coal W	804.0; 540.1
	fuelled boiler, 30	Pine wood log	1603.3
	kW	Sawdust briquette	107.4
		Coal and pine sawdust briquette (33%)	431.1
		Coal and sewage sludge briquette	277.1
		(13.8%)	
		Mixture of coal and sawdust	795.6
		Mixture of coal and rape straw	740.9

	Household boilers,	Straw (rape) manual fuelled boiler, 65kW	840.3
	agricultural small comb. installation	Straw (wheat) manual fuelled boiler, 65kW	746.2
Quass U., et al. 2000	Stoves, simple	Lignite Germany	117.6
	design	Lignite Czech Rep.	39.4
		Anthracite	145.0
		Hard coal briquette Germany	310.4
		Coke Germany	26.6
		Hard coal Poland	1,127
	Stoves, modern	Lignite Germany	192.9
	design	Lignite Czech Rep.	69.4
		Anthracite	364.3
		Hard coal briquette Germany	186.7
		Coke Germany	90.3
		Hard coal Poland	3,687
Kakareka, (2003)	Household stoves:	Peat	263
		Wood	312.5
	Small and	Oil	5
	medium boiler	Coal: non controlled combustion	104
		Coal; partly controlled combustion	42
		Peat: non controlled combustion	263
		Peat; partly controlled combustion	105
		Wood: non controlled combustion	312.5
		Wood: partly controlled combustion	62.5
Casserini S. et al.	Residential	Liquid fuel	3.9
(2003)	heating	Wood	500
		Coal	3.2
Pfeiffer F., et al.	Households	High rank coal and products	27.4
$(2000)^{3)}$	(Germany)	High rank coals	20.3
()	(•••••••••••••••••••••••••••••••••••••	Briquettes	37.3
		Coke from high rank coals	39.4
		Brown coal briquettes	23.3
		Natural wood	29.5
		Distillate oil	2.5
		Natural gas	1.9
	Small consumers	High rank coal and products	5.1
	(Germany	High rank coals	5.1
	(Germany	Coke from high rank coals	23.7
		Brown coal briquettes	12.8
		Natural wood	411.5
		Distillate oil	2.8
		Residual oil	n.d.
		Natural gas	1.6
	Open fire place	Coal	90
Lee et al., 2005	I		11
Gullat at al 2002	Open fire place	Wood	
Gullet et al., 2003	Fireplace	Oak Ding	18
	Fireplace	Pine	74

	Fireplace	Artificial logs (wax and sawdust)	70
	Woodstove	Oak	13
		Pelleted wood	21
		Chopped wood log	3-2000
	Boilers	coke	87
		Wood and coke	280
		Wood brown coal briquettes	380
	Stove	Hard coal, brown coal briquettes wood	48 - 2400
Hübner et al., 2005		Beach wood logs	45 - 4500
		Wood	2300
		Spruce wood (small logs)	1000
		Small wood logs	150
		Wood briquettes	27
	Boilers	All solid fuels	750
	Stove	All solid fuels	380

¹⁾ Original factors in g/kg of fuels, for recalculation H_u of 24 GJ/t (d.b.) for hard coal was, of 17 GJ/t (d.b.) for lignite and brown coal, of 30 GJ/t (d.b.) for anthracite, of 30 GJ/t (d.b.) for coke; of 16 GJ/t for wood, of 42 GJ/t for oil and of 35 GJ/t for natural gas were assumed; ⁽²⁾ The date for comparison to natural gas combustion only; ³⁾ PCDD/F given as toxicity equivalent according to the NATO/CCMS (1988) calculation method; n.d. – no data

Source	Installation type	ΡΑΗ Σ 1-4	B(a)P	B(b)F	B(k)F	I_P
	Household stoves:					
	- peat	336	84	168	42	42
	- wood	1,280	312	643	169	156
	Small and medium boiler: - oil	0.6	0.1	0.2	0.1	0.2
	Small and medium boiler coal:					
	- non controlled	342	83.3	150	58.3	50.0
Kakareka, $(2003)^{1)}$	- partly controlled	102.5	25.0	45.0	17.5	15
	Small and medium boiler peat:					
	- non controlled	336.4	84.2	168	42.1	42.1
	- partly controlled	101	25.3	50.5	12.6	12.6
	Small and medium boiler wood:					
	- non controlled	1,280	312	643	169	156
	- partly controlled	385	93.8	194	50.0	46.9
	Household stoves with				•	
$V_{\rm ubias} V_{\rm otal} (1004)$	water jacket:					
Kubica K. et al; (1994)	- coal	6,742	938	5,696		108
	- briquette/smokeless fuel	195.7	21.3	153		21.4
	Conventional stove:					
Kubica K., (1996)	- coal A	590	180	210	90	110
	- coal B	1,410	290	710	200	210

Table A1 51 Average emission values of PAHs [mg/GJ] from solid fuels combustion in
small combustion installations

	Conventional stove:					
	- wood log	1,210	390	380	180	260
	- wood pellets	267.7	131.1	65.0	30.4	41.2
	Advanced wood pellets	15.3	4.4	6.3	3.3	1.3
	burner Upper-fire, automatic					
Kubica K. et al; (1997/3;	stocker boiler:					
2002/2)	- pellet	33	5	18	8	2
	Advanced under fire coal	55	5	10	0	2
	boiler 20kW:					
	- fine coal	56	13	22	9	12
	- fine coal/chips wood	17	6	5	1	5
	(80/20)	1 /	0	5	1	5
	Conventional coal boiler					
	30kW	1,520	450	750	170	150
$V_{1} = V_{1} = (2002/1)$	Advanced coal boiler	220	0.2	120	0.0	24
Kubica K.; (2003/1)	manual fuelled 30 kW	326	82	130	80	34
	Automatic fuelled coal	33	5	18	8	2
	boiler 30 kW	33	3	18	0	2
	Advanced under-fire					
	boiler, manual 30kW					
	- coal WI	850	290	280	120	60
Williams, et al. (2001)	- wood	610	120	220	180	90
	- sawdust briquettes	120	50	50	20	10
	- coal WI briquettes	42	10	20	10	2
	- straw (65 kW)	165	80	50	20	2 15
	Manual fuelled coke	21.3 ¹⁾	6.0	12	3.3	n.d.
Kubica K., et al, (1997/3)	boller 150 kw	21.5	0.0	12	5.5	n.u.
(199775)	Automatic fuelled coal	95 ¹⁾	27	40	19	9
	boiler, retort; 150 kW))	21	40	17)
	Commercial, institutional					
	and district heat.; Moving	13.2	5.2	4.4	2.0	1.6
	grate firing coal boiler	13.2	5.2	7.7	2.0	1.0
	10MW					
Kubica K. et al; (2003/3)	Commercial, institutional					
, , , , , , , , , , , , , , , , , , , ,	and district heat; Moving	8.0	2.5	4.4	1.0	0.1
	grate firing coal boiler	0.0	2.5	4.4	1.0	0.1
	10MW					
	Fluidized bed combustion	21.0	6.7	8.5	4.0	1.8
	Conventional stove	375.0	125.0	187.5	62.5	0.0
EPA (1996) ¹⁾	Non-catalytic stove	1062.5	187.5	125.0	125.0	625.0
	Catalytic stove	500.0	125.0	125.0	125.0	125.0
Pfeiffer F., et al (2000)	High rank coal and	270		1	1	1
Households (Germany) ³⁾	products	270	n.d.	n.d.	n.d.	n.d.
	High rank coals	60	n.d.	n.d.	n.d.	n.d.
	e	00	11. u .	11		

	Coke from high rank coals	100	n.d.	n.d.	n.d.	n.d.
	Brown coal briquettes	440	n.d.	n.d.	n.d.	n.d.
	Natural wood	490	n.d.	n.d.	n.d.	n.d.
	Distillate oil	1.8	n.d.	n.d.	n.d.	n.d.
Pfeiffer F., et al (2000)	Coke from high rank coals	130	n.d.	n.d.	n.d.	n.d.
Small consumers (Germany) ³	Natural wood	210	n.d.	n.d.	n.d.	n.d.
(Germany)	Distillate oil	0.2	n.d.	n.d.	n.d.	n.d.
Les et al. 2005 ¹	Open fire place, coal	830	330	210	100	190
Lee et al., $2005^{(1)}$	Open fire place, wood	97	40	19	13	25
	Fireplace, Oak	101	36	21	26	18
Gullet et al., 2003	Fireplace, Pine	62	19	14	17	12
	Fireplace, Artificial logs (wax and sawdust)	115	34	26	31	24
	Woodstove, Oak	94	35	23	28	8
	Conventional stove 5kW	6,3050	2,240	3,630		480
$V_{\rm M}$ $K_{\rm M}$ (2004/1)	Conventional coal boiler manual fuelled 30kW	335.0	68.1	209.8		67.1
Kubica K.; (2004/1)	Advanced coal boiler manual fuelled 30 kW	13.1	4.5	8.1		1.5
	Automatic fuelled coal boiler – stocker 30 kW	6.3	3.6	2.2		0.5
	Natural-draft wood stove Wood	683-6,500 aver.1,950	aver. 610	30-2,500 aver. 680	aver. 250	aver. 410
	Pellet stove (high load); modern certified Swedish		aver. 0.3	0.06 - 1.1 aver.0.6		0.0-3.3 aver. 0.8
Boman et al., 2005	Pellet stove (low load); modern certified Swedish		1.8-16 aver. 6.7			1.4 - 17 aver. 7.4
	Pellet stove (high load); classic North American Pellet stove (low load);	0.9-3.47 aver. 1.1 0.87-5.1	aver. 0.3 0.32–1.3	0.06 - 1.1 aver.0.6 0.55 - 1.8		0.0-0.09 aver.0.04 0.00-2.00
	classic North American Stove, charcoal	aver.2.7 33.8	aver.0.75 5.5	aver. 1.1 0.5	27.8	aver.0.81 n.d.
Ormhestel 1000	Stove, coal briquettes	106.6	12.6	0.3 24	27.8 70	n.d.
Oanh et al., 1999	Open burning in pile wood	144.1		24	23.6	49.1
Hedberg et al., 2002 ¹⁾	Commercial soapstone stove, birch logs	38 -2,630 aver. 610		19-1,630 aver. 380		n.d.
Kubica, 2004/2	Residential; coal	765	248	323	124	69

Residential; wood	712	211	216	131	154
Residen./Comm./Institut. Coal		195	245	68	55
Residen./Comm./Institut. Coal	458	143	171	73	71

¹⁾ Original factors in g/kg of fuels, for recalculation H_u of 24 GJ/t (d.b.) for coal was, of 16GJ/t for wood, of 42GJ/t for oil and of 35GJ/t for natural gas were assumed; ⁽²⁾ The original date of PAH without the description of PAH type; ³⁾ PAH it is the sum of the 8 cancerogenic PAHs: anthracene, benzo(a)pyrene, benzo(a)anthracene, indeno(1,2,3-cd)pyrene, chrysene (+triphenylene), dibenzo(a,h)antracene, benzo(b+j+k)fluoranthene and benzo(ghi)perylene; n.d. – no data

Table A1 52 Emission factors of VOC and NMVOC [as C3H8] reported in theliterature for small combustion installations [g/GJ]

Source	Sector/appliances	Fuel	VOC	NMVOC
Hobson M., et al.,	Domestic open fire	Bituminous coal; BCC Research,	n.d.	583 ¹⁾
2003	1	domestic open grate		
		Manufactured fuels; BCC	5-20	n.d.
		Research, domestic coke use		
		Wood; BCC Research; UK use of	90-800	n.d.
		wood in domestic appliances		
	Domestic boilers	Bituminous coal; BCC Research,	n.d.	25
		17 kW underfeed boiler		
		Bituminous coal; BCC Research,	n.d.	71
		13 kW, gravity feed, anthracite		
		Hard coal 35kW boiler, benchmark	n.d	195
		Hard coal 35kW boiler, improved	n.d.	40
		Brown coal 35kW boiler, bench.	n.d.	380
		Brown coal 35 kW boiler,	n.d.	76
		improved		
		Coke, 35 kW boiler, benchmark	n.d.	220
		Coke, 35 kW boiler, improved	n.d.	44
		Wood, charcoal, 35 kW boiler,	n.d.	480
		benchmark		
		Burning oil, 35 kW boiler,	n.d.	7.5
		benchmark		
		Burning oil, 35 kW boiler,	n.d.	1.5
		improved		
		Kerosene; BCC Research; UK use	15	n.d.
		of kerosene in dom. appliances		
		Gas, 35 kW boiler, benchmark	n.d.	15
		Gas, 35 kW boiler, improved	n.d.	3
		Gas; BCC Research; UK use of gas	5.0-30	n.d.
		in domestic appliances		
	Small commercial	Bituminous coal; BCC Research;	n.d.	2.1
	or institutional	0.9-48 MW boilers		
	boiler	Hard coal 200kW boiler, benchm.	n.d	30
		Hard coal 200kW boiler, improved	n.d.	6
		Brown coal 200kW boiler, benchm	n.d.	30

	1			- 1
		Coke; BCC Research; industrial	1.0-30	n.d.
		coke use		
		Coke, 200 kW boiler, benchmark	n.d.	30
		Coke, 200 kW boiler, improved	n.d.	6
		Fuel oil; BCC Research; UK use of	8	n.d.
		residual fuel oil in industry		
		Burning oil, 200 kW boiler,	n.d.	5.0
		benchm		
		Burning oil, 200 kW boiler,	n.d.	1.0
		benchm		
		LPG; BCC Research; UK use of	5	n.d.
		LPG in commercial appliances		
		GAS; BCC Research; UK use of	5	n.d.
		gas in commercial appliances		
		Gas, 200 kW boiler, benchmark	n.d.	5.0
		Gas, 200 kW boiler, improved	n.d.	1.0
	СНР	Fuel oil; BCC Research; UK use of	6.8	n.d.
		fuel oil in power plant		
		Oil, 200 kW boiler, impr. & abate	n.d.	1
	Open fireplaces		n.d.	1,700
	Closed fireplaces			1,600
	and inserts			
CITEPA (2003)	Conventional	Wood combustion	n.d.	1,600
	stoves			
	Advanced stoves		n.d	30
	Non-certified		n.d.	1,600
	boilers			-
	Advanced boilers		n.d.	400
	class 1			
	Advanced boilers		n.d.	40
	class 3			
Kubica, UN-ECE	Stove	Coal J	486	n.d.
TFEIP, (2002/1)		Coal W	700	n.d.
		Wood log	1,660	n.d.
Williams, et al.	Boiler manual	Coal J	514.2	n.d.
(2001)	fuelled, 30kW	Coal W	483.1	n.d.
		Coal WII	448.9	n.d.
		Pine wood log	336.4	n.d.
		Sawdust briquette	176.1	n.d.
		Coal and pine sawdust briquette	214.7	n.d.
		(33%)		
		Coal and sewage sludge briquette (13.8%)	1058.9	n.d.
		Mixture of coal and sawdust	286.4	n.d.
		Mixture of coal and rape straw	326.8	n.d.
Kubica K.,	Stocker boiler,	Coal	14.0	n.d.
(2002/2)	25kW	Wood pellet	21.0	n.d.
Pfeiffer F., (2000)	Households	High rank coal and products	342	137
a)	(Germany)	High rank coals	324	130
	(Sermany)		547	150

		Briquettes	366	146
		Coke from high rank coals	13	7.9
		Brown coal briquettes	296	217
		Natural wood	393	301
		Distillate oil	1.3	1.3
		Natural gas	1.6	0.71
	Small consumers	High rank coal and products	1.0	4.5
	(Germany)	High rank coals	11	4.5
	(Oermany)	Coke from high rank coals	36	21
		Brown coal briquettes	427	350
		Natural wood	258	186
		Distillate oil	2.6	2.6
		Residual oil		
			n.d.	n.d.
EDA (Environmentel	Weed store	Natural gas	0.51	0.39
EPA (Environmental Protection Agency);	Wood stove	Conventional	n.d.	1656
1996		Non-catalytic	n.d.	375
1770	D 11 051 W	Catalytic	n.d.	469
	Boiler 25 kW	Wood pellets and chips	7	n.d.
	Boiler 43 kW; 100% and 33% of capacity	Pellets and wood chips	2	n.d.
BLT, 2005/1 ^{a)}	Boiler 60 kW	Wood	27	n.d.
BE1, 2003/1	Boiler, 25kW	Wood chips	6	n.d.
	Boiler 46.7 kW;	wood emps	3; 5	n.d.
	100% capacity; 33% of capacity	Wood pellets	5,5	11. u .
BLT, 2003 ^{a)}	Boiler 7.7 – 26 kW	Wood pellets and briquettes	1	n.d.
BLT, 1999 ^{a)}	Boiler 500kW	Wood chip; 100% and 30% of capacity	<1; 1	n.d.
BLT, 2004/1 ^{a)}	Boiler 20kW	Wood chips	2	n.d.
BLT, 2004/2 ^{a)}	Boiler 50kW	Wood logs and briquettes	4	n.d.
DE1, 2004/2	Boilers, two		•	n.d.
BLT, 2000/1 ^{a)}	chambers and sonar Lambda	Wood logs	3	n.u.
BLT, 2000/2 ^{a)}	Chamb. boiler 60kW	Wood briquettes	2	n.d.
BLT, 2005/2 ^{a)}	Chamber boiler 27 kW	Wood logs	9	n.d.
McDonald et. al.,	Fireplaces		1.4–14.5 aver. 7.5	n.d.
2000 ¹⁾	Woodstove		6.2-55.3 aver. 23	n.d.
Johansson at al., 2001	Boilers, fixed grates, moving scrapes 1.75–2.5 MW	Wood pellets	1.4	n.d.
D 1 2007	Natural-draft stove,	Wood; Birch Pine Spruce	n.d.	1 - 2500
Boman et al., 2005	9 kW	······································		aver. 600

	Pellets stove 4- 9,5 kW; (high load)	Pellets: Pine Spruce	n.d.	0,85 – 2 aver. 2
	Pellet stove, 4- 9,5 kW; (low load 30%)	Pellets: Birch Pine Spruce	n.d.	14 – 22 aver. 19
	Pellet boilers	Wood pellets; Pine	5–18 aver.7	n.d.
Kubica, 2004/2	Chamber boiler, top feed	Fine coal	100 - 250	n.d.
	Automatic coal boiler, stocker	Pea coal (qualified coal size)	1- 50 aver.11	n.d.
	Automatic coal boiler	Fine coal (qualified coal size)	2 - 50 aver.20	n.d.
	Chamber boiler, advanced techniq.	Qualified size coal	60 - 120	n.d.

¹⁾ Original factors in g/kg of fuels, for recalculation H_u of 24 GJ/t (d.b.) for coal was, of 16GJ/t for wood, of 42GJ/t for oil and of 35GJ/t for natural gas were assumed; n.d. – no data; ^{a)} VOC and NMVOC as C; ^{b)} VOC as OGC

Table A1 53	Emission factors for the CHP plant types and aggregated emission factors
	for the decentralized CHP plants

Pollutants	Unit	Natural gas engines	Biogas engines	Gas turbine	Municipal waste CHP	Straw CHP	Wood CHP	Decentr. CHP plants
NH_3	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
NO _x	g/GJ	168	540	124	124	131	69	154
NMVOC	g/GJ	117	13	1.4	<1	<0.8	<3.4	55
СО	g/GJ	175	>273	6	<8	63	79	98
SO_2	g/GJ	n.d.	19	n.d.	<24	47	<1.8	10
TSP	g/GJ	0.76	2.63	0.10	<2.02	3.97	7.94	1.6
PM10	g/GJ	0.189	0.451	0.061	1.126	0.133	1.944	0.6
PM2.5	g/GJ	0.161	0.206	0.051	1.084	0.102	1.226	0.5
PCDD/F	I-Teq ng/GJ	n.d.	n.d.	n.d.	157	22	1	47
PAH [B(a)P-eq.]	mg/GJ	< 0.023	< 0.003	< 0.005	< 0.006	<0.154	< 0.008	< 0.020
B(a)P	mg/GJ	0.003	0.001	< 0.009	< 0.022	< 0.003	< 0.003	< 0.003
B(b)F	mg/GJ	0.042	0.001	0.001	0.002	0.157	0.002	< 0.026
B(k)F	mg/GJ	0.024	< 0.0004	< 0.002	<0.0008	<0.091	< 0.003	< 0.015

I_P	mg/GJ	0.006	< 0.0011	< 0.003	<0.0009	< 0.023	< 0.002	< 0.004
As	mg/GJ	n.d.	n.d.	n.d.	<6.8	<2.1	<2.4	2.2
Cd	mg/GJ	n.d.	n.d.	n.d.	<4.8	<0.8	<1	1.5
Cr	mg/GJ	n.d.	n.d.	n.d.	<2.5	<1.6	<2.4	0.9
Cu	mg/GJ	n.d.	n.d.	n.d.	<10.1	<1.7	<2.7	3.1
Hg	mg/GJ	n.d.	n.d.	n.d.	<7.4	<0.6	<0.8	2.2
Ni	mg/GJ	n.d.	n.d.	n.d.	<4.8	<1.7	<2.4	1.6
Pb	mg/GJ	n.d.	n.d.	n.d.	<123	<6.2	<3.7	36.3

Source: Nielsen M. *et al.*, (2003); ¹⁾ none information about NMVOC standard reference usual CH_4 or C_3H_8 are used; n.d. - no data

Abbreviations

B[a]P B[b]F B[k]F CxHy I_P -	benzo[a]pyrene, benzo[b]fluorantene, benzo[k]fluorantene volatile hydrocarbons could be expressed as THC, see below indeno[1,2,3-cd]pyrene
I-Teq	in line with DRAFT GUIDELINES FOR ESTIMATING AND REPORTING EMISSIONS DATA, EB.AIR/GE.1/2002/7; 2 July 2002 the emissions of different congeners of PCDD/F are given in toxicity equivalents I-Teq in comparison to 2,3,7,8,-TCDD by using the system proposed by the NATO Committee on the Challenges of Modern Society (NATO-CCMS) in 1988
H_u (d.b.)	lower heating value of fuel on a dry basis
NMVOC	Non-methane volatile organic compounds (VOC) means any organic compound except methane having at 293.15 K a vapor pressure of 0.01 kP or more, or having a corresponding volatility under the particular conditions of use.
PM10	Particulate matter with an aerodynamic diameter less than 10 µm
PM2.5	Particulate matter with an aerodynamic diameter less than 2.5 µm
РАН	Polycyclic Aromatic Hydrocarbons
PCDD/F	Polychlorinated dioxins and furans
TSP	Total suspended particulate matter
ТНС	in line with EPA Method 25A as well as EN 12619 THC (Total Hydrocarbon Compounds) means "total gaseous organic concentration of vapors consisting primarily of alkanes, alkenes, and/or arenes (aromatic hydrocarbons). They are determined by using on-line flame ionisation analyser (FID). The concentration is expressed in terms of propane (or other appropriate organic calibration gas) or in terms of carbon." Gaseous organic concentration (ppm v/v) usually expressed in terms of propane or methane in this case the relation is about 1.8:1.

VOC Volatile organic compounds means any organic compound except methane having at 293.15 K a vapor pressure of 0.01 kP or more, or having a corresponding volatility under the particular conditions of use.