You are here: Home / Data and maps / Indicators / Storms / Storms


Indicator Assessmentexpired Created 12 Nov 2012 Published 19 Nov 2012 Last modified 11 Sep 2015, 12:55 PM
Note: new version is available!
Topics: ,
This content has been archived on 17 Nov 2014, reason: Other (New version data-and-maps/indicators/storms-1/assessment-1 was published)
Indicator codes: CLIM 005

Key messages

  • Storm location, frequency and intensity have shown considerable variability across Europe over the past century, making it difficult to identify clear trends. A recent reanalysis suggests that storminess has increased over the past century in northern and north-western Europe but this finding is not yet robust.
  • Climate change projections for storms in the North Atlantic and Europe region show no clear consensus in either the direction of movement or the intensity of storm activity. However, a recent study involving 20 climate models projects enhanced extreme wind speeds over northern parts of central and western Europe, and a decrease in extreme wind speeds in southern Europe.

What is the trend in extreme wind speeds across Europe?

Projected changes in extreme wind speed based on GCM and RCM ensembles

Note: Ensemble mean of changes in extreme wind speed (defined as the 98th percentile of daily maximum wind speed) for A1B (2071–2100) relative to 1961–2000. Left: based on 9 GCMs. Right: based on 11 RCMs. Coloured areas indicate the magnitude of change (unit: m s−1), statistical significance above 0.95 is shown by black dots.

Data source:
Downloads and more info

Past trends

Studies of past changes in extra-tropical storms have used a variety of methods for analysing their activity in the storm track regions, making it difficult to compare the results of different studies or to assess if there is any underlying climate change signal [1]. Storm location and intensity in Europe has shown considerable variation over the past century. Locally, increases in maximum gust wind speeds have been observed over recent decades [2] but there is evidence for decreases in storm frequency since the 1990s (Ulbrich et al., 2009). Wind data at the local or regional levels can show a series of decreases and increases continuing over several decades. Long records of wind speed for various regions across Europe indicate that storminess has not significantly changed over the past 200 years [3]. They also indicate relatively high levels of storminess in north-western European during the 1880s, followed by below average conditions between the 1930s and 1960s, a pronounced increase in storminess until the mid-1990s, and average or below activity afterwards. Somewhat similar patterns were observed in other parts of Europe.

Reanalyses for the time span 1871 to 2008 suggest an increasing long-term trend in storminess across north-western Europe. Storminess towards the end of the 20th century reached unprecedented values in the north-eastern North Atlantic, the North Sea and the Baltic Sea region (Figure 1) [4]. However, somewhat different results were found in another reanalysis [5].


The simulation of extra-tropical cyclones in climate models remains a scientific challenge in spite of significant recent progress. Climate change projections show no clear consensus in either the direction of movement (poleward or equator-ward) or the intensity of extra-tropical cyclone activity in the North Atlantic region of western Europe [6]. Earlier models showed some agreement on a future poleward shift in storm tracks, which would increase the frequency of the most intense wind events in higher latitudes [7]. However, more recent projections with climate models that include a higher resolution stratosphere show an equator-ward shift in the Atlantic storm track which could double the predicted increase in winter rainfall over western and central Europe compared to other climate projections [8]. It should be noted that the measure used to identify ‘storm tracks’ is different to that for ‘cyclone tracks’, so caution should be exercised when comparing these two measures.

Several studies suggest decreases in the number of storms in Europe but increases in the strongest, most damaging storms, in particular in northern and western Europe [9]. A recent study involving ensemble simulations with 9 GCM and 11 RCM projects enhanced extreme wind speeds over northern parts of central and western Europe in most simulations and in the ensemble mean, and a decrease in extreme wind speeds in southern Europe [10] (see Figure 2).


[1] G.A. Meehl et al., “Global Climate Projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change” (Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA., 2007); U Ulbrich, G.C. Leckebusch, and J.G. Pinto, “Extra-tropical Cyclones in the Present and Future Climate: a Review,” Theoretical and Applied Climatology 96 (2009): 117–131, doi:10.1007/s00704-008-0083-8; X. L Wang et al., “Trends and Low-frequency Variability of Storminess over Western Europe, 1878–2007.,” Climate Dynamics (2011), doi:10.1007/s00382-011-1107-0.

[2] T. Usbeck et al., “Increasing Storm Damage to Forests in Switzerland from 1858 to 2007,” Agricultural and Forest Meteorology 241 (2010): 189–199.

[3] C Matulla et al., “European Storminess: Late Nineteenth Century to Present,” Climate Dynamics 31, no. 2–3 (2007): 125–130, doi:10.1007/s00382-007-0333-y.

[4] M. G. Donat et al., “Reanalysis Suggests Long-term Upward Trend in European Storminess Since 1871,” Geophysical Research Letters 38 (2011), doi:10.1029/2011GL047995.

[5] Wang et al., “Trends and Low-frequency Variability of Storminess over Western Europe, 1878–2007.”

[6] Meehl et al., “Global Climate Projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change”; Ulbrich, Leckebusch, and Pinto, “Extra-tropical Cyclones in the Present and Future Climate: a Review”; R McDonald, “Understanding the Impact of Climate Change on Northern Hemisphere Extra-tropical Cyclones,” Climate Dynamics 37 (2011): 1399–1425, doi:10.1007/s00382-010-0916-x.

[7] G. Gastineau and B. J. Soden, “Model Projected Changes of Extreme Wind Events in Response to Global Warming,” Geophysical Research Letters 36, no. L10810 (2009), doi:10.1029/2009GL037500.

[8] A.A. Scaife, “Climate Change Projections and Stratosphere–troposphere Interaction,” Climate Dynamics 1, no. 9 (2011), doi:10.1007/s00382-011-1080-7; McDonald, “Understanding the Impact of Climate Change on Northern Hemisphere Extra-tropical Cyclones.”

[9] J. G. Pinto et al., “Changes in Storm Track and Cyclone Activity in Three SRES Ensemble Experiments with the ECHAM5/MPI-OM1 GCM,” Climate Dynamics 29 (2007): 195–210, doi:10.1007/s00382-007-0230-4; Jens Boldingh Debernard and Lars Petter Røed, “Future Wind, Wave and Storm Surge Climate in the Northern Seas: a Revisit,” Tellus A 60, no. 3 (May 2008): 427–438, doi:10.1111/j.1600-0870.2008.00312.x; Paul M. Della-Marta and Joaquim G. Pinto, “Statistical Uncertainty of Changes in Winter Storms over the North Atlantic and Europe in an Ensemble of Transient Climate                      Simulations,” Geophysical Research Letters 36 (July 17, 2009): L14703, doi:10.1029/2009GL038557; Joaquim G. Pinto et al., “Factors Contributing to the Development of Extreme North Atlantic Cyclones and Their Relationship with the NAO,” Climate Dynamics 32, no. 5 (2009): 711–737, doi:10.1007/s00382-008-0396-4; Markus G. Donat et al., “European Storminess and Associated Circulation Weather Types: Future Changes Deduced from a Multi-model Ensemble of GCM Simulations,” Climate Research 42, no. 1 (May 20, 2010): 27–43, doi:10.3354/cr00853.

[10] M. G. Donat et al., “Future Changes in European Winter Storm Losses and Extreme Wind Speeds Inferred from GCM and RCM Multi-model Simulations,” Natural Hazards and Earth System Science 11, no. 5 (May 12, 2011): 1351–1370, doi:10.5194/nhess-11-1351-2011.

Indicator specification and metadata

Indicator definition

  • Trends in the extreme wind speeds (95th percentile of daily maximum wind speed)
  • Projected changes in extreme wind speed (98th percentile of daily maximum wind speed) based on GCM and RCM ensemble


  • Interannual standard deviation
  • m/s

Policy context and targets

Context description

In April 2013 the European Commission presented the EU Adaptation Strategy Package ( This package consists of the EU Strategy on adaptation to climate change /* COM/2013/0216 final */ and a number of supporting documents. One of the objectives of the EU Adaptation Strategy is Better informed decision-making, which should occur through Bridging the knowledge gap and Further developing Climate-ADAPT as the ‘one-stop shop’ for adaptation information in Europe. Further objectives include Promoting action by Member States and Climate-proofing EU action: promoting adaptation in key vulnerable sectors. Many EU Member States have already taken action, such as by adopting national adaptation strategies, and several have also prepared action plans on climate change adaptation.

The European Commission and the European Environment Agency have developed the European Climate Adaptation Platform (Climate-ADAPT, to share knowledge on observed and projected climate change and its impacts on environmental and social systems and on human health; on relevant research; on EU, national and subnational adaptation strategies and plans; and on adaptation case studies.


No targets have been specified.

Related policy documents

  • Climate-ADAPT: Mainstreaming adaptation in EU sector policies
    Overview of EU sector policies in which mainstreaming of adaptation to climate change is ongoing or explored
  • Climate-ADAPT: National adaptation strategies
    Overview of activities of EEA member countries in preparing, developing and implementing adaptation strategies
  • DG CLIMA: Adaptation to climate change
    Adaptation means anticipating the adverse effects of climate change and taking appropriate action to prevent or minimise the damage they can cause, or taking advantage of opportunities that may arise. It has been shown that well planned, early adaptation action saves money and lives later. This webportal provides information on all adaptation activities of the European Commission.
  • EU Adaptation Strategy Package
    In April 2013 the European Commission adopted an EU strategy on adaptation to climate change which has been welcomed by the EU Member States. The strategy aims to make Europe more climate-resilient. By taking a coherent approach and providing for improved coordination, it will enhance the preparedness and capacity of all governance levels to respond to the impacts of climate change.


Methodology for indicator calculation

Trends in the annual 95th percentile of daily maximum wind speeds in the 20th century reanalysis data set (ensemble mean) during the period 1871–2008. The trend is given in the units of the interannual standard deviation and plotted only when significant. Coloured circles indicate trends in the number of ‘gale days’ (an index that represents the number of extreme windy days) over the period at the specific locations.

Ensemble mean of changes in extreme wind speed (defined as the 98th percentile of daily maximum wind speed) for A1B (2071–2100) relative to 1961–2000. Statistical significance above 0.95 is shown by black dots.

Methodology for gap filling

Not applicable

Methodology references


Methodology uncertainty

Not applicable

Data sets uncertainty

A dense network of stations across the globe, and particularly in Europe, now provide regular monitoring of key atmospheric climate variables, using standardised measurements, quality control and homogeneity procedures at European level. However, even where sufficient data are available, several problems can limit their use for analysis. These problems are mainly connected with 1) limitations of distributing data in high spatial and temporal resolution by many countries, 2) unavailability of data in easy-to-use digital format, and lack of data homogeneity. The situation in Europe is improving since several EU-funded projects (such as ECA&D and EURO4M) have started to collect, digitalise and homogenise additional time series of the essential climate variables. In addition, EUMETNET  initiated an optional programme, EUMETGRID , which aims to develop and maintain a sustainable common data infrastructure for access to and distribution of gridded climate information in Europe and establish recommendations of best practices for establishing national and European gridded datasets.

Further information on uncertainties is provided in Section 1.7 of the EEA report on Climate change, impacts, and vulnerability in Europe 2012 (

Rationale uncertainty

No uncertainty has been specified

Data sources

Generic metadata


Climate change Climate change (Primary topic)

europe | climate change | wind speed | projection
DPSIR: Impact
Typology: Descriptive indicator (Type A - What is happening to the environment and to humans?)
Indicator codes
  • CLIM 005
Temporal coverage:
1871-2008, 2071-2098
Geographic coverage:
Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Europe, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, United Kingdom

Contacts and ownership

EEA Contact Info

Hans-Martin Füssel

EEA Management Plan

2012 2.0.1 (note: EEA internal system)


Frequency of updates

Updates are scheduled every 4 years
European Environment Agency (EEA)
Kongens Nytorv 6
1050 Copenhagen K
Phone: +45 3336 7100