Personal tools

Notifications
Get notifications on new reports and products. Frequency: 3-4 emails / month.
Subscriptions
Sign up to receive our reports (print and/or electronic) and quarterly e-newsletter.
Follow us
Twitter icon Twitter
Facebook icon Facebook
YouTube icon YouTube channel
RSS logo RSS Feeds
More

Write to us Write to us

For the public:


For media and journalists:

Contact EEA staff
Contact the web team
FAQ

Call us Call us

Reception:

Phone: (+45) 33 36 71 00
Fax: (+45) 33 36 71 99


next
previous
items

Skip to content. | Skip to navigation

Sound and independent information
on the environment

You are here: Home / Data and maps / Indicators / Soil erosion / Soil erosion (CLIM 028) - Assessment published Nov 2012

Soil erosion (CLIM 028) - Assessment published Nov 2012

Topics: ,

Generic metadata

Topics:

Climate change Climate change (Primary topic)

Tags:
water | soil | wind
DPSIR: Impact
Typology: Descriptive indicator (Type A - What is happening to the environment and to humans?)
Indicator codes
  • CLIM 028
Dynamic
Temporal coverage:
1961-1990, 2006
 
Contents
 

Key policy question: How are European soils affected by water and wind erosion?

Key messages

  • 105 million ha., or 16 % of Europe’s total land area (excluding Russia) were estimated to be affected by water erosion in the 1990s.
  • Some 42 million ha. of land were estimated to be affected by wind erosion, of which around 1 million ha. were categorised as being severely affected.
  • A recent new model of soil erosion by water has estimated the surface area affected in the EU‐27 at 130 million ha. Almost 20 % is subjected to soil loss in excess of 10 tonnes/ha./year.
  • Increased variations in rainfall pattern and intensity will make soils more susceptible to water erosion, with off-site effects of soil erosion increasing.
  • Increased aridity will make finer-textured soils more vulnerable to wind erosion, especially if accompanied by a decrease in soil organic matter levels.
  • Reliable quantitative projections for soil erosion are not available.

Estimated soil erosion by water in Europe

Note: Calculated by the Revised Universal Soil Loss Equation (RUSLE). While the overall patterns of erosion are generally sound, the validation of erosion data can be challenging. The data presented are currently being validated through comparisons with national datasets and expert judgement. In this sense, zooming in on a specific locality can give the impression of a situation that differs from reality. In addition, the model used in this exercise does not consider localised intense precipitation.

Data source:
  • E-OBS provided by ENSEMBLE FP6 project
Downloads and more info

Estimated number of days for wind erosion

Note: Calculations are based on wind velocity and soil texture. While the overall patterns of erosion are generally sound, the validation of erosion data can be challenging. The data presented are currently being validated through comparisons with national datasets and expert judgement. In this sense, zooming in on a specific locality can give the impression of a situation that differs from reality.

Data source:
  • PRUDENCE provided by Danish Meteorological Institute (DMI)
Downloads and more info

Key assessment

Past trends

Systematic and harmonised data on trends in soil erosion across Europe are lacking. EU-wide estimates of erosion are based on modelling studies, most of which have not yet been validated. A recent exercise has estimated that the surface area in the EU‐27 (excluding Greece, Cyprus and Malta, which lack CORINE land cover data for 2006) affected by water erosion is 130 million ha. Almost 20 % is subjected to soil loss in excess of 10 tonnes/ha/year [i] (Figure 1). Most models contain a rainfall erosivity factor and a soil erodibility factor that reflect average precipitation conditions. Typical values for these factors may inadequately represent the impact of extreme rainfall. Therefore, the uncertainty of modelled erosion risk is high, especially at local level.

The situation for wind erosion is similar to erosion by water in that systematic data collections are limited. Wind erosion is estimated to be a serious problem in many parts of eastern England, north-west France, northern Germany, parts of the Iberian Peninsula and eastern Netherlands (Figure 2).

[i] C. Bosco et al., “Modelling Soil Erosion at European Scale: Towards Harmonization and Reproducibility,” Nat. Hazards Earth Syst. Sci. Discuss. 2, no. 4 (2014): 2639–80, doi:10.5194/nhessd-2-2639-2014; A. Jones et al., The State of Soil in Europe., Joint Research Centre Reference Report (Luxembourg: Publications Office of the European Union, 2012).

 

Projections

Soil erosion rates and extent are expected to reflect changing patterns of land-use and climate change. Variations in rainfall patterns and intensity, and in storm frequency and intensity may affect erosion risk either directly, through the physical displacement of soil particles, or indirectly, through removing protective plant cover. Available European case studies suggest that climate change may increase as well as decrease soil erosion, depending on local climatological and environmental conditions [i]. However, reliable quantitative pan-European projections for soil erosion are currently not available.

Drier regions are likely to be more susceptible to wind erosion than wetter regions. The apparent inability of ecosystems to recover from repeated drought may result in increased risk of wind erosion.

[i] Michael Märker et al., “Assessment of Land Degradation Susceptibility by Scenario Analysis: A Case Study in Southern Tuscany, Italy,” Geomorphology 93, no. 1–2, Challenges in Geomorphological Methods and Techniques (January 1, 2008): 120–29, doi:10.1016/j.geomorph.2006.12.020; H. Thodsen, B. Hasholt, and J. H. Kjærsgaard, “The Influence of Climate Change on Suspended Sediment Transport in Danish Rivers,” Hydrological Processes 22, no. 6 (March 15, 2008): 764–74, doi:10.1002/hyp.6652; Gerald Scholz, John N. Quinton, and Peter Strauss, “Soil Erosion from Sugar Beet in Central Europe in Response to Climate Change Induced Seasonal Precipitation Variations,” CATENA 72, no. 1 (January 1, 2008): 91–105, doi:10.1016/j.catena.2007.04.005.

 


Data sources

More information about this indicator

See this indicator specification for more details.

Contacts and ownership

EEA Contact Info

Geertrui Veerle Erika Louwagie

Ownership

EEA Management Plan

2012 2.0.1 (note: EEA internal system)

Dates

Frequency of updates

Updates are scheduled every 4 years in October-December (Q4)
Document Actions
Filed under: , ,

Comments

European Environment Agency (EEA)
Kongens Nytorv 6
1050 Copenhagen K
Denmark
Phone: +45 3336 7100