Personal tools

Notifications
Get notifications on new reports and products. Frequency: 3-4 emails / month.
Subscriptions
Sign up to receive our reports (print and/or electronic) and quarterly e-newsletter.
Follow us
Twitter icon Twitter
Facebook icon Facebook
YouTube icon YouTube channel
RSS logo RSS Feeds
More

Write to us Write to us

For the public:


For media and journalists:

Contact EEA staff
Contact the web team
FAQ

Call us Call us

Reception:

Phone: (+45) 33 36 71 00
Fax: (+45) 33 36 71 99


next
previous
items

Skip to content. | Skip to navigation

Sound and independent information
on the environment

You are here: Home / Data and maps / Indicators / Energy-related emissions of ozone precursors

Energy-related emissions of ozone precursors

This content has been archived on 12 Nov 2013, reason: Content not regularly updated
Topics: , ,
Required information is not filled in: Information about the starting date of the publishing schedule is missing.
Contents
 

Assessment versions

Published (reviewed and quality assured)
  • No published assessments

Justification for indicator selection

 

Emissions of total non-methane volatile organic compounds, nitrogen oxides, carbon monoxide and methane contribute to the formation of ground level (i.e. tropospheric) ozone. Ozone is a powerful oxidant and can have a range of adverse impacts on both human health and ecosystems. Tropospheric ozone also increases the radiative forcing so diminishing the level of emissions of tropospheric ozone precursors will improve the human and ecosystem health and will also contribute to climate change mitigation.

Tropospheric (ground level) ozone has adverse effects on human health and ecosystems. Emissions of total non-methane volatile organic compounds, nitrogen oxides, carbon monoxide and methane contribute to the formation of ground level (i.e. tropospheric) ozone. High concentrations of ground level ozone have been shown to adversely affect the human respiratory system, and there is evidence that long-term exposure to raised ozone concentrations accelerates the decline in lung function with age and may impair the development of lung function. In the environment, high concentrations of ozone are harmful to crops and forests, decreasing yields, causing leaf damage and decreasing disease resistance. Ozone is also capable of causing damage to man made polymeric materials such as plastics and rubbers.

Scientific references:

  • No rationale references available

Indicator definition

 TOFP is the Tropospheric Ozone Forming Potential of each of the air pollutants that contribute to ozone formation in the troposphere i.e. ‘ground-level’ ozone.

Units

Emissions in ktonnes

Policy context and targets

Context description

This indicator monitors the trend in emissions of energy-related ozone precursors. Emissions of NOx and NMVOCs are both covered by the EU National Emission Ceilings Directive (NECD; 2001/81/EC) and the Gothenburg protocol under the United Nations Convention on Long-range Transboundary Air Pollution (LRTAP Convention; UNECE 1999). Both these instruments contain emission ceilings targets that EU Member States and other countries must meet by 2010. Emission reduction targets for the new Member States have been specified in the Treaties of Accession to the European Union (2003 and 2005 -The Treaty of Accession 2003 of the Czech Republic, Estonia, Cyprus, Latvia, Lithuania, Hungary, Malta, Poland, Slovakia and Slovenia. AA2003/ACT/Annex II/en 2072 / 2005 European Union Consolidated Versions of the Treaty on European Union and of the Treaty Establishing the European Community C 321 E/1) in order that they can comply with the National Emission Ceilings Directive. In addition, the Treaty of Accession for Bulgaria and Romania (2005 - http://ec.europa.eu/environment/air/pdf/eu27_nat_emission_ceilings_2010.pdf) also includes a new target for the EU-27 region as a whole. Targets for the new Member States are temporary and are without prejudice to the review of the NECD. A proposal for a revised NEC Directive (which will set 2020 emission ceiling targets for these ozone precursors pollutants), is expected in 2013. Targets for Bulgaria and Romania are provisional and not binding. Hence, the existing EU25 NECD Target has been used in the following analysis.

The NECD generally involves slightly stricter emission reduction targets than the Gothenburg Protocol. For example, during the period 1990-2010 the EU-15 has NOx emission reduction targets of 52 % and 51% under the NECD and Gothenburg Protocol respectively. For NMVOC, the EU-15 reduction required under the NECD is 55 %, under the Gothenburg reduction target the reduction required is 54 %.

In September 2005 the European Commission released a thematic strategy on air pollution. This strategy sets interim objectives for reducing air pollution impacts across Europe by 2020. The thematic strategy is due to be reviewed by 2013. Other directives influencing emissions of ozone precursors include:

  • The Integrated Pollution Prevention and Control (IPPC) Directive (96/61/EC) aims to prevent or minimise pollution of water, air and soil by industrial effluent and other waste from industrial installations, including energy industries, by defining basic obligations for operating licences or permits and by introducing targets, or benchmarks, for energy efficiency. It also requires the application of Best Available Techniques (BAT) in new installations from now on (and for existing plants over the next 10 years according to national legislation).
  • The Large Combustion Plant Directive (2001/80/EC) sets emission limits for licensing of new plants and requires Member States to establish programmes for reducing total emissions.
  • Directive on Industrial Emissions, coalescing seven existing directives into one namely:
    • the Large Combustion Plant directive (LCPD);
    • the Integrated Pollution Prevention and Control directive ( IPPCD);
    • the Waste Incineration directive (WID);
    • the Solvent Emissions directive (SED);
    • the three existing directives on Titanium dioxide on (i) disposal (78/176/EEC), (ii) monitoring and surveillance ( 82/883/EEC) and (iii) programs for the reduction of pollution (92/112/EEC).
  • Emissions from transport are controlled by a number of Directives. These include: emissions from passenger cars and light commercial vehicles (70/220/EEC, as last amended by Directive 2001/100/EC targeting CO, NMVOCs and NOx); quality of petrol and diesel fuels (98/70/EC) as last amended by Directive 2003/17/EC specifying lower sulphur contents of fuels, (but also indirectly targeting emissions of the primary pollutants CO, NMVOCs and NOx; emissions from non-road mobile machinery (97/68/EC) as amended by Directive 2002/88/EC specifying limits for CO, NMVOC and NOx emissions; and for heavy duty vehicles Directive 88/77/EEC as last amended by Directives 1999/96/EC (which provides the Euro 3 (from October 2000), Euro 4 (from October 2005) and Euro 5 (from October 2008) emission standards for CO, NMVOCs and NOx) and Directive 2001/27/EC (adapting to technical progress Directive 88/77/EEC), and The white paper [COM(2001)370, 12/09/2001] proposing 60 measures to develop a transport system in line with the sustainable development strategy set by the European Council.
  • The 1994 VOCs Directive (94/63/EC) applies to the operations, installations, vehicles and vessels used for storage, loading and transport of petrol from one terminal to another or from a terminal to a service station
  • There are no specific EU emission targets set for either carbon monoxide (CO) or methane (CH4). However, there are several Directives and Protocols that affect the emissions of CO and CH4. Carbon monoxide is covered by the second daughter Directive under the Air Quality Directive. This gives a limit of 10 mg m-3 for ambient air quality to be met by 2005. Methane is included in the basket of six greenhouse gases under the Kyoto protocol to the United Nations Framework Convention on Climate Change (UNFCCC), under which limits for greenhouse gas emissions for the period 2008-2012 have been agreed by certain countries.

Targets

Emissions of NOx and NMVOCs are covered by the EU National Emission Ceilings Directive (NECD) and the Gothenburg Protocol to the UNECE LRTAP Convention (UNECE 1999). Both instruments contain emission ceilings (limits) that countries must meet by 2010. See also CSI002

Related policy documents

  • Council Directive 96/61/EC (IPPC)
    Council Directive 96/61/EC of 24 September 1996 concerning Integrated Pollution Prevention and Control (IPPC). Official Journal L 257.
  • Directive 70/220/EEC
    It regards the approximation of the laws of the Member States on measures to be taken against air pollution by emissions from motor vehicles
  • Directive 88/77/EEC
    On the approximation of the laws of the Member States relating to the measures to be taken against the emission of gaseous pollutants from diesel engines for use in vehicles
  • Directive 94/63/EC
    Directive on the control of volatile organic compound (VOC) emissions resulting from the storage of petrol and its distribution from terminals to service stations
  • Directive 97/68/EC of 16 December 1997
    Directive 97/68/EC of the European Parliament and of the Council of 16 December 1997 on the approximation of the laws of the Member States relating to measures against the emission of gaseous and particulate pollutants from internal combustion engines to be installed in non-road mobile machinery
  • Directive 98/70/EC relating to the quality of petrol and diesel fuels
    Directive 98/70/EC of the European Parliament and of the Council of 13 October 1998 relating to the quality of petrol and diesel fuels, amended by Directive 2003/17/EC   of the European Parliament and of the Council of 3 March 2003 [Official Journal L 76 of 22.03.2003]
  • Directive 1999/96/EC
    on the approximation of the laws of the Member States relating to measures to be taken against the emission of gaseous and particulate pollutants from compression ignition engines for use in vehicles, and the emission of gaseous pollutants from positive ignition engines fuelled with natural gas or liquefied petroleum gas for use in vehicles and amending Council Directive 88/77/EEC
  • DIRECTIVE 2001/27/EC
    it adapts to technical progressCouncil Directive 88/77/EEC on the approximation of the laws of the Member States relating to measures to be taken against the emission of gaseous and particulate pollutants from compression-ignition engines for use in vehicles, and the emission of gaseous pollutants from positive-ignition enginesfuelled with natural gasor liquefied petroleum gasfor use in vehicles
  • Directive 2001/81/EC, national emission ceilings
    Directive 2001/81/EC, on nation al emissions ceilings (NECD) for certain atmospheric pollutants. Emission reduction targets for the new EU10 Member States have been specified in the Treaty of Accession to the European Union 2003  [The Treaty of Accession 2003 of the Czech Republic, Estonia, Cyprus, Latvia, Lithuania, Hungary, Malta, Poland, Slovenia and Slovakia. AA2003/ACT/Annex II/en 2072] in order that they can comply with the NECD.
  • DIRECTIVE 2002/88/EC
    It amends the Directive 97/68/EC on the approximation of the laws of the Member States relating to measures against the emission of gaseous and particulate pollutants from internal combustion engines to be installed in non-road mobile machinery.
  • DIRECTIVE 2003/17/EC
    It amends the Directive 98/70/EC relating to the quality of petrol and diesel fuels
  • UNECE Convention on Long-range Transboundary Air Pollution
    UNECE Convention on Long-range Transboundary Air Pollution.

Key policy question

Are energy-related emissions of ozone precursors decreasing?

Specific policy question

How rapidly are energy-related (except transport) emissions of tropospheric ozone precursors declining?

Specific policy question

How rapidly are transport-related emissions of tropospheric ozone precursors declining?

Methodology

Methodology for indicator calculation

Indicator is based on officially reported national total and sectoral emissions to UNECE/EMEP (United Nations Economic Commission for Europe/Co-operative programme for monitoring and evaluation of the long-range transmission of air pollutants in Europe) Convention on Long-range Transboundary Air Pollution (LRTAP Convention), submission 2010. Recommended methodologies for emission inventory estimation are compiled in the EMEP/CORINAIR Atmospheric Emission Inventory guidebook, EEA Copenhagen (EEA, 2009). Base data are available from the EEA Data Service (http://dataservice.eea.europa.eu/dataservice/metadetails.asp?id=1096) and the EMEP web site (http://www.ceip.at/). Recalculations of Member States data may happen. These are fully documented in the EEA report http://www.eea.europa.eu/publications/eu-emission-inventory-report-1990-2009.

Base data, reported in NFR are aggregated into the following EEA sector codes to obtain a common reporting format across all countries and pollutants:

  • Energy Industries: emissions from public heat and electricity generation, oil refining,  production of solid fuels, extraction and distribution of solid fossil fuels and geothermal energy;
  • Industrial processes: emissions derived from non-combustion related processes such as the production of minerals, chemicals and metal production;
  • Road transport: light and heavy duty vehicles, passenger cars and motorcycles;
  • Non-road (other) transport: railways, domestic shipping, certain aircraft movements, and non-road mobile machinery used in agriculture & forestry;
  • Household and services: emissions principally occurring from fuel combustion in the services and household sectors;
  • Manufacturing and Constructions: emissions from combustion processes used in the manufacturing industry including boilers, gas turbines and stationary engines;
  • Other non-energy (Solvent and product use): non-combustion related emissions mainly in the services and households sectors including activities such as paint application, dry-cleaning and other use of solvents;
  • Agriculture: manure management, fertiliser application, field-burning of agricultural wastes
  • Waste: incineration, waste-water management;

The following table shows the conversion of Nomenclature for Reporting (NFR) sector codes used for reporting by countries into EEA sector codes:

EEA classification

Non-GHGs (NFR)

GHG (CRF)

National totals

National total

National totals without LUCF

Energy Industries

1A1

1A1

Fugitive emissions

1B1, 1B2

1B

Road transport

1A3b

1A3b

Non-road transport (non-road mobile machinery)

1A3 (exl 1A3b)

1A3a, 1A3c, 1A3d, 1A3e

Industrial processes

2

2

Other non-energy (Solvent and product use)

3, 7A

3

Agriculture

4

4

Waste

6

6

Household and services

1A4ai, 1A4aii, 1A4bi, 1A5a

1A4A, 1A4B

Manufacturing / Construction

1A2

1A2

Methodology for gap filling

An improved gap-filling methodology used in compiling this year's EU‑27 emission inventory means that for the first time a complete EU‑27 time series trend for the main air pollutants (NOx, SOx, NMVOC, NH3 and CO) can be reported to the LRTAP Convention. For the remaining pollutants, one or more Member States did not report emissions for any year meaning that gap-filling could not be applied. For these pollutants, therefore, the aggregated EU data are not yet complete and are likely to underestimate true emissions. See section 1.4.2 Data gaps and gap-filling in European Union emission inventory report 1990 — 2008 under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP)[1]

Methodology references

  • Methodology reference EMEP/CORINAIR Emission Inventory Guidebook - 2009 This 2009 update of the emission inventory guidebook prepared by the UNECE/EMEP Task Force on Emissions Inventories and Projections provides a comprehensive guide to state-of-the-art atmospheric emissions inventory methodology. Its intention is to support reporting under the UNECE Convention on Long-range Transboundary Air Pollution and the EU National Emission Ceilings Directive.   EMEP (2010). Transboundary, acidification, eutrophication and ground level ozone in Europe in 2008

Data specifications

EEA data references

Data sources in latest figures

Uncertainties

Methodology uncertainty

The NOx, CO and NMVOC emissions data officially submitted by EU Member States and other EEA member countries follow common calculation (EMEP/EEA 2011) and reporting guidelines (UNECE 2003). CH4 emissions are estimated by countries following IPCC Guidelines (e.g. IPCC 2011).

Nitrogen oxide emission estimates in Europe are thought to have an uncertainty of about +/-20% (EMEP 2009), as the NOx emitted comes both from the fuel burnt and the combustion air and so cannot be estimated accurately from fuel nitrogen alone.  However, because of the need for interpolation to account for missing data, the complete dataset used will have higher uncertainty. The trend is likely to be more accurate than the individual absolute annual values - the annual values are not independent of each other.

Uncertainties in emissions of CO are likely to have a similar magnitude of uncertainty as for NOx. NMVOC emissions data have been verified by EMEP and others by means of comparison between modelled and measured concentration throughout Europe (EMEP, 1998). From these studies total uncertainty ranges have been estimated to about +/-50%. Some main source categories are less uncertain.

CH4 estimates are reasonably reliable as they are based on a few well-known emission sources. The IPCC believes that the uncertainty in CH4 emission estimates from all sources, in Europe, is likely to be about +/-20 %. CH4 emissions from some sources, such as rice fields, are much larger (possibly an order of magnitude), but are a minor emission source in Europe. In 2004, EU Member States reported uncertainties in their estimates of CH4 emissions from enteric fermentation as ranging between 0.5 % (UK) and 2.8 % (Ireland) of the total national GHG emissions (EEA 2004).

Incomplete reporting and resulting intra- and extrapolation may obscure some trends.

Data sets uncertainty

No uncertainty has been specified

Rationale uncertainty

No uncertainty has been specified

Further work

Short term work

Work specified here requires to be completed within 1 year from now.

Long term work

Work specified here will require more than 1 year (from now) to be completed.

General metadata

Responsibility and ownership

EEA Contact Info

Anca-Diana Barbu

Ownership

European Environment Agency (EEA)

Identification

Indicator code
ENER 005
Specification
Version id: 1
Primary theme: Energy Energy

Permalinks

Permalink to this version
cfc7b69d1167f1ebc551266843a733ae
Permalink to latest version
4C43MT9BV2

Classification

DPSIR: Pressure
Typology: Descriptive indicator (Type A - What is happening to the environment and to humans?)

Related content

Data used

Relevant policy documents

Geographical coverage

[+] Show Map

Document Actions

Comments

Sign up now!
Get notifications on new reports and products. Currently we have 33102 subscribers. Frequency: 3-4 emails / month.
Notifications archive
Follow us
 
 
 
 
 
Log in


Forgot your password?
European Environment Agency (EEA)
Kongens Nytorv 6
1050 Copenhagen K
Denmark
Phone: +45 3336 7100