Personal tools

Notifications
Get notifications on new reports and products. Frequency: 3-4 emails / month.
Subscriptions
Sign up to receive our reports (print and/or electronic) and quarterly e-newsletter.
Follow us
Twitter icon Twitter
Facebook icon Facebook
YouTube icon YouTube channel
RSS logo RSS Feeds
More

Write to us Write to us

For the public:


For media and journalists:

Contact EEA staff
Contact the web team
FAQ

Call us Call us

Reception:

Phone: (+45) 33 36 71 00
Fax: (+45) 33 36 71 99


next
previous
items

Skip to content. | Skip to navigation

Sound and independent information
on the environment

You are here: Home / Environmental policy document catalogue / Sixth Environment Action Programme

Sixth Environment Action Programme

DECISION No 1600/2002/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 22 July 2002 laying down the Sixth Community Environment Action Programme

Sixth Environment Action Programme

The link address is: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2002:242:0001:0015:EN:PDF

Related content

Related indicators

Exposure of ecosystems to acidification, eutrophication and ozone Exposure of ecosystems to acidification, eutrophication and ozone The indicator shows the ecosystem or crops areas at risk of exposure to harmful effects of ozone as a consequence of air pollution, and shows the state of change in acidification, eutrophication and ozone levels of the European environment. The risk is estimated by reference to the 'critical level' for ozone for each location, this being a quantitative estimate of the exposure to these pollutants below which significant and harmful effects do not occur in the long term at present knowledge. The fraction of agricultural crops that is potentially exposed to ambient air concentrations of ozone in excess of the EU target value and long-term objective set for the protection of vegetation is also shown. Eutrophication and acidification Critical loads of acidity and of nutrient nitrogen are employed to describe exposure to acidification and to eutrophication for forests and semi-natural areas in Europe, including Natura 2000 sites. The area where the deposition of acidifying and eutrophying pollutants is in exceedance of critical loads provides also an indication of the extent of European ecosystem area which is at risk of damage to biodiversity. By analysing the change of exceedances over time (comparative static analysis) an indication of the effects of changing air pollutant emissions over time is obtained. The magnitude of the exceedance (deposition minus critical load) is an important input to the dynamic modelling of time delays in damage. Inversely, once critical loads are no longer exceeded, recovery may take some time as well. By including the risk to be met within a legislative target and year the distance from this target can be evaluated. Ozone AOT40 is 'Accumulated ozone exposure over a threshold of 40 ppb'. The indicator shows the ecosystem or crop areas at risk of exposure to harmful levels of ozone as a consequence of air pollution. The risk is estimated by referring to the 'critical level' of ozone for sensitive areas. Thus, the indicator is a quantitative estimate of the exposure to ozone below which significant and harmful effects do not occur in the long term according to present knowledge. The fraction of agricultural crops that is potentially exposed to ambient air concentrations of ozone in excess of the EU target value set for the protection of vegetation is also shown.
Use of freshwater resources - outlook from EEA Use of freshwater resources - outlook from EEA Definition: The water exploitation index (WEI) is the annual total abstraction of freshwater divided by the annual total renewable freshwater resource, expressed in percentage terms. This indicator can be computed at the country level or, preferably, by river basin. A region is characterized as being under water stress, if it the water exploitation index exceeds 20%, and under severe water stress if it exceeds 40%. This indicator combines data on water availability and water withdrawals, and has thus also been referred to as withdrawals-to-availability index. Alternatively, the underlying data can be used (i.e. data on water availability and water withdrawals for domestic use, industrial use, an agricultural use, respectively) to indicate seperately: The water availability index is defined as the average freshwater resources available per person in a country or river basins. Regions can be labelled as water scarce if this value drops below 1000 m3 per person - however as the indicator uses population as a proxy for water uses it is less accurate. Changes in annual water availability indicates the change in freshwater resources in a country or river basin over a given time period, primarily due to changes in upstream water use or climate change. Changes in annual water abstraction indicates the change in water use in a country or river basin over a given time period. Changes can be presented separately for different socio-economic activities, i.e. water for domestic use, for use in manufacturing and electricity production, and for agricultural purposes. Model used: WaterGAP Ownership: European Environment Agency Temporal coverage: 2000 - 2030 Geographical coverage: Austria, Belgium, Denmark, Cyprus, Czech republic, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Lichtenshtain, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Spain, Sweden, Swetzerland, Slovakia, Slovenia, United Kingdom
CC_F03: GHG emissions - outlook from IIASA CC_F03: GHG emissions - outlook from IIASA Definition: This indicator illustrates the projected trends in national emissions of all greenhouse gases emissions for a selected scenario (combination of energy pathway and emissions control strategy), including current policy legislation and optimized scenarios. Greenhouse Gasses include carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), perflourocarbons (PFCs), hydroflourocarbons (HFCs) and sulphur hexafluoride (SF6). The indicator also provides information on emissions from the main greenhouse gas emitting sectors: energy supply and use (including energy industry, fugitive emissions, energy use by industry and by other sectors); transport; industry (processes); agriculture; waste and other (non-energy). Model used: GAINS/RAINS, EMEP Ownership: International Institute for Applied Systems Temporal coverage: 1990 - 2030 Geographical coverage:  EU-27: Austria, Belgium, Bulgaria, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, Netherlands, Portugal, Spain, Sweden, United Kingdom, Cyprus, Czech republic, Estonia, Hungary, Latvia, Lithuania, Malta, Poland, Romania, Slovakia, Slovenia; By country: Albania, Armenia, Austria, Azerbaijan, Belarus, Belgium, Bosnia and Herzegovina, Croatia, Cyprus, Check Republic, Denmark, Estonia, Finland, France, Georgia, Germany. Greece, Hungary, Iceland, Ireland, Italy, Kazakhstan, Latvia, Lithuania, Luxemburg, Netherlands, Norway, Poland, Portugal. Republic of Moldova, Romania. Russian Federation, Serbia and Montenegro, Slovakia, Slovenia, Spain, Sweden, Swetzerland, TFYR of Mathedonia, Turkey, Ukriane, United Kingdom

Geographical coverage

[+] Show Map

Document Actions

Comments

Sign up now!
Get notifications on new reports and products. Currently we have 33001 subscribers. Frequency: 3-4 emails / month.
Notifications archive
Follow us
 
 
 
 
 
European Environment Agency (EEA)
Kongens Nytorv 6
1050 Copenhagen K
Denmark
Phone: +45 3336 7100